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Key Points:  15 

• Potential evaporation models overestimate evaporative demand for warmer future 16 
climatic conditions, leading to a hydrologic drying bias. 17 

• To resolve this, we developed and evaluated a land-atmosphere coupled potential 18 
evaporation model to estimate future evaporative demand. 19 

• Evaporative demand will likely increase slower than previously thought, implying land-20 
atmosphere feedbacks moderates continental drying.  21 
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Abstract 23 

The magnitude and extent of runoff reduction, drought intensification, and dryland expansion 24 
under climate change are unclear and contentious. A primary reason is disagreement between 25 
global circulation models and current potential evaporation (PE) models for evaporative demand 26 
under warming climatic conditions. An emerging body of research suggests that current PE 27 
models including Penman-Monteith and Priestley-Taylor may overestimate future evaporative 28 
demand. However, they are still widely used for climatic impact analysis although the underlying 29 
physical mechanisms for PE projections remain unclear. Here, we show that current PE models 30 
diverge from observed non-water-stressed evaporation, a proxy of evaporative demand, across 31 
site (>1500 flux tower site years), watershed (>10,000 watershed-years), and global (25 climate 32 
models) scales. By not incorporating land-atmosphere feedback processes, current models 33 
overestimate non-water-stressed evaporation and its driving factors for warmer and drier 34 
conditions. To resolve this, we introduce a land-atmosphere coupled PE model that accurately 35 
reproduces non-water-stressed evaporation across spatiotemporal scales. We demonstrate that 36 
terrestrial evaporative demand will increase at a similar rate to ocean evaporation, but much 37 
slower than rates suggested by current PE models. This finding suggests that land-atmosphere 38 
feedbacks moderate continental drying trends. Budyko-based runoff projections incorporating 39 
our PE model are well aligned with those from coupled climate simulations, implying that land-40 
atmosphere feedbacks are key to improving predictions of climatic impacts on water resources. 41 
Our approach provides a simple and robust way to incorporate coupled land-atmosphere 42 
processes into water management tools. 43 

 44 

Plain Language Summary 45 

Water resources are supply-side constrained by precipitation, and demand-side constrained by 46 
atmospheric evaporative demand. It is important to understand how supply and demand sides of 47 
hydroclimate features change with time, particularly for projected future climatic conditions. 48 
Conventionally, a warming and drying climate system has been understood to increase 49 
atmospheric evaporative demand. However, this demand-side perspective neglects land-50 
atmosphere feedback effects. For example, hot dry air is also an indicator of dry soil, implying 51 
that increasing demand (e.g., hot dry air) may not be met due to supply constraints (e.g., dry 52 
soil). We introduce a land-atmosphere coupled potential evaporation model to better predict 53 
evaporative demand under future climatic conditions. In evaluating the model across site, 54 
watershed, and global scales, we report a slower increase in evaporative demand in a warming 55 
climate compared to studies not incorporating land-atmosphere coupling, which is significant for 56 
water resources planning. Improved representation of evaporative demand under future climate 57 
conditions is necessary to aid in planning for climate adaptation, including agricultural water 58 
management, improvement of fire risk indices, and other critical societal informational needs.  59 
  60 
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1 Introduction 61 

Atmospheric evaporative demand, which sets the upper limit of evaporation, is widely 62 
used as a key constraint for estimating actual evaporation and evapotranspiration, as well as 63 
runoff, crop water use, aridity, and drought (Ault, 2020; Vicente-Serrano et al., 2020). The 64 
evaporative demand exerted by the atmosphere is commonly determined as potential evaporation 65 
(PE), which is operationally understood as the evaporation rate when evaporation is not limited 66 
by soil moisture (Vicente-Serrano et al., 2020). Among various proposed PE models, Penman-67 
Monteith and Priestley-Taylor PE are the most widely used since their underlying definitions and 68 
formulations are primarily physically-based. As such, these PE equations are widely used to 69 
predict and analyze changes in drought, aridity, and water availability in relation to a changing 70 
climate (Dai, 2013; Peter Greve et al., 2014; Marvel et al., 2019; McEvoy et al., 2020; P. C. D. 71 
Milly & Dunne, 2020; Piemontese et al., 2019; Sheffield et al., 2012; Su et al., 2018; Trenberth 72 
et al., 2013; Wang et al., 2018).  73 

According to current PE models, PE under climate warming is projected to increase at a 74 
greater rate than precipitation over land, leading to increased aridity (Scheff & Frierson, 2014; 75 
Sherwood & Fu, 2014). Therefore, many studies have sought to explore the implications of 76 
enhanced land surface drying under climate change. However, several recent studies have 77 
demonstrated that calculations based on PE lead to overestimation of non-water-stressed 78 
evaporation for warmer and drier future climate conditions (P. C. D. Milly & Dunne, 2016; 79 
P.C.D. Milly & Dunne, 2017), resulting in overestimates of actual evapotranspiration, soil 80 
drying, and runoff reductions compared to direct projections by climate models (P. C. D. Milly 81 
& Dunne, 2016; P.C.D. Milly & Dunne, 2017; Roderick et al., 2015; Yuting Yang et al., 2019). 82 
More recently, the widely accepted dryland expansion trend under climate change (Berdugo et 83 
al., 2020; J. Huang et al., 2016; Overpeck & Udall, 2020) has been questioned (Berg & McColl, 84 
2021; P. Greve et al., 2019; Keenan et al., 2020; Shi et al., 2021), and debate on the magnitudes 85 
of past and future trends in drought has intensified (Berg & Sheffield, 2018; Swann et al., 2016; 86 
Tomas-Burguera et al., 2020; Y. Yang et al., 2020). These scientific debates originate to a large 87 
extent as a result of PE overestimation (Berg & Sheffield, 2018; Vicente-Serrano et al., 2020). 88 
Therefore, there is an urgent need to re-evaluate PE to correctly understand and predict climatic 89 
impacts on water resources. 90 

Current physically-based PE models assume saturated or near saturated surface 91 
conditions, and these land surface conditions are assumed to be stationary. Based on this 92 
assumption, the Clausius-Clapeyron relationship (i.e., the relationship between temperature and 93 
saturation vapour pressure) can be introduced, resulting in a positive, exponential relationship 94 
between temperature and PE. As a result, Priestley-Taylor PE, which is based on the equilibrium 95 
evaporation concept, is largely controlled by temperature. While Penman-Monteith PE also 96 
scales with temperature, a decrease in atmospheric relative humidity also results in increased 97 
values for the Penman-Monteith PE due to the increased vertical gradient of relative humidity 98 
from the functionally saturated land surface relative to the overlying atmosphere. Consequently, 99 
warmer and drier atmospheric future conditions result in substantially increased PE computed 100 
using current PE models.  101 

