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Abstract12

Tropical anvil clouds are an important player in Earth’s climate and climate sensitivity, but13

simulations of anvil clouds are uncertain. Here we pinpoint one source of uncertainty by14

demonstrating a marked increase of anvil cloud fraction with resolution in cloud-resolving15

simulations of radiative-convective equilibrium. This increase in cloud fraction can be traced16

back to the resolution dependence of horizontal mixing between clear and cloudy air. A mix-17

ing timescale is diagnosed for each simulation using the cloud fraction theory of Seeley et al.18

[2019] and is found to scale linearly with grid spacing, as expected from a simple scaling19

law. Thus mixing becomes more efficient with increasing resolution, generating more evap-20

oration, decreased precipitation efficiency, greater mass flux, and hence greater detrainment21

and cloud fraction. The decrease in precipitation efficiency also yields a marked increase in22

relative humidity with resolution.23

1 Introduction24

Tropical anvil clouds exert considerable leverage over the Earth’s radiation budget, by25

reflecting sunlight as well as trapping thermal infrared radiation [e.g. Hartmann et al., 2001].26

Any change in anvil cloud area with warming is thus a potentially significant climate feed-27

back [Lindzen et al., 2001; Mauritsen and Stevens, 2015]. Indeed, this ‘tropical anvil cloud28

area feedback’ was recently assessed by Sherwood et al. [2020] to be −0.2 ± 0.2 W/m2/K, a29

magnitude (and uncertainty) comparable to other cloud feedbacks, including low-cloud feed-30

backs.31

While tropical anvil clouds and their area feedbacks are thus important players in the32

climate system, confidence in their simulation is low. Global climate models (GCMs) ex-33

hibit a significant spread in climatological anvil cloud fraction [Cesana and Chepfer, 2012;34

Su et al., 2013], as well as an uncertain sign in anvil cloud area feedbacks [Zelinka et al.,35

2016]. Even cloud resolving models (CRMs) exhibit an uncertain sign in anvil cloud area36

changes with warming, with some CRMs exhibiting a decrease [Romps, 2020; Cronin and37

Wing, 2017] and others exhibiting an increase [Singh and O’Gorman, 2015]. Similar am-38

biguities are found in global-scale, convection-permitting models [Tsushima et al., 2014;39

Narenpitak et al., 2017]. Such uncertainty led Sherwood et al. [2020] to base their assess-40

ment of the anvil cloud area feedback almost entirely on observations [Williams and Pierre-41

humbert, 2017]. This uncertainty in modeled anvil cloud area feedback is highlighted and42

reinforced by the results of the recent Radiative-Convective Equilibrium Model Intercom-43

parison Project [RCEMIP, Wing et al., 2020], which finds a strikingly large spread in both44

climatological anvil cloud fraction and anvil fraction changes with warming, across both45

convection-resolving and coarse-resolution simulations (see, e.g., their Fig. 15).46

Given the importance of anvil cloud area to climate, as well as the aforementioned47

uncertainties in their simulation, a deeper study of the fundamental physics of anvil clouds48

seems warranted. Although divergence and detrainment have long been recognized as key49

determinants of anvil cloud fraction [Hartmann and Larson, 2002], the recently developed50

formalism of Seeley et al. [2019] (hereafter S19) emphasized the additional role of cloud life-51

time in determining anvil cloud amount. While the lifetime of a cloudy parcel depends on a52

number of quantities, a key determinant in the S19 formalism is the characteristic timescale53

κ with which a volume of cloudy air mixes with an equal volume of clear air. This timescale54

influences a number of processes, including the rate of condensate evaporation, condensate55

dilution, and the spreading of anvil clouds.56

The S19 formalism, and our physical picture of anvil cloud evolution in general, how-57

ever, assumes that anvil clouds spread continuously after their detrainment from convective58

cores. But in simulations of cloud ensembles, such as cloud-resolving RCE, convective cores59

are typically only a few grid cells wide, even down to resolutions of O(100 m) [Jeevanjee,60

2017]. Thus, we might expect the spreading of anvil clouds in such simulations to be grid-61

dependent. Indeed, if the turbulent horizontal wind speed which advects air between grid62
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cells is urms, then one expects the timescale κ (with which a cloudy grid cell completely63

mixes with a neighboring clear grid cell) to scale with horizontal grid spacing dx as64

κ ∼ dx/urms . (1)

If this is true, and given the varied and significant influences of κ on cloud fraction, we might65

then also expect cloud fraction to depend on resolution. We confirm this in Fig. 1 by plotting66

cloud fraction for a series of cloud-resolving radiative-convective equilibrium (RCE) sim-67

ulations with dx varying from 0.0625 m to 16 km; details of these simulations are given in68

Section 2. The left panel shows simulations with the six-class GFDL microphysics scheme69

[Zhou et al., 2019], while the right panel shows simulations with a Kessler-type warm-rain70

microphysics scheme [Kessler, 1969, details below]. The solid lines show simulations on a71

fixed grid, whereas dashed lines show simulations with a fixed domain size. A marked in-72

crease of high cloud fraction with increasing resolution is evident, and is found in all sets of73

simulations, suggesting that this result is robust. Similar results were also found with DAM74

[Romps, 2008] (not shown).75
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Figure 1. A striking dependence of cloud fraction on resolution Time-mean cloud fraction profiles from
FV3 RCE simulations with varying horizontal resolution (colors). Left panel shows simulations with com-
prehensive microphysics, while the right panel shows simulations with simplified Kessler microphysics. All
simulations are run on a 96 × 96 horizontal grid, except for those shown in dashed lines which were run on a
fixed domain of size 96 × 16 km2. Further simulation details are given in Section 2.
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This resolution-dependence adds to the aforementioned uncertainties in anvil cloud81

simulations, and casts further doubt on our ability to simulate anvil clouds with confidence.82

Furthermore, this decrease in confidence may have unfortunate implications for machine-83

learning applications in climate models, which sometimes use cloud-resolving simulations as84

‘ground-truth’ training data for AI algorithms [Rasp et al., 2018; Brenowitz and Bretherton,85