However, the stationary land surface assumptions in PE models are not necessarily 102 
robust. For instance, elevated atmospheric CO2 concentrations can increase the surface 103 
resistance, an empirical parameter in the Penman-Monteith model (Swann et al., 2016; Yuting 104 
Yang et al., 2019; Y. Yang et al., 2020). To resolve the CO2 fertilization effect, Yuting Yang et 105 
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al. (2019) recently provided a way to correct the surface resistance based on climate simulation 106 
outputs. However, this approach was not based on observational evidence nor physical principles 107 
and failed to fully resolve the PE overestimation issue noted in more recent studies (Berg & 108 
McColl, 2021; Liu et al., 2022; Vicente-Serrano et al., 2020).   109 

Maybe a more fundamental problem of the current PE models stems from a paradoxical 110 
assumption itself. Assuming a saturated surface for any given meteorological conditions is 111 
paradoxical in that the overlying atmospheric conditions are not independent of land surface 112 
wetness due to land-atmosphere feedback processes (Kim et al., 2021; McColl et al., 2019; 113 
Rigden & Salvucci, 2017; Salvucci & Gentine, 2013). Since the warmer and drier future climate 114 
over land is already regulated by soil moisture (Berg et al., 2016; Dirmeyer et al., 2021), 115 
considering this apparent trend in current PE models as an increased demand that is independent 116 
of the land surface can lead to a “double-counting” of soil drying (Berg & Sheffield, 2018). 117 
Therefore, the rapid increase in PE suggested for warming climate conditions may in fact be a 118 
methodological artifact caused by the structure of current PE models that, in effect, ignore land-119 
atmosphere feedback processes (Berg & Sheffield, 2018). Nevertheless, it is not clear to what 120 
extent land-atmosphere feedback can explain the PE overestimation issue, and crucially these 121 
ideas have not yet been investigated comprehensively using observational evidence. 122 

Here, we directly assess how current PE models diverge from observed evaporative 123 
demand. Furthermore, we suggest a physically-based alternative PE model that constrains the 124 
upper limit of evaporation based on land-atmosphere coupling processes. In the following 125 
section, we derive the alternative model and discuss the theory behind it. We then compare our 126 
novel PE model with the most commonly used PE models including Penman-Monteith (Allen et 127 
al., 1998; Monteith, 1965), Priestley-Taylor (Priestley & Taylor, 1972), and an empirical model 128 
that calculates PE as proportional to available energy (hereafter the Milly-Dunne PE model (P. 129 
C. D. Milly & Dunne, 2016)).  130 

Since applications of PE are broad and of great societal importance, we hierarchically 131 
evaluate the three current PE models along with our alternative PE model over a range of scales, 132 
and present these results at the field, watershed, and global scales. We first use in-situ field-scale 133 
observations from 212 eddy covariance tower sites worldwide contained in the FLUXNET2015 134 
dataset representing over 1500 site-years (Pastorello et al., 2020) to test the performance of PE 135 
models in reproducing non-water-stressed evaporation and its sensitivity to temperature and 136 
relative humidity. This is followed by watershed scale assessment of model performance 137 
compared to water balance observations for 338 US watersheds (Duan et al., 2006) for the 1983-138 
2020 period. We then examine global-scale changes in PE models from a historical reference 139 
period to the future period using 25 general circulation models (GCMs) that were included in 140 
Coupled Model Intercomparison Project Phase 5  (CMIP5) (Taylor et al., 2012). Through these 141 
analyses, we evaluate the causes underlying the differing responses of PE models to changing 142 
climatic conditions. 143 

2 PE models 144 

2.1 Alternative PE model based on land-atmosphere coupling theory 145 

Terrestrial evaporation is constrained by soil moisture (supply-side) as well as climatic 146 
conditions (demand-side). Increasing soil moisture (i.e., supply) increases evaporation until 147 
evaporation approaches its maximum rate. At the maximum level of evaporation, additional soil 148 
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moisture cannot increase evaporation further, and thus evaporation and soil moisture become 149 
independent of each other. This transition point is known as critical soil moisture (Denissen et 150 
al., 2020). Mathematically, this condition may be expressed as the derivative of evaporation (E) 151 

with respect to soil moisture (θ) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0.   152 

The soil moisture control on terrestrial evaporation also interacts with the overlying 153 
atmosphere since the vertical gradient of relative humidity from the land surface to the 154 
atmosphere simultaneously changes with evaporation (Kim et al., 2021; Salvucci & Gentine, 155 
2013). Soil moisture supply to a dry soil (i.e., soil wetting) increases relative humidity at the land 156 

surface (RH0) at a faster rate than the change in atmospheric relative humidity (RH) (i.e., 𝜕𝜕𝑅𝑅𝑅𝑅0
𝜕𝜕𝜕𝜕

>157 
𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

), which leads to increased evaporation (Figure 1). As RH0 approaches saturation, the 158 

increasing rate of RH0 reduces, becoming limited by and converging into 𝜕𝜕𝑅𝑅𝑅𝑅0
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, and thus 159 

evaporation reaches its maximum. Therefore, the maximum evaporation should satisfy not only 160 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 but also 𝜕𝜕𝑅𝑅𝑅𝑅0
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 if considering the overlying air as a coupled system with the land 161 

surface.  162 

In Appendix A, we provide a detailed derivation of  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. Substituting 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 and 𝜕𝜕𝑅𝑅𝑅𝑅0
𝜕𝜕𝜕𝜕

=163 
𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 into the derivative 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 and then assuming 𝜕𝜕𝑅𝑅𝑅𝑅0
𝜕𝜕𝜕𝜕

> 0 yields 164 

𝑃𝑃𝑃𝑃 = 2𝑅𝑅𝑅𝑅𝑅𝑅+𝛾𝛾
2𝑅𝑅𝑅𝑅𝑅𝑅+2𝛾𝛾

𝑅𝑅𝑛𝑛−𝐺𝐺
𝜆𝜆

          (1) 165 

where, 𝑠𝑠(= 𝜕𝜕𝑞𝑞∗

𝜕𝜕𝜕𝜕
) is the linearized slope of saturation specific humidity versus temperature, γ is 166 

psychrometric constant, λ is the latent heat of vaporization, Rn is net radiation, G is soil heat flux, 167 
and Rn - G is available energy (AE) at the land surface. 168 

Equation (1) represents a formulation for the upper limit of evaporation, and as such it 169 
can be considered an alternative PE model. Our proposed alternative has several unique 170 
characteristics. First, in deriving equation (1), the overlying air is considered as a coupled system 171 
with the land. Since relative humidity in the atmosphere is connected with the land surface 172 
dryness in our model, a decrease in relative humidity reduces evaporation in equation (1), which 173 
stands in contrast to the Penman-Monteith model. Second, the derivation of equation (1) does not 174 
assume a saturated land surface, and its physical meaning can be stated as the “evaporation rate 175 
that would take place under conditions where evaporation becomes independent of soil 176 
moisture”. Third, while the current PE models require empirical parameters, equation (1) does 177 
not, and as such it does not require any parameter calibration. Fourth, the only required variables 178 
for calculating equation (1) are standard measurements (air temperature, relative humidity, and 179 
available energy). 180 