2018; Yuval and O’Gorman, 2020]. At the same time, however, a deeper understanding of86

this resolution sensitivity may lead to a better understanding of our simulations and of anvil87

cloud dynamics more generally, ideally pointing the way to more accurate simulations and88

parameterizations.89

The goal of this paper is to pursue such understanding. Key components of this pursuit90

include not only the simulations shown in Fig. 1, but also the theoretical framework of S19,91

as well as the process-level diagnostics required to utilize the theory. We begin in Section92
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2 by describing in detail our simulations and these process-level diagnostics. Section 3.193

then formulates a hypothesis for the resolution sensitivity seen in Fig. 1, followed by a brief94

exposition of the S19 theory in Sections 3.2 and 3.3. Section 4 provides supporting evidence95

for the hypothesis of Section 3.1. We summarize and conclude in Section 5.96

2 Simulations97

The atmospheric model used here is the non-hydrostatic version of GFDL’s FV3 [Finite-98

Volume Cubed-Sphere Dynamical Core, Harris and Lin, 2013; Lin, 2004]. The simulations99

analyzed here are very similar, and in some instances the same as, those performed in Jee-100

vanjee [2017] (hereafter J17). We give the salient features of our simulations below and refer101

the reader to J17 for further details, as well as plots and animations depicting the character of102

the convection in these simulations.103

As in J17, a guiding principle in configuring the simulations is to avoid inessential104

complexity insofar as possible [Jeevanjee et al., 2017]. Thus, we run simple doubly-periodic105

radiative-convective equilibrium (RCE) simulations over a fixed sea surface temperature of106

300 K, at resolutions spanning dx = 0.0625 – 16 km by factors of two. Radiative cooling is107

non-interactive and is parameterized as a fit to the invariant divergence of radiative flux F108

found by Jeevanjee and Romps [2018]:109

−∂T F = (0.25 W/m2/K2) · (T − Ttp) . (2)

Here the temperature derivative is a vertical derivative, Ttp = 200 K is the tropopause temper-110

ature, and the above cooling is applied between the surface and 125 hPa, above which tem-111

peratures are relaxed to Ttp over a timescale of 5 days (so the stratosphere is isothermal). The112

advantage of this non-interactive radiative cooling is that it is unaffected by the large changes113

in cloud fraction across our simulations, simplifying their analysis and interpretation. At the114

same time, cloud-radiation interactions are known to influence anvil and particularly anvil115

cirrus cloud development [e.g. Hartmann et al., 2018], so future work should investigate how116

such physics interacts with the mechanisms studied here.117

No boundary layer or sub-grid turbulence schemes are used, though small amounts118

of vorticity and divergence damping are used to stabilize the model and reduce noise. The119

vertical discretization is Lagrangian [Lin, 2004] with 151 levels, and the horizontal grid has120

96 points in both x and y, except for the runs shown in dashed lines in Fig. 1. The latter were121

more expensive, fixed-domain runs which due to computational constraints had a ‘bowling-122

alley’ domain of (Lx, Ly ) = 96 × 16 km2 and were run over a smaller resolution range of123

dx=0.25 – 2 km.124

Again in the spirit of avoiding inessential complexity, and to enable use of the theory125

of Seeley et al. [2019], microphysical transformations are performed with a warm-rain ver-126

sion of GFDL microphysics scheme [Chen and Lin, 2013] which models only water vapor127

qv, cloud condensate qc, and rain, with the only transformations being condensation/evaporation128

of condensate, re-revaporation of rain, and autoconversion of cloud condensate to rain as129

dqc
dt

�����auto
= −qc/taut (3)

where the autoconversion timescale taut = 30 minutes. The only exceptions are the simula-130

tions shown in Fig. 1a, which use the full complexity (six-class) GFDL microphysics scheme131

which includes ice processes [Zhou et al., 2019]. While Eq. (3) is extremely idealized, its132

use seems permissible since comprehensive microphysical processes do not seem essential133

for understanding how cloud fraction depends on resolution and mixing; indeed, this depen-134

dence is very similar for both our warm-rain and full complexity simulations (Fig. 1a).135

To analyze convection in our simulations we partition the domain online at each time136

step into active, inactive, and environmental air. Active (updraft) air has qc > qc0 ≡ 10−5
137

–4–



Manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

and vertical velocity w > w0, where w0 is resolution-dependent (consistent with the findings138

of J17) and varies between 0.25-1 m/s. Inactive air has qc > qc0 = 10−5 and w < w0 and139

should be thought of as detrained cloud. All other grid points are considered environmental.140

Cloud fraction C is diagnosed as the fractional area at a given height occupied by active and141

inactive air. We use this partitioning to conditionally average various quantities (w, qc, etc.)142

over these subdomains. We also include microphysical diagnostics of evaporation e, auto-143

conversion a, and condensation c (units kg/m3/ sec), all of which can also be conditionally144

averaged as above.145

These primary diagnostics, while of interest in their own right, also allow us to derive146

other diagnostics of interest. One such diagnostic is the convective mass flux M ≡ ρwupσup147

(kg/m2/ sec) where σup is the fractional area occupied by active updraft air at a given height,148

and the subscripts "up" and "in" will refer to quantities which are conditionally averaged over149

active updrafts or inactive air, respectively. Another such diagnostic is the volumetric de-150

trainment δM/ρ (1/ sec), where δ is fractional gross detrainment (1/m) and ρ is density.151

This quantity can be interpreted as the fractional rate at which air at a given height becomes152

cloudy, and is diagnosed (following Seeley et al. [2019]) by considering the cloud water bud-153

get for inactive air, which has detrained condensate δMqc,up as the sole source term (no con-154

densation) and total evaporation and inactive autoconversion e + ain as sinks. Assuming that155

sources and sinks balance in steady-state then yields156

δM
ρ
=

e + ain
ρqc,up

. (4)

The right-hand side of this equation may be diagnosed from the simulations, yielding a method157

for diagnosing δM/ρ. Since M and ρ can also be diagnosed independently, this also yields a158

method for diagnosing the fractional detrainment δ.159

We initially spun up a dx = 1 km simulation for 200 days, and then branched all other160

runs off this run, running for at least 50 days to allow adjustment to different resolutions. All161

quantities analyzed in this paper are averaged horizontally and over the last 5 days of simula-162

tion.163

3 Hypothesis and Theory164

3.1 Hypothesis for cloud fraction sensitivity165

We now sketch a hypothetical explanation for the dramatic increase of cloud fraction166

with resolution seen in Fig. 1. Later sections of the paper will buttress this initial explanation167

with further evidence.168

Equation (1) implies more effective mixing at higher resolutions, hence greater evapo-169

ration. Greater evaporation suggests a decrease in the conversion efficiency (c − e)/c [Lang-170

hans et al., 2015; Lutsko and Cronin, 2018], which is the fraction of condensate which turns171

to rain and is a vertically-resolved measure of precipitation efficiency. Since the non-interactive172

radiative cooling (2) fixes the amount of latent heating which convection must provide, a de-173

crease in conversion efficiency implies that the convective mass flux must increase. But if174

mass fluxes go up, gross detrainment should too, leading to increased cloudiness. We sum-175

marize this hypothesis as176

Increased
evaporation −→

Decreased
PE −→

Increased
mass flux −→

Increased
detrainment −→

Increased
cloudiness . (5)

Figure 2 shows that qualitatively, the above quantities (diagnosed as outlined in the pre-181

vious section) behave as hypothesized. [add comment that connection between these quanti-182

ties may be non-local in height?] But confidence in the hypothesis (5) requires quantitative183

confirmation of the proposed relationships, including the the basic scaling (1). These tasks184

will be taken up in the next sections, and will be facilitated by the theory of Seeley et al.185

[2019], which we describe next.186
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Figure 2. Increasing evaporation with resolution leads to increased cloud fraction These panels show
the quantities appearing in the the hypothesis (5), as a function of both height and resolution dx. A qualita-
tive consistency between the simulations and the hypothesis (5) is evident. All quantities are diagnosed as
described in the main text.
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3.2 Theory I: Cloud fraction as source times lifetime187

To test the narrative in Eq. (5) we will employ the cloud-fraction theory of Seeley et al.188

[2019], hereafter S19. The theory consists of two major components. The first is a decom-189

position of cloud fraction C into a source times a lifetime, where the source is volumetric190

detrainment δM/ρ and the lifetime τcld represents the time it takes for a detrained, cloudy191

parcel to cease being cloudy (i.e. qc<qc0). Following S19 we write this as192

C =
δM
ρ
τcld . (6)

Since C and δM/ρ are readily diagnosed as described above, one can then diagnose τcld us-193

ing (6); these quantities are plotted in Fig. 3. A few features are worth noticing. The first is194

that in the mid-troposphere, τcld decreases markedly with resolution, which as discussed be-195

low is due to more efficient mixing and evaporation. In the upper troposphere, however, τcld196

only varies by a factor of two or so, and does so non-monotonically with dx. Thus, changes197

in τcld are not driving the dx-dependence of upper-tropospheric cloud fraction. From Eq. (6)198

we can then conclude that the increase of anvil cloud fraction with resolution must instead be199

due to increases in volumetric detrainment δM/ρ, as hypothesized in (5).200

3.3 Theory II: Analytical model for cloud lifetime205

The second component of the theory is an analytical model for the cloud lifetime τcld.206

Though we found above that changes in τcld at the anvil height do not directly drive anvil207

cloud fraction changes, we will see below that the changes in τcld in the mid-troposphere208

reflect the changes in mixing which do end up driving anvil cloud changes (as per the hy-209

pothesis (5)). In fact, combining the analytical model for τcld with Eq. (6) will allow us to210

diagnose mixing timescales κ for each of our simulations, allowing us to test Eq. (1) which is211

a linchpin of our analysis.212

The analytical model for τcld begins with an ordinary differential equation for cloud213

condensate qc in a detrained parcel, assuming that evaporation and warm-rain autoconversion214
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Figure 3. Cloud fraction changes are dominated by detrainment changes. These panels show the quan-
tities appearing in Eq. (6), as a function of height and resolution. Since τcld at the anvil level does not exhibit
a strong trend with resolution, the strong trend in anvil cloud fraction with resolution is due to the trend in
volumetric detrainment δM/ρ.
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on a fixed timescale taut are the only sinks of cloud water:215

dqc
dt
= −

1
κ

1
1 + t/κ

[qc + (1 − RH)q∗v]︸                              ︷︷                              ︸
mixing

−
qc
taut︸︷︷︸

autoconversion

. (7)

The expression qc + (1 − RH)q∗v is the total water mass require to homogenize a unit mass of216

clear air that is mixed into the inactive cloudy air, while 1 + t/κ is the mass of the parcel at217

time t relative to its initial (unit) mass, and 1/κ is the mixing rate. For a complete derivation218

of (7), see S19.219

Equation (7) can be solved analytically, and an analytical formula for the lifetime τcld at225

which qc < qc0 can be derived [Eqs. (A.2)]. This formula contains κ as an undetermined pa-226

rameter, to be determined by optimization. We optimize κ by minimizing the RMSE between227

the simulated cloud fraction and that given by Eq. (6), where δM/ρ is diagnosed directly228

from the simulations but τcld is given by Eq. (A.2). The results of this optimization for each229

of our warm-rain (Kessler) simulations is shown in Fig. 4. One can see that for dx > 0.5 km230

or so, the S19 theory captures the simulated cloud fraction profiles reasonably well. For231

dx . 0.5 km the fit degrades, likely due to our neglect of anvil cloud spreading (Appendix232