 181 
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 182 

Figure 1. Conceptual framework of two mathematical constraints of the alternative PE model in 183 
Equation 1. The vertical profile of relative humidity evolves with soil moisture (θ). When soil is 184 
dry, the sensitivity of surface relative humidity (RH0) to θ change is larger than the sensitivity of 185 
atmospheric relative humidity (RH) to changes in θ. Once θ approaches critical soil moisture, the 186 
two sensitivities become equivalent, and evaporation reaches its maximum. 187 

2.2 Other PE formulations 188 

We calculated Penman-Monteith PE based on the FAO reference crop method (Allen et 189 
al., 1998).  190 

𝑃𝑃𝑃𝑃 = 𝑠𝑠(𝑅𝑅𝑛𝑛−𝐺𝐺)+𝜌𝜌𝑐𝑐𝑝𝑝(𝑞𝑞∗(𝑇𝑇𝑎𝑎)−𝑞𝑞𝑎𝑎)/𝑟𝑟𝑎𝑎
𝜆𝜆[𝑠𝑠+𝛾𝛾(1+𝑟𝑟𝑠𝑠/𝑟𝑟𝑎𝑎)]

         (2) 191 

where, 𝑠𝑠(= 𝜕𝜕𝑞𝑞∗

𝜕𝜕𝜕𝜕
) is the linearized slope of saturation specific humidity versus temperature, γ is 192 

psychrometric constant, λ is the latent heat of vaporization, Rn is net radiation, G is soil heat flux, 193 
ρ is air density, cp is the specific heat capacity of the air, q* is saturation specific humidity, qa is 194 
air specific humidity, Ta is air temperature. rs is surface resistance and set to 70 s m-1 based on 195 

the FAO method (Allen et al., 1998). ra is aerodynamic resistance and calculated as 208
𝑢𝑢2

, where u2 196 

is 2 m height wind speed. u2 was calculated based on FAO method (Allen et al., 1998) from wind 197 

speed and measurement height (z) as 𝑢𝑢2 = 𝑢𝑢𝑧𝑧
4.87

𝑙𝑙𝑙𝑙(67.8𝑧𝑧−5.42)
.  198 

We then calculated Priestley-Taylor PE as follows  199 

𝑃𝑃𝑃𝑃 = 𝛼𝛼𝑃𝑃𝑃𝑃
𝑠𝑠

𝑠𝑠+𝛾𝛾
𝑅𝑅𝑛𝑛−𝐺𝐺
𝜆𝜆

           (3) 200 

where, 𝛼𝛼𝑃𝑃𝑃𝑃 is Priestley-Taylor coefficient and set to 1.26 (Priestley & Taylor, 1972).  201 

Finally, we calculated Milly-Dunne PE as follows  202 

𝑃𝑃𝑃𝑃 = 𝛼𝛼𝑀𝑀𝑀𝑀
𝑅𝑅𝑛𝑛−𝐺𝐺
𝜆𝜆

           (4) 203 

where, 𝛼𝛼𝑀𝑀𝑀𝑀 is Milly-Dunne coefficient and set to 0.8 (P. C. D. Milly & Dunne, 2016).   204 
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3 Materials and Methods 205 

We hierarchically evaluate our alternative PE model and the three current PE models 206 
(i.e., equations 1, 2, 3, and 4) over a range of scales, and present these results at the field, 207 
watershed, and global scales. All resulting figures were generated by using the R statistical 208 
language (R CORE TEAM, 2018). In the following subsections, we describe details of the 209 
dataset we used.  210 

3.1 FLUXNET2015 in situ observations 211 

The FLUXNET2015 dataset, which includes 212 empirical eddy-covariance flux tower 212 
sites around globe representing over 1,500 site years (Pastorello et al., 2020), was used for the 213 
site-scale analyses. Latent and sensible heat fluxes, net radiation, soil heat flux, air temperature, 214 
relative humidity, wind speed, and barometric pressure were obtained at weekly scales from the 215 
FLUXNET2015 dataset. We selected data only when all required variables for PE calculations 216 
are available. Bowen ratio corrected turbulent heat fluxes were used for this analysis following 217 
methods employed in previous analysis (Maes et al., 2019). Measurement heights for each site 218 
were also retrieved to calculate aerodynamic resistance for the Penman-Monteith model. 219 

We only included data for periods for which the quality control flag indicated more than 220 
80% of the half-hourly data were used for generating the daily or weekly datasets (i.e., measured 221 
data or good quality gap-filled data). Also, we filtered out data points when available energy 222 
(i.e., net radiation minus soil heat flux) was negative or local advection was strong (i.e., negative 223 
sensible heat flux) (Maes et al., 2019). Also, data in which surface energy imbalance (available 224 
energy minus sum of sensible and latent heat flux) was greater than 50 W m−2 were excluded. 225 

Following a recent study (Maes et al., 2019; Tu et al., 2022), we isolated non-water-226 
stressed conditions by selecting data with evaporative fraction (EF) exceeding 95% of each site’s 227 
EF distribution. This selection strategy was adopted since soil moisture observations are only 228 
available for a few FLUXNET2015 sites, and previous research found no significant difference 229 
between soil moisture-based and EF-based criteria (Maes et al., 2019). The isolated non-water-230 
stressed evaporation observations were used as a reference to assess the PE models. PE models 231 
were calculated based on equations (1, 2, 3, and 4) using observed meteorological variables at 232 
the flux towers. The bigleaf R package was used for anlaysing this flux dataset (Knauer et al., 233 
2018). 234 

3.2 US watersheds 235 

For the watershed-scale analysis, watersheds included in MOPEX (Model Parameter 236 
Estimation Experiment) were analyzed (Duan et al., 2006). We selected MOPEX watersheds for 237 
which more than 30 years of runoff observations are available for the period of 1983-2020. The 238 
total number of watersheds meeting the criterion was 338, resulting in over 10,000 watershed-239 
years of runoff observations. We first calculated uncorrected annual evaporation as the 240 
difference between observed precipitation based on the PRISM dataset (Daly et al., 1994) and 241 
USGS runoff observations on a water-year (i.e., October 1 to September 30) basis. Groundwater 242 
storage changes for each watershed were then estimated by the average storage changes of the 243 
two reanalysis datasets which provide all water balance components (i.e., ERA5-Land (Hersbach 244 
et al., 2020) and FLDAS (McNally et al., 2017) datasets). We then corrected annual scale 245 
watershed evaporation based on the mean estimated storage change from ERA5-Land and 246 
FLDAS.  247 
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Maximum annual evaporation for the 1983-2020 period for each watershed was used as a 248 
reference to assess the PE models. At the watershed scale, PE models are calculated based on 249 
equations (1, 2, 3, and 4) using monthly meteorological variables retrieved from ERA5-Land 250 
(Hersbach et al., 2020) and FLDAS (McNally et al., 2017) datasets. Here, we assumed that soil 251 
heat flux is zero. PE values were calculated by the average of the two reanalysis datasets. In 252 
order to analyze relationship between PE and soil moisture, we obtained soil moisture derived by 253 
the SMAP (Soil Moisture Active Passive) satellite mission and calculated annual mean percent 254 
soil moisture for each watershed using the NASA-USDA Enhanced SMAP dataset (Mladenova 255 
et al., 2020). The soil moisture, precipitation, and reanalysis datasets were downloaded from 256 
Google Earth Engine (Gorelick et al., 2017) using the rgee R package (Aybar et al., 2020), while 257 
the USGS runoff observations were downloaded using the dataRetrieval R package (De Cicco et 258 
al., 2018). 259 

3.3 CMIP5 simulations 260 

For the global-scale analysis, we used 25 publicly available GCMs that participated in 261 
CMIP5. Although Coupled Model Intercomparison Project Phase 6 (CMIP6) models recently 262 
became publicly available, we used CMIP5 models to enable comparison of this study with the 263 
relevant previous studies (Berg & McColl, 2021; P. C. D. Milly & Dunne, 2016; Yuting Yang et 264 
al., 2019). Latent and sensible heat fluxes, air temperature, relative humidity, wind speed, 265 
barometric pressure, precipitation, runoff, and evaporation were obtained from the models’ 266 
outputs. CMIP5 models that provide all required variables for the PE calculations were selected, 267 
and the models include: ACCESS1-0, ACCESS1-3, CNRM-CM5, GISS-E2-R-CC, HadGEM2-268 
CC, HadGEM2-ES, bcc-csm1-1, bcc-csm1-1-m, CanESM2, CESM1-CAM5, CSIRO-Mk3-6-0, 269 
GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H, GISS-E2-H-CC, GISS-E2-R, 270 
inmcm4, IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR, MIROC-ESM, MIROC-ESM-271 
CHEM, MIROC5, and MRI-CGCM3. These CMIP5 models’ output were obtained from the 272 
Columbia University Lamont-Doherty Ocean and Climate Physics Data Library 273 
(http://strega.ldeo.columbia.edu:81/CMIP5/). 274 

We used monthly outputs of the historical reference period (1981-2000) and the high 275 
emission future period (2081-2100 under RCP 8.5) to calculate the mean values of each period 276 
for PE, precipitation, and runoff. In order to calculate the multimodel mean and median, the 277 
models were regridded to a 2°×2° resolution (Berg & McColl, 2021). Runoff output is not 278 
available for some models (the first six models in the above model list); in these cases, we 279 
estimated runoff as the difference between precipitation and evaporation (P. C. D. Milly & 280 
Dunne, 2016).  281 

PE models were calculated based on equations (1, 2, 3, and 4) using monthly CMIP5 282 
models’ meteorological output, and then aggregated into 20 years average for the historical and 283 
future periods, respectively. Since soil heat flux is not available in CMIP5 model outputs, we 284 
calculated available energy (i.e., net radiation minus soil heat flux) as the sum of latent and 285 
sensible heat fluxes following recent studies (Berg & McColl, 2021; P. C. D. Milly & Dunne, 286 
2016). We calculated PE only for the land fraction which does not include Greenland and 287 
Antarctica (Berg & McColl, 2021; P. C. D. Milly & Dunne, 2016).    288 
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3.4 Budyko model 289 

To evaluate hydrological implications of the varying increasing rates of the different PE 290 
models estimated by CMIP5 models, we estimated runoff (Q) based on the Budyko water 291 
balance model, which is forced by PE and precipitation (P). The Budyko water balance model 292 
can be written following (P. C. D. Milly & Dunne, 2016) 293 

𝑄𝑄 = 𝑃𝑃 − 𝑃𝑃[𝑃𝑃𝑃𝑃
𝑃𝑃
𝑡𝑡𝑡𝑡𝑡𝑡ℎ 𝑃𝑃

𝑃𝑃𝑃𝑃
(1 − 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝑃𝑃𝑃𝑃

𝑃𝑃
+ 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑃𝑃𝑃𝑃

𝑃𝑃
)]

1
2       (5) 294 

In this equation, all variables should be understood as 20 year mean values over the historical or 295 
future periods. Although there are several functions representing the Budyko model, we select 296 
this original equation following P. C. D. Milly and Dunne (2016). We also tested an equation 297 
used by Yuting Yang et al. (2019), and found similar results, implying choice of the Budyko 298 
equation may be a minor issue at global scale although prediction skill can be improved at a 299 
regional scale. 300 

4 Results and Discussion 301 

4.1 Site-level evaluation 1: performance 302 

The performances of PE models are evaluated using FLUXNET2015 in-situ observations 303 
around globe (Pastorello et al., 2020). We isolated weekly scale evaporation observations for 304 
non-water-stressed conditions by selecting periods with high evaporation relative to available 305 
energy, an approach based on a recent study (Maes et al., 2019) (Methods). The observed values 306 
of non-water-stressed evaporation (Eunstr) are used as a reference of the upper limit to evaporation 307 
to assess the PE models (Penman-Monteith (PM), Priestley-Taylor (PT), Milly-Dunne (MD), and 308 
equation (1)) since PE should become equivalent to actual evaporation under non-water-stressed 309 
conditions. We found that equation (1) most accurately reproduces observed Eunstr in terms of 310 
root mean square error (RMSE), coefficient of determination (R2), and regression slope relative 311 
to current PE models (Figure 2 a-d). The MD PE model yielded similar site-scale performance 312 
with equation (1), while the widely used PM PE showed the lowest performance.  313 

Importantly, equation (1) does not show significant bias regarding temperature and 314 
relative humidity, unlike biases present in all current PE models (Figure 2 e-h). For example, the 315 
PM and PT models overestimate observed Eunstr when the temperature is high and/or relative 316 
humidity is low. Our findings for the PM and PT models are consistent with the PE 317 
overestimation bias first reported by Milly and Dunne (P.C.D. Milly & Dunne, 2017) for models 318 
used to predict PE under future climate conditions. In contrast, our PE model exhibits the 319 
smallest bias with respect to temperature and relative humidity, making it more appropriate for 320 
PE calculations when evaluating future climate scenarios in frameworks that use PE as a 321 
parameter.  322 

 323 
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 324 

Figure 2. Observed non-water-stressed evaporation predicted by PE models, and their bias. 325 
From a to d, the y-axis is weekly observations of non-water-stressed evaporation (Eunstr), and the 326 
x-axis is PE calculated by Penman-Monteith, Priestley-Taylor, Milly-Dunne, and equation (1), 327 
respectively. Shaded points represent all evaporation observations while coloured triangles 328 
represent Eunstr. The regression lines are based only on the coloured triangles. From e to h, biases 329 
of each model (y-axis) are depicted as a function of air temperature (Ta) and relative humidity 330 
(RH). 331 

4.2 Site-level evaluation 2: climate sensitivity of PE 332 

We then use multiple-linear regression to determine the sensitivity of PE models to 333 

temperature (𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

) and to relative humidity (𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

). Regression slopes for each PE model and Eunstr 334 

are considered as the sensitivity in Figure 3 a-b. It should be noted that since we only use 335 
temperature and relative humidity as independent variables, these sensitivities represent not only 336 
direct effects (e.g., saturation vapour pressure) but also indirect effects (e.g., net radiation).  337 

The PT model yielded the largest overestimates of observed Eunstr sensitivity to increasing 338 
temperature. Of the four PE models, the PM model was found to be the most largely biased for 339 