A.2). What is of interest here, however, are the values for κ diagnosed from each of these fits,233

which are noted in each panel in Fig. 4 and also shown in Fig. 5. Fig. 5 also shows a linear234

fit of the form κ = dx/urms. This figure shows that the scaling (1) is indeed consistent with235

our simulations and the S19 theory (which was used to diagnose κ). Furthermore, the urms236

value derived from the linear fit is 0.1 m/s, roughly consistent with the variations in horizon-237

tal velocity seen by inspection in our simulations.238

4 Evaporation, PE, and mass flux242

The last section presented evidence that simulated mixing increases with resolution243

following (1). But, how do we know that this mixing is behind the changes in evaporation244

manifest in Fig. 2a? And how do we know that these evaporation changes indeed cause the245

PE changes in Fig. 2b, and that these PE changes indeed driving the mass flux changes seen246

in Fig. 2c? We turn to these questions now.247
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Figure 4. The S19 theory approximates the simulated cloud fraction, and diagnoses a dx-dependent
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prediction from the S19 theory [dashed lines, Eqs. (A.2) and (6)]. The S19 theory approximates the simulated
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To assess the influence of the mixing timescale κ on condensate evaporation, we note248

that by Eq. (7) the evaporation rate in the neighborhood of an updraft grid cell (neglecting249

inactive grid cells whose contribution in the mid and lower troposphere is small) should just250

be ρ times the mixing term. Averaging over the domain and invoking (1) (evaluated at t = 0251

for simplicity) then yields252

e =
ρurms

dx
σup[qc,up + (1 − RH)q∗v] . (8)

We compare this estimate of evaporation to that diagnosed directly from our simulations in253

Fig. 6. Here urms was chosen to optimize the accuracy of the estimate (8), and gives urms =254

0.2 m/s, similar to the previous value. The agreement in Fig. 6a,b is reasonable, suggesting255

that Eq. (8) is indeed a good first-order description of the evaporation rate.256

Equation (8) tells us that the evaporation rate e is proportional to dx, but also to the257

fractional updraft area σup which also increases with resolution (since M ∼ σup, cf. Fig. 2c).258

To confirm the central role of the dx-dependence in (8), Fig. 6c shows the evaporation rate e259

normalized by the mass flux M , which can be interpreted as the rate at which qc,up decreases260

(due to evaporation) in a convecting parcel per unit height traveled. This quantity increases261

markedly with resolution, confirming that the proportionality between e and dx in (8) is a262

primary influence on evaporation rates.263
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with urms = 0.1 m/s (gray line). The reasonable agreement supports the linear scaling (1).
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How do these marked increases in evaporation, even measured relative to mass flux268

M , relate to the actual increases in M? The hypothesis (5) posits that this increase in mass269

flux is due to a decrease in precipitation efficiency PE from enhanced mixing. To check this270

connection, we calculate PE as precipitation P divided by vertically-integrated condensation,271

PE ≡ P/
∫

cdz, and also calculate a vertically-averaged 〈M〉 over 2 and 10 km (the range272

over which M in each simulation is roughly constant). From atmospheric energy balance, we273

expect that the fixed column integrated radiative cooling Q = 120 W/m2 should equal PE274

times an estimated cloud base moisture flux of Lqv,bl〈M〉, where the boundary-layer humid-275

ity qv,bl = 0.017 kg/kg is calculated as the time-mean lowest-level humidity averaged across276

all the simulations. This implies that 〈M〉 and PE should be related as277

〈M〉 =
Q

Lqv,bl

1
PE

. (9)

This relationship, along with 〈M〉 and PE calculated from the simulations, are shown in Fig-278

ure 7. This figure shows that PE indeed decreases markedly as resolution increases, and279

that the corresponding increase in mass flux is indeed governed by the atmospheric energy280

balance as encapsulated in Eq. (9). This provides quantitative confirmation of parts of the281

mechanism proposed in Eq. (5), namely that more efficient evaporation reduces PE and282

hence increases M as resolution increases.283

It should be noted here that PE includes both the vertical integral of the conversion ef-284

ficiency shown in Fig. 2, as well as the sedimentation efficiency which measures the ratio of285

domain-integrated rain water production to surface rain rate [Langhans et al., 2015; Lutsko286

and Cronin, 2018]. The sedimentation efficiency can differ from unity due to re-evaporation287

of rain, which is undiagnosed in our simulations. Future work will consider the sedimen-288

tation efficiency of these simulations, and the extent to which these PE changes are due to289

changes in conversion vs. sedimentation efficiency.290

As an aside, we also note that the increase in evaporation and decrease in PE with res-291

olution might also be expected to cause increases in relative humidity (RH). Indeed, such a292

relationship was explicitly formulated in Romps [2014]. While such changes in RH are not293
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diagnosed directly from our simulations (panel a) is well approximated by Eq. (8) (panel b). Normalizing
evaporation by the mass flux profiles M (panel c) confirms that the 1/dx factor in Eq. (8) is influencing
evaporation rates. Note the logarithmic x-axis in panels a,b.
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266

267

directly relevant to the changes in cloud fraction which are the focus of this paper, they are294

straightforward to understand using the theory of Romps [2014] in conjunction with the diag-295

nostics developed here. For completeness, this analysis is presented in Appendix B: .296

5 Summary and Discussion302

We summarize our main results as follows:303

• Cloud-resolving simulations exhibit a marked increase of anvil cloud fraction with304

resolution (Fig. 1).305

• This sensitivity can be traced to the resolution-dependence of evaporation and hence306

precipitation efficiency [Eq. (5), Figs. 2, 6, 7]307

• The root of this sensitivity is that the mixing which causes evaporation scales linearly308

with resolution [Eq. (1), Fig. 5]309

A key ingredient in this analysis was the theory of S19, which allowed us to diagnose310

values of the mixing timescale κ for each simulation and hence verify Eq. (1).311

This work raises a number of questions and possible future research directions. Per-312

haps most saliently, what are the implications of these results for more realistic simulations?313

For regional or global simulations at O(1 − 10 km) resolution with explicit convection [e.g.314

Prein, 2015; Stevens et al., 2019], does the scaling (1) still hold, with similar consequences315

for precipitation efficiency? If so, what are the implications for rainfall rates at various spa-316

tiotemporal scales? Note that for transient forecast simulations the atmospheric energy con-317

straint may not be relevant, and so the knock-on effects of PE on mass flux and cloud fraction318

may not occur, but the scalings (1) and (8) should hold at all timescales and still affect PE.319