RH (𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

) compared to the observed sensitivity of Eunstr to RH. These results show how the PM 340 

and PT models overestimate evaporative demand in warmer and drier future climates. On the 341 
other hand, equation (1) exhibits good performance in reproducing observed sensitivity to 342 
temperature and relative humidity. 343 

To further understand the influence of temperature and relative humidity on each PE 344 
model, we depict each PE model’s evaporative fraction (EF) in Figure 3 c-e, where EF 345 
represents the ratio of evaporation to available energy. Here, EF for Milly-Dunne’s model is 346 
fixed at a constant 0.8 by definition (dashed line). Increases in temperature result in increasing 347 
EF for the remaining three PE models (equation (1), PM and PT) due to the saturation vapour 348 
pressure effect, but EF computed with our proposed model increases only modestly compared to 349 
the PM and PT models. Also, the EF determined with equation (1) decreases as relative humidity 350 
declines, since relative humidity reflects land surface dryness. As a result, EF determined with 351 
equation (1) covers a much narrower range of values than the PM and PT models, with values 352 
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centered on Milly-Dunne’s 0.8 fixed value of EF. In contrast, the Penman-Monteith model’s EF 353 
rapidly increases for declining relative humidity due to the surface saturation assumption, and it 354 
is probably the key reason for the relatively poor performance of the PM model. 355 

 356 

 357 

Figure 3. Climate sensitivities of PE models and measured evaporation for non-water-358 
stressed periods (Eunstr) (a-b) and evaporative fraction (EF) of PE models as a function of 359 
climate variables (c-e). From a to b, the y-axis of each panel is the PE sensitivities to 360 
temperature (T) and to relative humidity (RH), respectively. The error bar indicates 2 standard 361 
error, and the dotted lines represent the Eunstr error bar range. From c to e, the y-axis of each 362 
panel is EF of Penman-Monteith, Priestley-Taylor, and equation (1), respectively. The dashed 363 
line in panels c-e represents Milly-Dunne EF (fixed at 0.8). The short black lines on the right-364 
side margins of panels c-e shows EF distributions for PM EF, PT EF, and Equation 1 EF, 365 
respectively. 366 

4.3 Watershed-level evaluation 1: performance 367 

We then evaluated the performance of the four PE models (PM, PT, MD and equation 368 
(1)) using runoff observations from 338 US watersheds for the period of 1983-2020 (Duan et al., 369 
2006). Annual evaporation was estimated as the difference between observed precipitation 370 
(PRISM dataset (Daly et al., 1994)) and USGS runoff observations considering groundwater 371 
storage change (Materials and Methods). Maximum annual evaporation for the 1983-2020 period 372 
for each watershed was selected and used as a validation criterion for the PE models which were 373 
parameterized using two reanalysis datasets: ERA5-Land (Hersbach et al., 2020) and FLDAS 374 
(McNally et al., 2017). As depicted in Figure 4, equation (1) most accurately 375 
reproduces observed maximum watershed evaporation, as an indicator of upper limit of 376 
evaporation, in terms of RMSE, R2, and regression slope, while the PM model leads to the least 377 
accurate results. These watershed-scale results are consistent with the results we obtained for the 378 
site-level analysis.  379 
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 380 

Figure 4. Observed maximum annual evaporation at US watersheds predicted by PE 381 
models. From a to d, the y-axis is annual water balance evaporation for each of 338 watersheds, 382 
and the x-axis is PE calculated by Penman-Monteith, Priestley-Taylor, Milly-Dunne, and our 383 
proposed model, respectively. Shaded points represent annual water balance evaporation while 384 
coloured triangles represent maximum annual evaporation for each watershed. The regression 385 
lines are based only on the coloured triangles.  386 

4.4 Watershed-level evaluation 2: evaporation sensitivity to PE 387 

Using the long-term watershed observations, we evaluate the sensitivity of annual scale 388 

evaporation to each PE model ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

). We use multiple-linear regression to determine the 389 

sensitivity of evaporation to PE and to precipitation (P) assuming evaporation is constrained by 390 
precipitation (supply-side) as well as PE (demand-side). Regression slopes are considered as the 391 

sensitivity. Theoretically, dry watershed ( 𝑃𝑃
𝑃𝑃𝑃𝑃

< 1) evaporation is largely determined by 392 

precipitation while wet watershed ( 𝑃𝑃
𝑃𝑃𝑃𝑃

> 1) evaporation is primarily determined by PE. 393 

Therefore, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

 should be around zero to one for dry watersheds while 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

 should be close to one 394 

for wet watersheds.  395 

For wet watersheds, where the role of PE is important in controlling evaporation, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

 396 

determined by MD model and equation (1) are aligned with this theoretical expectation while the 397 

PM model is not (Figure 5a). PM model’s 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

 is significantly less than unity for most wet 398 

watersheds, meaning changes in PE are always larger than changes in evaporation. This finding 399 
implies that future evaporation can be overestimated if evaporation is constrained by the PM PE 400 
model even for wet watersheds. 401 

Is there any theoretical reason underlying this result? Fundamentally, terrestrial 402 
evaporation is constrained by soil moisture limitations (supply) and PE (demand), and thus one 403 
can write evaporation as 𝐸𝐸 = 𝑓𝑓𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃, where 𝑓𝑓𝑠𝑠𝑠𝑠 represents the soil moisture constraint ranging 404 
from zero to one. Therefore, the sensitivity of evaporation to PE can be written as follows.  405 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

= 𝜕𝜕𝑓𝑓𝑠𝑠𝑠𝑠
𝜕𝜕𝜕𝜕𝜕𝜕

𝑃𝑃𝑃𝑃 + 𝑓𝑓𝑠𝑠𝑠𝑠          (6) 406 

If 𝑓𝑓𝑠𝑠𝑠𝑠 and PE are independent, the first term becomes negligible, and thus one can write  407 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

= 𝑓𝑓𝑠𝑠𝑠𝑠. For wet watersheds, 𝑓𝑓𝑠𝑠𝑠𝑠 is close to one and thus 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

 becomes one in principle. On the 408 

other hand, if 𝑓𝑓𝑠𝑠𝑠𝑠 and PE have a negative correlation, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

 cannot approach one even for wet 409 

watersheds due to the first term in equation (6). As depicted in Figure 5 b-e, the PM model 410 
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shows the most apparent negative relationship with satellite-derived soil moisture (Mladenova et 411 

al., 2020), which explains why 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

 does not generally approach one using the PM model, even 412 

for wet watersheds. In contrast, MD model and equation (1) do not show an apparent 413 
dependency on soil moisture. 414 

 415 

 416 

Figure 5. Sensitivities of watershed annual evaporation to PE models (a) and relationship 417 
between PE models and soil moisture (b-e). a. each watershed sensitivity is group by ratio 418 
between precipitation and the PM PE. From b to e, the y-axis is Penman-Monteith, Priestley-419 
Taylor, Milly-Dunne, and our proposed model, respectively, and the x-axis is annual mean 420 
percent soil moisture retrieved by the NASA-USDA enhanced SMAP product. Each regression 421 
line represents one of the 338 watershed. The inset shows the slope of each regression line.  422 