On climate timescales, Zhao [2014]; Zhao et al. [2016] found a close connection be-320

tween gross precipitation efficiency and climate sensitivity for coarse-resolution models321

with parameterized convection. Does the same hold true for global climate models with ex-322

plicit convection, such as global CRMs [Satoh et al., 2019; Stevens et al., 2019] or super-323

parameterized GCMs [Khairoutdinov et al., 2005]? And if so, do the relationships between324
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Figure 7. Mass fluxes increase with decreasing PE, as dictated by energy balance. This figure shows
vertically-averaged mass-flux 〈M〉 plotted against precipitation efficiency PE, defined as precipitation divided
by vertically-integrated condensation, for our simulations at varying dx (colored points). Also shown is the
relationship (9), which is an expression of atmospheric energy balance (dashed line). A strong decrease of PE
with dx is evident, and the mass flux covaries according to (9).
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301

resolution, PE, and cloud fraction found here also operate in such models? If so, then one325

might expect a significant resolution dependence of PE, cloud fraction, and perhaps even cli-326

mate sensitivity in such models, stemming from the simple scaling (1). As mentioned in the327

introduction, such a resolution sensitivity of convection-resolving global models would also328

complicate their use as benchmarks for machine learning.329

Finally, it is worth commenting on why the resolution-dependence of cloudiness is330

somewhat unique relative to other resolution sensitivities. In some sense, a resolution sensi-331

tivity of cloudiness is not surprising because most aspects of atmospheric simulation, includ-332

ing wind fields, thermodynamic variables, and moisture variables, are sensitive to resolution333

to some degree. What is unique about cloud condensate, however – especially relative to334

other tracers – is that its sources and sinks are largely given by saturation adjustment, which335

is a threshold process and thus inherently nonlinear. This means that a change in mixing ef-336

ficiency doesn’t merely redistribute a conserved amount of condensate in space, as might be337

the case for other tracers; because of saturation adjustment, mixing can actually dramatically338

change how much condensate there is. Given the importance of clouds and precipitation to339

both weather and climate simulations, further study of how resolution, numerics, and subgrid340

mixing schemes affect cloud condensate in particular seems warranted.341

A: Further details of the cloud lifetime model342

A.1 Derivation of cloud lifetime343

Equation (7) is a linear ordinary differential equation and can be solved by the usual344

method of finding particular and homogenous solutions and taking their sum. Upon impos-345
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ing the initial condition that the initial qc value for the detrained parcel is simply the updraft346

value, i.e. qc(t = 0) = qc,up, one obtains (see also S19)347

qc(t) =
1

1 + t/κ

[
qc,upe−t/taut −

taut
κ

(1 − RH)q∗v (1 − e−t/taut )
]
. (A.1)

The factor of (1 + t/κ) is just the volume at time t relative to the parcel’s initial volume, and348

thus its appearance in the solution above represents the effect of dilution of condensate as349

the parcel’s volume grows. The first term in brackets represents the decay of qc due to the350

autoconversion sink, and the second term represents the effect of condensate evaporation into351

entrained, subsaturated environmental air.352

With the solution (A.1) in hand it is straightforward, if slightly tedious, to solve for the353

time τcld at which qc = qc0. Employing the Lambert W function (which satisfies by definition354

x = W (x)eW (x)) we have355

τcld = taut
[
W (aeb) − b

]
(A.2a)

where

a =
κ

taut

qc,up

qc0
+

(1 − RH)q∗v
qc0

(A.2b)

b =
κ

taut
+

(1 − RH)q∗v
qc0

(A.2c)

356

A.2 Accounting for anvil spread357

Multiplying τcld derived above by the volumetric detrainment as in (6) gives a time-
mean cloud fraction, but assumes the cloud area stays fixed during its lifetime. Inspection
of coarse-resolution (dx & 0.5 km or so) simulations shows that this is a reasonable as-
sumption, but at higher resolutions the anvils begin to spread before disappearing, potentially
explaining the theory-CRM mismatch at high resolutions in Fig. 4. S19 incorporated anvil
spreading into their model by integrating the cloud area A(t) = A0(1 + t/κ) over time to
obtain an effective cloud lifetime τ̃cld:∫ τcld

0
A0(1 + t/κ) = A0 *

,
τcld +

τ2
cld
2κ

+
-
≡ A0 τ̃cld (A.3a)

where τ̃cld = τcld +
τ2
cld
2κ

. (A.3b)

One then obtains an alternative theory for cloud fraction by substituting τ̃cld for τcld in Eq.358

(6). The predictions from this modified theory are shown in Fig. A.1. At coarser resolutions359

the modified cloud fraction profiles and associated κ values are quite similar to those in Fig.360

A.1. This is expected since at coarse resolutions κ > τcld ∼ 150 minutes (at the anvil level),361

so the additional term τ2
cld/(2κ) in τ̃cld is not large compared to τcld. At finer resolutions (e.g.362

dx = 0.125 − 0.25 km), however, we have κ < τcld and now the modified theory predicts363

larger anvil cloud fractions for comparable κ, in better agreement with the CRM. The agree-364

ment in the mid-troposphere is worse, however, likely because mid-tropospheric clouds at365

fine resolution do not spread even though the upper-tropospheric anvils do. Finally, at 62.5 m366

the modified cloud fraction profile in Fig. A.1 agrees quite well with the CRM, in contrast to367

the mismatch in Fig. 4, but the diagnosed value κ = 1 minute is inconsistent with the value368

of 18 minutes found earlier in Figs. 4 and 5. The reasons for this are unclear.369

B: Implications for Relative Humidity374

The decreases in precipitation efficiency with resolution seen in the main text have im-
plications for the environmental RH in our simulations, which we explore in this Appendix.