4.5 Projections of the PE models to anthropogenic climate change 423 

Following P. C. D. Milly and Dunne (2016), we compared century-scale changes in PE 424 
models from a historical reference period (1981-2000) to a future scenario (2081-2100) using 25 425 
CMIP5 models under Representative Concentration Pathway 8.5 (Methods and Table S1). The 426 
four tested PE models suggest increasing PE over most of the terrestrial regions for the future 427 
relative to the reference period, but the magnitude of the changes vary substantially. 428 
Consequently, projected median PE changes over the global land surface vary, from smallest to 429 
largest: Milly-Dunne (52 mm yr-1), equation (1) (75 mm yr-1), Priestley-Taylor (125 mm yr-1), 430 
and Penman-Monteith (224 mm yr-1) (Figure 6). These differences originate from the EF 431 
responses to future climatic conditions represented by the individual PE models. Both rising 432 
temperatures and declining relative humidity result in increased Penman-Monteith EF, and hence 433 
the largest increase in PE is projected by the PM PE model. For the Priestley-Taylor model, EF 434 
is not directly affected by relative humidity, while rising temperatures increase EF. Thus, the 435 
projected mean increase in PT PE is lower than for the PM PE model. In contrast, declining 436 
relative humidity projected for future climate conditions results in reduced EF with equation (1), 437 
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and thus PE changes projected in the present study are lower than those obtained using PT and 438 
PM models.  439 

We considered changes in ocean evaporation projected by GCMs as a reference point for 440 
changes in non-water-limited evaporation under future climatic conditions. The median change 441 
in ocean evaporation is about 76 mm yr-1, which is most closely matched by our PE model 442 
(Figure 6). Over the ocean, temperatures are increasing at a slower rate than for the land. Also, 443 
relative humidity is roughly steady over the ocean, unlike the declining trend in RH over land, a 444 
difference known as the “land-ocean contrast” (Byrne & O’Gorman, 2016, 2018). “Land-ocean 445 
contrast” effects on evaporative demand can be reconciled using equation (1) because the 446 
influence of temperature on EF is conditioned by changes in relative humidity. This is a reason 447 
why our proposed PE model is well-matched with the ocean evaporation change. However, in 448 
the PM PE model, the “land-ocean contrast” increases PE unrealistically compared to the ocean 449 
evaporation, resulting in a projected change in PE for the land surface that is nearly 3X that 450 
projected for evaporation from the ocean.  451 

 452 

 453 

Figure 6. Global scale changes in PE in the future period 2081-2100 (RCP 8.5) relative to 454 
the historic period 1981-2000. The bars represent the ensemble median of 25 CMIP5 models 455 
while the points and error bars indicate the ensemble mean ±1 standard deviation. Changes in 456 
different PE models and their components are presented and change in ocean evaporation is 457 
presented for reference. Here, EF is evaporative fraction and AE is available energy. 458 

4.6 Varying runoff projections resulting from the different PE models 459 

In order to evaluate hydrological implications of the varying increasing rates of the 460 
different PE models, we compared runoff changes estimated using the Budyko water balance 461 
approach forced by PE and precipitation (Figure 7), following P. C. D. Milly and Dunne (2016) 462 
(Methods). The Budyko-estimated runoff change forced with our proposed PE model (15 mm yr-463 
1 at global scale) most closely matches the direct CMIP5 projections (17 mm yr-1). The Milly-464 
Dunne PE based Budyko runoff change (23 mm yr-1) slightly overestimates the direct CMIP5 465 
projections. In contrast, when the Penman-Monteith model is used, the Budyko estimated runoff 466 
change (-2 mm yr-1) largely underestimates the direct CMIP5 output. The Priestley-Taylor model 467 
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(5 mm yr-1) is a better comparator with CMIP5 than Penman-Monteith, but it still underestimates 468 
the direct CMIP5 projections.  469 

In terms of spatial patterns, the Budyko-estimated runoff forced with the PM PE model 470 
shows apparent bias while other models show reasonable agreement with the direct CMIP5 471 
projections. Especially, the PM PE model shows a large negative bias in wet regions such as the 472 
tropics. As we demonstrated in the watershed scale analysis (Fig. 5 and section 4.4), the PM PE 473 
model overestimates evaporation increase particularly for wet watersheds, where the role of PE 474 
is important in controlling evaporation. Therefore, evaporation increases could be largely 475 
overestimated in wet regions if one applies the PM PE model, which results in a large negative 476 
bias in runoff projections for the wet regions. This runoff projections bias can be reduced using 477 
the PT PE model and further reduced using the MD PE model and equation (1). 478 

 479 

 480 

Figure 7. Multi CMIP5 models median of the relative change of the annual mean runoff (a-481 
e), and global scale changes runoff (f) in the future period 2081-2100 (RCP 8.5) relative to 482 
the historic period 1981-2000. From a to d, runoff change estimated by Budyko model forced 483 
by each PE model while e. represents direct CMIP5 models’ output. Here, relative change 484 
indicates future minus historical divided by average of historical and future. f. Changes in runoff 485 
estimated by the Budyko model using different PE models and change in runoff directly 486 
projected by CMIP5 is presented for reference. The bars represent the ensemble median of 25 487 
CMIP5 models while the points and error bars indicate the ensemble mean ±1 standard 488 
deviation.  489 
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5 Discussion and conclusions 490 

Although warmer and drier air is widely recognized to correspond to high atmospheric 491 
evaporative demand, the terrestrial supply-side mechanism constraining atmospheric aridity 492 
tends to be overlooked. That is, soil moisture represents a supply constraint to warmer and drier 493 
air through the land-atmosphere feedback. This feature is ignored in current PE models which 494 
assumes a saturated surface for any given meteorological condition. As such, current PE models 495 
untenably overestimate evaporative demand for warmer and drier conditions and thus 496 
overestimate evaporation change, even for non-water limited conditions. The systematic biases 497 
of current PE models have serious implications that could lead to inappropriate planning in 498 
relation to needed climate change mitigation and adaptation. Arguably, to fundamentally resolve 499 
this problem, one should consider the overlying atmosphere as a coupled system with the land 500 
surface instead of solely as a source of evaporative demand that is independent from terrestrial 501 
processes. 502 

Perhaps, current PE models would be still essential tools for some purposes (Vicente-503 
Serrano et al., 2020). For instance, the PM PE model could be a useful indicator of wildfire risk 504 
in that high PM PE values represent drier air (Y. Huang et al., 2020; McEvoy et al., 2020). It 505 
should be noted that our analyses are not intended to deny or replace the various applications of 506 
these PE models. However, if the current PE model is used as evaporative demand that controls 507 
actual evaporation and evapotranspiration or other water balance components, the systematic 508 
biases toward drying are unavoidable under anthropogenic climate change. Therefore, care 509 
should be taken while applying and interpreting the PE models. 510 