–12–



Manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

κ = 1 mins

dx =0.0625 km

H
ei

gh
t (

km
)

0
5

10
15

κ = 47 mins

dx =0.125 km

κ = 75 mins

dx =0.25 km

κ = 111 mins

dx =0.5 km

H
ei

gh
t (

km
)

0
5

10
15

κ = 176 mins

dx =1 km

CRM
Theory

κ = 309 mins

dx =2 km

κ = 527 mins

dx =4 km

H
ei

gh
t (

km
)

0
5

10
15

Cloud fraction
0.0 0.1 0.2 0.3 0.4 0.5

κ = 1272 mins

dx =8 km

Cloud fraction
0.0 0.1 0.2 0.3 0.4 0.5

κ = 3084 mins

dx =16 km

Cloud fraction
0.0 0.1 0.2 0.3 0.4 0.5

Figure A.1. Accounting for anvil spread improves predictions of anvil cloud fraction at high res-
olution, but degrades predictions of mid-tropospheric cloud fraction. As in Fig. 4, but using τ̃cld

from Eq. (A.3b) instead of τcld in Eq. (6). Diagnosed κ values are similar to those in Fig. 4, except for
the dx = 0.0625 km case.

370

371

372

373

Physically, one would expect that the increase in condensate evaporation per unit mass flux
(Fig. 6c) would not only reduce PE, but would also lead to a moister environment and hence
increased RH. These expectations may be quantified using the theory of Romps [2014] (here-
after R14), which provided expressions for RH both with and without evaporation, as encap-
sulated in the parameter α ≡ e/c:

RH =
δ

γ + δ
(no evap) (B.1a)

RH =
δ + αγ − αε

γ + δ − αε
(with evap) . (B.1b)

Here δ is the gross fractional detrainment diagnosed from Eq. (4), γ ≡ −d ln q∗v/dz is the375

‘water-vapor lapse rate’, and ε is the gross fractional entrainment rate diagnosed from the376

equation 1
M

dM
dz = ε − δ. Note that α = e/c is also just 1 minus the conversion efficiency377

shown in Fig. 2c, and also that (B.1b) reduces to (B.1a) if α = 0. Equation (B.1a) expresses378

RH in terms of the competing processes of convective moistening (δ) and subsidence drying379

(γ), while (B.1b) includes the additional effects of detrained condensate evaporation (R14).380

Figure B.1 shows profiles of RH calculated from Eq. (B.1a), Eq. (B.1b), and as diag-381

nosed directly from the simulations. The simulated profiles show that RH increases markedly382

with horizontal resolution, with mid-tropospheric values ranging from 0.45 at dx = 16 km383
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to 0.9 at dx = 62 m. This RH increase is captured by Eq. (B.1b), but is much less consis-384

tent with the RH profiles predicted by Eq. (B.1a). This suggests that the PE decreases seen in385

Fig. 7 are largely driving the RH changes seen in Fig. B.1c, and that the latter are yet another386

impact of increased evaporation resulting from more efficient mixing at higher resolution. A387

caveat of these results is that rain re-evaporation should be included in the calculation of α388

but is currently omitted; Future work will assess the effect of this omission.389
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Figure B.1. Relative humidity increases markedly with resolution, driven largely by changes in PE
These panels show RH profiles at varying resolutions as obtained (a) from Eq. (B.1a), (b) from Eq. (B.1b),
(c) directly from the simulations. The simulated RH increases dramatically with resolution (panel c), and this
increase is largely reproduced using Eq. (B.1b) which includes the effects of precipitation efficiency via the
parameter α = e/c (panel b). Omitting PE effects by setting α = 0 yields a noticeably worse approximation to
the simulated RH profiles (panel a), suggesting that PE changes are a key driver in the resolution sensitivity of
RH seen here.

390

391

392

393

394

395

396

Acknowledgments397

NJ thanks Yi Ming, Ming Zhao, and V. Balaji for discussions.398

References399

Brenowitz, N. D., and C. S. Bretherton (2018), Prognostic Validation of a Neural Network400

Unified Physics Parameterization, Geophysical Research Letters, 45(12), 6289–6298, doi:401

10.1029/2018GL078510.402

Cesana, G., and H. Chepfer (2012), How well do climate models simulate cloud vertical403

structure? A comparison between CALIPSO-GOCCP satellite observations and CMIP5404

models, Geophysical Research Letters, 39(20), 1–6, doi:10.1029/2012GL053153.405

Chen, J. H., and S. J. Lin (2013), Seasonal predictions of tropical cyclones using a 25-km-406

resolution general circulation model, Journal of Climate, 26(2), 380–398, doi:10.1175/407

JCLI-D-12-00061.1.408

Cronin, T. W., and A. A. Wing (2017), Clouds, Circulation, and Climate Sensitivity in a409

Radiative-Convective Equilibrium Channel Model, Journal of Advances in Modeling410

Earth Systems, pp. 2883–2905, doi:10.1002/2017MS001111.411

Dinh, T. P., D. R. Durran, and T. P. Ackerman (2010), Maintenance of tropical tropopause412

layer cirrus, Journal of Geophysical Research Atmospheres, 115(D2), 1–15, doi:10.1029/413

2009JD012735.414

–14–



Manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Durran, D. R., T. Dinh, M. Ammerman, and T. Ackerman (2009), The mesoscale dynamics415

of thin tropical tropopause cirrus, Journal of the Atmospheric Sciences, 66(9), 2859–2873,416

doi:10.1175/2009JAS3046.1.417

Garrett, T. J., B. C. Navarro, C. H. Twohy, E. J. Jensen, D. G. Baumgardner, P. T. Bui,418

H. Gerber, R. L. Herman, A. J. Heymsfield, P. Lawson, P. Minnis, L. Nguyen, M. Poel-419

lot, S. K. Pope, F. P. J. Valero, and E. M. Weinstock (2005), Evolution of a Florida Cirrus420

Anvil, Journal of the Atmospheric Sciences, 62(7), 2352–2372, doi:10.1175/JAS3495.1.421

Garrett, T. J., M. A. Zulauf, and S. K. Krueger (2006), Effects of cirrus near the tropopause422

on anvil cirrus dynamics, Geophysical Research Letters, 33(17), 1–5, doi:10.1029/423

2006GL027071.424

Harris, L. M., and S.-J. Lin (2013), A Two-Way Nested Global-Regional Dynamical Core425

on the Cubed-Sphere Grid, Monthly Weather Review, 141(1), 283–306, doi:10.1175/426

MWR-D-11-00201.1.427

Harrop, B. E., and D. L. Hartmann (2012), Testing the role of radiation in determining428

tropical cloud-top temperature, Journal of Climate, 25(17), 5731–5747, doi:10.1175/429

JCLI-D-11-00445.1.430

Hartmann, D. L., and K. Larson (2002), An important constraint on tropical cloud - climate431

feedback, Geophysical Research Letters, 29(20), 1951, doi:10.1029/2002GL015835.432

Hartmann, D. L., L. A. Moy, and Q. Fu (2001), Tropical convection and the energy bal-433

ance at the top of the atmosphere, Journal of Climate, 14(24), 4495–4511, doi:10.1175/434

1520-0442(2001)014<4495:TCATEB>2.0.CO;2.435

Hartmann, D. L., B. Gasparini, S. E. Berry, and P. N. Blossey (2018), The Life Cycle and436

Net Radiative Effect of Tropical Anvil Clouds, Journal of Advances in Modeling Earth437

Systems, 10(12), 3012–3029, doi:10.1029/2018MS001484.438

Jeevanjee, N. (2017), Vertical velocity in the gray zone, Journal of Advances in Modeling439

Earth Systems, 9, 2304–2316, doi:10.1002/2017MS001059.440

Jeevanjee, N., and D. M. Romps (2018), Mean precipitation change from a deepening tropo-441

sphere, Proceedings of the National Academy of Sciences, 115(45), 11,465–11,470, doi:442

10.1073/pnas.1720683115.443

Jeevanjee, N., P. Hassanzadeh, S. Hill, and A. Sheshadri (2017), A perspective on climate444

model hierarchies, Journal of Advances in Modeling Earth Systems, 9(4), 1760–1771, doi:445

10.1002/2017MS001038.446

Kessler, E. (1969), On the distribution and continuity of water substance on atmospheric447

circulation, vol. 10, 84 pp., American Meteorological Society, Boston, MA, doi:http://dx.448

doi.org/10.1016/0169-8095(94)00090-Z.449

Khairoutdinov, M., D. Randall, and C. DeMott (2005), Simulations of the atmospheric gen-450

eral circulation using a cloud-resolving model as a superparameterization of physical pro-451

cesses, Journal of the Atmospheric Sciences, 62(7 I), 2136–2154, doi:10.1175/JAS3453.1.452

Langhans, W., K. Yeo, and D. M. Romps (2015), Lagrangian Investigation of the Precipita-453

tion Efficiency of Convective Clouds, Journal of the Atmospheric Sciences, 72(3), 1045–454

1062, doi:10.1175/JAS-D-14-0159.1.455

Lin, S.-J. (2004), A ‘Vertically Lagrangian’ Finite-Volume Dynamical Core for Global456

Models, Monthly Weather Review, 132(10), 2293–2307, doi:10.1175/1520-0493(2004)457

132<2293:AVLFDC>2.0.CO;2.458

Lindzen, R. S., M. D. Chou, and A. Y. Hou (2001), Does the Earth Have an Adaptive In-459

frared Iris?, Bulletin of the American Meteorological Society, 82(3), 417–432, doi:460

10.1175/1520-0477(2001)082<0417:DTEHAA>2.3.CO;2.461

Lutsko, N. J., and T. W. Cronin (2018), Increase in Precipitation Efficiency With Surface462

Warming in Radiative-Convective Equilibrium, Journal of Advances in Modeling Earth463

Systems, 10(11), 2992–3010, doi:10.1029/2018MS001482.464

Mauritsen, T., and B. Stevens (2015), Missing iris effect as a possible cause of muted hydro-465

logical change and high climate sensitivity in models, Nature Geoscience, 8(April), 8–13,466

doi:10.1038/ngeo2414.467

–15–



Manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Narenpitak, P., C. S. Bretherton, and M. F. Khairoutdinov (2017), Cloud and circulation468

feedbacks in a near-global aquaplanet cloud-resolving model, Journal of Advances in469

Modeling Earth Systems, 9, 1069–1090, doi:10.1002/2016MS000872.Received.470

Prein, A. F. (2015), A review on regional convection-permitting climate modeling: Demon-471

strations, prospects, and challenges, Reviews of Geophysics, pp. 1–39, doi:10.1002/472

2014RG000475.Received.473

Rasp, S., M. S. Pritchard, and P. Gentine (2018), Deep learning to represent subgrid pro-474

cesses in climate models., Proceedings of the National Academy of Sciences of the United475

States of America, 115(39), 9684–9689, doi:10.1073/pnas.1810286115.476

Romps, D. M. (2008), The Dry-Entropy Budget of a Moist Atmosphere, Journal of the Atmo-477

spheric Sciences, 65(12), 3779–3799, doi:10.1175/2008JAS2679.1.478

Romps, D. M. (2014), An Analytical Model for Tropical Relative Humidity, Journal of Cli-479

mate, 27(19), 7432–7449, doi:10.1175/JCLI-D-14-00255.1.480

Romps, D. M. (2020), Climate Sensitivity and the Direct Effect of Carbon Dioxide in a481

Limited-Area Cloud-Resolving Model, Journal of Climate, 33(9), 3413–3429, doi:482

10.1175/jcli-d-19-0682.1.483

Satoh, M., B. Stevens, F. Judt, M. Khairoutdinov, S.-j. Lin, W. M. Putman, and P. Düben484

(2019), Global Cloud-Resolving Models, Current Climate Change Reports, 5, 172–184.485

Schmidt, C. T., and T. J. Garrett (2013), A Simple Framework for the Dynamic Response of486

Cirrus Clouds to Local Diabatic Radiative Heating, Journal of the Atmospheric Sciences,487