Internally consistent climate simulations that incorporate coupled land-ocean-atmosphere 511 
processes such as GCMs can be a solution to this issue. However, these sophisticated simulations 512 
and low-resolution outputs cannot fully replace widely used operational approaches based on PE 513 
such as watershed hydrological models, crop growth and crop water use models, drought and 514 
aridity analysis, and global satellite-based evaporation products (e.g. MOD16, GLEAM or PT-515 
JPL). By presenting a land-atmosphere coupled PE model that can be easily implemented in 516 
established hydrologic approaches using readily measurable parameters, we believe that the land-517 
atmosphere coupling perspective can be effectively implemented into a wide range of 518 
hydrological planning tools, particularly those focused on evaluating responses to changing 519 
climatic conditions.  520 
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Appendix A: the derivative of evaporation with respect to soil moisture 521 

Vertical water vapour flux from the earth’s surface (i.e., evaporation) is constrained by 522 
the difference in specific humidity (q) between the land surface and the atmosphere. If we 523 
express specific humidity as the product of saturation specific humidity and relative humidity, 524 
evaporation can be written as follows. 525 

𝜆𝜆𝜆𝜆 = 𝜆𝜆𝜆𝜆 𝑅𝑅𝑅𝑅0𝑞𝑞∗(𝑇𝑇0)−𝑅𝑅𝑅𝑅𝑎𝑎𝑞𝑞∗(𝑇𝑇𝑎𝑎)
𝑟𝑟𝑎𝑎

          (A1) 526 

where, E is evaporation, λ is the latent heat of vaporization, ρ is air density, q* is saturation 527 
specific humidity, T is temperature, RH is relative humidity, ra is aerodynamic resistance to 528 
water vapour transfer (s m-1). The subscript a indicates the atmospheric state near the land 529 
surface, and the subscript 0 indicates the land surface. The derivative of E with respect to soil 530 
moisture (θ) can be expressed as follows. 531 

𝜆𝜆 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜆𝜆𝜆𝜆
𝑟𝑟𝑎𝑎

(𝑅𝑅𝑅𝑅0𝑠𝑠
𝜕𝜕𝑇𝑇0
𝜕𝜕𝜕𝜕

− 𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠
𝜕𝜕𝑇𝑇𝑎𝑎
𝜕𝜕𝜕𝜕

+ 𝑞𝑞∗(𝑇𝑇0) 𝜕𝜕𝑅𝑅𝑅𝑅0
𝜕𝜕𝜕𝜕

− 𝑞𝑞∗(𝑇𝑇𝑎𝑎) 𝜕𝜕𝑅𝑅𝑅𝑅𝑎𝑎
𝜕𝜕𝜕𝜕

)     (A2) 532 

where, 𝑠𝑠(= 𝜕𝜕𝑞𝑞∗

𝜕𝜕𝜕𝜕
) is the linearized slope of saturation specific humidity versus temperature (kg 533 

water vapour (kg moist air)-1 K-1). We assume identical s for the land surface and the atmosphere 534 
as is typically assumed in evaporation models. Also, we assume that ra is independent to soil 535 
moisture. 536 

The land surface state and the atmospheric state can be related as follows. 537 

𝑑𝑑𝑇𝑇𝑎𝑎 = 𝑑𝑑𝑇𝑇0 − 𝑑𝑑(𝑇𝑇0 − 𝑇𝑇𝑎𝑎)         (A3) 538 

𝑑𝑑𝑅𝑅𝑅𝑅𝑎𝑎 = 𝑑𝑑𝑅𝑅𝑅𝑅0 − 𝑑𝑑(𝑅𝑅𝑅𝑅0 − 𝑅𝑅𝑅𝑅𝑎𝑎)        (A4) 539 

Substituting equations (A3) and (A4) into equation (A2) yields  540 

𝜆𝜆 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= (𝜆𝜆𝜆𝜆𝜆𝜆 𝑅𝑅𝑅𝑅0−𝑅𝑅𝑅𝑅𝑎𝑎
𝑟𝑟𝑎𝑎

) 𝜕𝜕𝑇𝑇0
𝜕𝜕𝜕𝜕

+ 𝜆𝜆𝜆𝜆𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠
𝑟𝑟𝑎𝑎

𝜕𝜕(𝑇𝑇0−𝑇𝑇𝑎𝑎)
𝜕𝜕𝜕𝜕

+ (𝜆𝜆𝜆𝜆 𝑞𝑞∗(𝑇𝑇0)−𝑞𝑞∗(𝑇𝑇𝑎𝑎)
𝑟𝑟𝑎𝑎

) 𝜕𝜕𝑅𝑅𝑅𝑅0
𝜕𝜕𝜕𝜕

+ 𝜆𝜆𝜆𝜆𝑞𝑞∗(𝑇𝑇𝑎𝑎)
𝑟𝑟𝑎𝑎

𝜕𝜕(𝑅𝑅𝑅𝑅0−𝑅𝑅𝑅𝑅𝑎𝑎)
𝜕𝜕𝜕𝜕

 (A5) 541 

If we approximate 𝑞𝑞∗(𝑇𝑇0) − 𝑞𝑞∗(𝑇𝑇𝑎𝑎) ≈ 𝑠𝑠(𝑇𝑇0 − 𝑇𝑇𝑎𝑎) and assume identical ra for water 542 
vapour and sensible heat transfer, the second and the third terms of the right-hand side of 543 

equation (A5) can be expressed using sensible heat flux (i.e., 𝐻𝐻 = 𝜌𝜌𝑐𝑐𝑝𝑝
𝑇𝑇0−𝑇𝑇𝑎𝑎
𝑟𝑟𝑎𝑎

). 544 

𝜆𝜆 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= (𝜆𝜆𝜆𝜆𝜆𝜆 𝑅𝑅𝑅𝑅0−𝑅𝑅𝑅𝑅𝑎𝑎
𝑟𝑟𝑎𝑎

) 𝜕𝜕𝑇𝑇0
𝜕𝜕𝜕𝜕

+ 𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠
𝛾𝛾

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑠𝑠
𝛾𝛾
𝐻𝐻 𝜕𝜕𝑅𝑅𝑅𝑅0

𝜕𝜕𝜕𝜕
+ 𝜆𝜆𝜆𝜆𝑞𝑞∗(𝑇𝑇𝑎𝑎)

𝑟𝑟𝑎𝑎

𝜕𝜕(𝑅𝑅𝑅𝑅0−𝑅𝑅𝑅𝑅𝑎𝑎)
𝜕𝜕𝜕𝜕

   (A6) 545 

where, 𝛾𝛾(= 𝑐𝑐𝑝𝑝
𝜆𝜆

) is the psychrometric constant and cp is the specific heat capacity of the air. We 546 

then substitute the energy balance equation (i.e., 𝐻𝐻 = (𝑅𝑅𝑛𝑛 − 𝐺𝐺) − 𝜆𝜆𝜆𝜆) into the second and the 547 
third terms of the right-hand side of equation (A6), and then arrange it as follows.  548 