70(5), 1409–1422, doi:10.1175/JAS-D-12-056.1.488

Seeley, J. T., N. Jeevanjee, W. Langhans, and D. M. Romps (2019), Formation of Tropical489

Anvil Clouds by Slow Evaporation, Geophysical Research Letters, 46(1), 492–501, doi:490

10.1029/2018GL080747.491

Sherwood, S. C., M. J. Webb, J. D. Annan, K. C. Armour, P. M. Forster, J. C. Hargreaves,492

G. Hegerl, S. A. Klein, K. D. Marvel, E. J. Rohling, M. Watanabe, T. Andrews, P. Bracon-493

not, C. S. Bretherton, G. L. Foster, Z. Hausfather, A. S. Heydt, R. Knutti, T. Mauritsen,494

J. R. Norris, C. Proistosescu, M. Rugenstein, G. A. Schmidt, K. B. Tokarska, and M. D.495

Zelinka (2020), An Assessment of Earth’s Climate Sensitivity Using Multiple Lines of496

Evidence, Reviews of Geophysics, 58(4), 1–92, doi:10.1029/2019rg000678.497

Singh, M. S., and P. A. O’Gorman (2015), Increases in moist-convective updraught velocities498

with warming in radiative-convective equilibrium, Quarterly Journal of the Royal Meteo-499

rological Society, 141(692), 2828–2838, doi:10.1002/qj.2567.500

Stevens, B., M. Satoh, L. Auger, J. Biercamp, C. S. Bretherton, X. Chen, P. Düben, F. Judt,501

M. Khairoutdinov, D. Klocke, C. Kodama, L. Kornblueh, S. J. Lin, P. Neumann, W. M.502

Putman, N. Röber, R. Shibuya, B. Vanniere, P. L. Vidale, N. Wedi, and L. Zhou (2019),503

DYAMOND: the DYnamics of the Atmospheric general circulation Modeled On Non-504

hydrostatic Domains, Progress in Earth and Planetary Science, 6(1), doi:10.1186/505

s40645-019-0304-z.506

Su, H., J. H. Jiang, C. Zhai, V. S. Perun, J. T. Shen, A. Del Genio, L. S. Nazarenko, L. J.507

Donner, L. Horowitz, C. Seman, C. Morcrette, J. Petch, M. Ringer, J. Cole, K. Von Salzen,508

M. D. Mesquita, T. Iversen, J. E. Kristjansson, A. Gettelman, L. Rotstayn, S. Jeffrey, J. L.509

Dufresne, M. Watanabe, H. Kawai, T. Koshiro, T. Wu, E. M. Volodin, T. L’Ecuyer, J. Teix-510

eira, and G. L. Stephens (2013), Diagnosis of regime-dependent cloud simulation errors in511

CMIP5 models using "a-Train" satellite observations and reanalysis data, Journal of Geo-512

physical Research Atmospheres, 118(7), 2762–2780, doi:10.1029/2012JD018575.513

Tsushima, Y., S. I. Iga, H. Tomita, M. Satoh, A. T. Noda, and M. J. Webb (2014), High cloud514

increase in a perturbed SST experiment with a global nonhydrostatic model including ex-515

plicit convective processes, Journal of Advances in Modeling Earth Systems, 6(3), 571–516

585, doi:10.1002/2013MS000301.517

Williams, I. N., and R. T. Pierrehumbert (2017), Observational evidence against strongly518

stabilizing tropical cloud feedbacks, Geophysical Research Letters, 44(3), 1503–1510, doi:519

10.1002/2016GL072202.520

–16–



Manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Wing, A. A., C. L. Stauffer, T. Becker, K. A. Reed, M. Ahn, N. P. Arnold, S. Bony, M. Bran-521

son, G. H. Bryan, J. Chaboureau, S. R. Roode, K. Gayatri, C. Hohenegger, I. Hu, F. Jans-522

son, T. R. Jones, M. Khairoutdinov, D. Kim, Z. K. Martin, S. Matsugishi, B. Medeiros,523

H. Miura, Y. Moon, S. K. Müller, T. Ohno, M. Popp, T. Prabhakaran, D. Randall,524

R. RiosâĂŘBerrios, N. Rochetin, R. Roehrig, D. M. Romps, J. H. Ruppert, M. Satoh,525

L. G. Silvers, M. S. Singh, B. Stevens, L. Tomassini, C. C. Heerwaarden, S. Wang, and526

M. Zhao (2020), Clouds and Convective Self-Aggregation in a Multi-Model Ensemble of527

Radiative-Convective Equilibrium Simulations, Journal of Advances in Modeling Earth528

Systems, pp. 1–72, doi:10.1029/2020ms002138.529

Yuval, J., and P. A. O’Gorman (2020), Stable machine-learning parameterization of subgrid530

processes for climate modeling at a range of resolutions, Nature Communications, 11(1),531

doi:10.1038/s41467-020-17142-3.532

Zelinka, M. D., C. Zhou, and S. A. Klein (2016), Insights from a refined decomposition533

of cloud feedbacks, Geophysical Research Letters, 43(17), 9259–9269, doi:10.1002/534

2016GL069917.535

Zhao, M. (2014), An investigation of the connections among convection, clouds, and climate536

sensitivity in a global climate model, Journal of Climate, 27(5), 1845–1862, doi:10.1175/537

JCLI-D-13-00145.1.538

Zhao, M., J. C. Golaz, I. M. Held, V. Ramaswamy, S. J. Lin, Y. Ming, P. Ginoux, B. Wyman,539

L. J. Donner, D. Paynter, and H. Guo (2016), Uncertainty in model climate sensitivity540

traced to representations of cumulus precipitation microphysics, Journal of Climate, 29(2),541

543–560, doi:10.1175/JCLI-D-15-0191.1.542

Zhou, L., S. J. Lin, J. H. Chen, L. M. Harris, X. Chen, and S. L. Rees (2019), Toward543

convective-scale prediction within the next generation global prediction system,544

Bulletin of the American Meteorological Society, 100(7), 1225–1243, doi:10.1175/545

BAMS-D-17-0246.1.546

–17–