𝜆𝜆 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= (𝜌𝜌𝑐𝑐𝑝𝑝
𝑅𝑅𝑅𝑅0−𝑅𝑅𝑅𝑅𝑎𝑎

𝑟𝑟𝑎𝑎
) 𝑠𝑠
𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾

𝜕𝜕𝑇𝑇0
𝜕𝜕𝜕𝜕

+ 𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠
𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾

𝜕𝜕(𝑅𝑅𝑛𝑛−𝐺𝐺)
𝜕𝜕𝜕𝜕

+ [(𝑅𝑅𝑛𝑛 − 𝐺𝐺) − 𝐸𝐸] 𝑠𝑠
𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾

𝜕𝜕𝑅𝑅𝑅𝑅0
𝜕𝜕𝜕𝜕

+549 
𝜌𝜌𝑐𝑐𝑝𝑝𝑞𝑞∗(𝑇𝑇𝑎𝑎)

(𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾)𝑟𝑟𝑎𝑎

𝜕𝜕(𝑅𝑅𝑅𝑅0−𝑅𝑅𝑅𝑅𝑎𝑎)
𝜕𝜕𝜕𝜕

          (A7) 550 

Next, we replace T0 with moist static enthalpy in conjunction with RH0. Here, moist static 551 
enthalpy is known as 𝑑𝑑ℎ0 = 𝑐𝑐𝑝𝑝𝑑𝑑𝑇𝑇0 + 𝜆𝜆𝜆𝜆𝑞𝑞0. If we express specific humidity as a multiplication 552 
of q* and RH, moist static enthalpy can be written as 𝑑𝑑ℎ0 = (𝑐𝑐𝑝𝑝 + 𝜆𝜆𝑅𝑅𝑅𝑅0𝑠𝑠)𝑑𝑑𝑇𝑇0 + 𝜆𝜆𝑞𝑞∗(𝑇𝑇0)𝑑𝑑𝑅𝑅𝑅𝑅0. 553 
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Thus, temperature change can be written as 𝑑𝑑𝑇𝑇0 = 1
𝜆𝜆(𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾)

𝑑𝑑ℎ0 −
𝑞𝑞∗(𝑇𝑇0)
𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾

𝑑𝑑𝑅𝑅𝑅𝑅0. Substituting 554 

this equation into the first term of the right-hand side of equation (A7) yields 555 

𝜆𝜆 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= [ 𝜌𝜌𝜌𝜌𝜌𝜌
(𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾)(𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾)

𝑅𝑅𝑅𝑅0−𝑅𝑅𝑅𝑅𝑎𝑎
𝑟𝑟𝑎𝑎

] 𝜕𝜕ℎ0
𝜕𝜕𝜕𝜕

+ 𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠
𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾

𝜕𝜕(𝑅𝑅𝑛𝑛−𝐺𝐺)
𝜕𝜕𝜕𝜕

+ [𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾
𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾

(𝑅𝑅𝑛𝑛 − 𝐺𝐺 − 𝜆𝜆𝜆𝜆) −556 
𝜌𝜌𝑐𝑐𝑝𝑝𝑞𝑞∗(𝑇𝑇0)

𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾
𝑅𝑅𝑅𝑅0−𝑅𝑅𝑅𝑅𝑎𝑎

𝑟𝑟𝑎𝑎
] 𝑠𝑠
𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾

𝜕𝜕𝑅𝑅𝑅𝑅0
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝑐𝑐𝑝𝑝𝑞𝑞∗(𝑇𝑇𝑎𝑎)

(𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾)𝑟𝑟𝑎𝑎

𝜕𝜕(𝑅𝑅𝑅𝑅0−𝑅𝑅𝑅𝑅𝑎𝑎)
𝜕𝜕𝜕𝜕

     (A8) 557 

We now assume 𝜕𝜕ℎ0
𝜕𝜕𝜕𝜕

= 0 and 𝜕𝜕(𝑅𝑅𝑛𝑛−𝐺𝐺)
𝜕𝜕𝜕𝜕

= 0, since incoming energy to the land surface and 558 

consequential moist static enthalpy can be considered as independent to soil moisture. Therefore, 559 
the first and second terms of the right-hand side of equation (A8) can be considered as 560 

negligible. Also, if we approximate 𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾
𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾

≈ 1 in the third term, equation (A8) becomes as 561 

follows: 562 

𝜆𝜆 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= [(𝑅𝑅𝑛𝑛 − 𝐺𝐺) − 𝜆𝜆𝜆𝜆 − 𝜌𝜌𝑐𝑐𝑝𝑝𝑞𝑞∗(𝑇𝑇0)

𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾
𝑅𝑅𝑅𝑅0−𝑅𝑅𝑅𝑅𝑎𝑎

𝑟𝑟𝑎𝑎
] 𝑠𝑠
𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾

𝜕𝜕𝑅𝑅𝑅𝑅0
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝑐𝑐𝑝𝑝𝑞𝑞∗(𝑇𝑇𝑎𝑎)

(𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾)𝑟𝑟𝑎𝑎

𝜕𝜕(𝑅𝑅𝑅𝑅0−𝑅𝑅𝑅𝑅𝑎𝑎)
𝜕𝜕𝜕𝜕

  (A9) 563 

Next, we substitute the PMrh actual evaporation model (Kim et al., 2021) to the first term of the 564 
right-hand side of equation (A9). Here, the PMrh evaporation model provides an equation for 565 

relative humidity flux (i.e., 𝜌𝜌𝑐𝑐𝑝𝑝𝑞𝑞
∗(𝑇𝑇0)

𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾
𝑅𝑅𝑅𝑅0−𝑅𝑅𝑅𝑅𝑎𝑎

𝑟𝑟𝑎𝑎
= 𝜆𝜆𝜆𝜆 − 𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠(𝑅𝑅𝑛𝑛−𝐺𝐺)

𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾
). Therefore, equation (A9) 566 

becomes 567 

𝜆𝜆 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= [ 2𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾
2𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+2𝛾𝛾

(𝑅𝑅𝑛𝑛 − 𝐺𝐺) − 𝜆𝜆𝜆𝜆] 2𝑠𝑠
𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾

𝜕𝜕𝑅𝑅𝑅𝑅0
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝑐𝑐𝑝𝑝𝑞𝑞∗(𝑇𝑇𝑎𝑎)

(𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾)𝑟𝑟𝑎𝑎

𝜕𝜕(𝑅𝑅𝑅𝑅0−𝑅𝑅𝑅𝑅𝑎𝑎)
𝜕𝜕𝜕𝜕

   (A10) 568 

Equation (A10) can be solved for E by substituting 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 and 𝜕𝜕𝑅𝑅𝑅𝑅0
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 and then 569 

assuming 𝜕𝜕𝑅𝑅𝑅𝑅0
𝜕𝜕𝜕𝜕

> 0, which yields 570 

𝜆𝜆𝜆𝜆 = 2𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾
2𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+2𝛾𝛾

(𝑅𝑅𝑛𝑛 − 𝐺𝐺)         (A11) 571 

Equation (A11) is exactly equivalent to equation (1) in the main text. It should be noted that we 572 
simplify RHa to RH in the main text. 573 
  574 
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