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Key Points: 18 

• We propose a model to estimate evapotranspiration, which can represent both land-19 
atmosphere equilibrium and non-equilibrium. 20 

• The proposed model improves the performance of evapotranspiration estimation 21 
compared to the surface flux equilibrium approach. 22 

• The proposed model does not require any empirical parameters and only uses readily 23 
obtainable meteorological variables.  24 
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Abstract 25 

Although evapotranspiration (ET) from the land surface is a key variable in Earth systems 26 
models, the accurate estimation of ET based on physical principles remains challenging. 27 
Parameters used in current ET models are largely empirically based, which could be problematic 28 
under rapidly changing climatic conditions. Here, we propose a physically-based ET model that 29 
estimates ET based on the surface flux equilibrium (SFE) theory and the maximum entropy 30 
production (MEP) principle. We derived an expression for aerodynamic resistance based on the 31 
MEP principle, then propose a novel ET model that complementarily depends on the SFE theory 32 
and the MEP principle. The proposed model, which is referred to as the SFE-MEP model, 33 
becomes equivalent to the MEP state in non-equilibrium conditions when turbulent mixing is 34 
weak and the land surface is dry. On the contrary, the SFE-MEP model is similar to ET 35 
estimation based on the SFE theory in other conditions meeting land-atmosphere equilibrium. 36 
This feature of the SFE-MEP ET model allows accurate ET estimation for most inland regions 37 
by incorporating both equilibrium and non-equilibrium characteristics of the atmospheric 38 
boundary layer. As a result, the SFE-MEP model significantly improves the performance of SFE 39 
ET estimation, particularly for arid regions. The proposed model and its high accuracy in ET 40 
estimation enable novel insight into various Earth system models as it does not require any 41 
empirical parameters and only uses readily obtainable meteorological variables including 42 
reference height air temperature, relative humidity, available energy, and radiometric surface 43 
temperature. 44 

 45 

Plain Language Summary 46 

Terrestrial evaporation, also known as evapotranspiration (ET), is a central variable controlling 47 
the water, energy, and carbon cycles. However, it is difficult to estimate ET from physical 48 
principles due to complex interactions between the land and the atmosphere. An emerging theory 49 
of surface flux equilibrium suggests that atmospheric observations reflect land surface conditions 50 
owing to a land-atmosphere coupling, making it possible to estimate ET only using 51 
meteorological information. Nevertheless, we demonstrate that if the equilibrium is not achieved 52 
within several days, particularly in dry regions, the emerging surface flux equilibrium theory 53 
cannot properly estimate ET. We resolve this problem by introducing the maximum entropy 54 
production principle, a thermodynamic principle that can be applicable to non-equilibrium 55 
conditions. By combining two theories with complementary relationships, we significantly 56 
improve ET estimation performance. In our approach, empirical and adjustable parameters are 57 
not required and ET can be easily estimated based on a land-atmosphere coupling by using 58 
meteorological information and land surface temperature.   59 
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1 Introduction 60 

Actual evaporation, also referred to as evapotranspiration (ET, sum of soil evaporation, 61 
intercepted water evaporation and plant transpiration) over the land surface plays an important 62 
role in the water cycle, the land surface energy balance, and even the carbon cycle (K. Wang & 63 
Dickinson, 2012). Accordingly, modelling ET is one of the key components of hydrologic and 64 
Earth systems modelling (J. M. Chen & Liu, 2020; Cuxart & Boone, 2020; Fisher et al., 2017; 65 
Katul et al., 2012; K. Wang & Dickinson, 2012). However, ET is difficult to estimate or 66 
spatiotemporally upscale from measurements due to its complex interactions with the 67 
atmosphere and heterogeneous surface conditions. Therefore, estimating ET from available 68 
information is a key challenge and of great interest in many water-related disciplines.  69 

Several approaches to estimate ET have been proposed including land surface models 70 
(e.g., Lawrence et al., 2020), empirical machine learning models (e.g., Jung et al., 2019), and 71 
satellite remote sensing-based models (e.g., J. M. Chen & Liu, 2020). Although detailed 72 
processes constraining ET in each model vary significantly, most ET models try to represent 73 
physical processes driving evaporation to be robust across any region and time period (i.e., past 74 
and future). Representation of physical processes is particularly important under rapidly 75 
changing climatic conditions in order to correctly determine future ET trends and projections. 76 
Thus, fully physically-based ET measurements and estimations are commonly used as 77 
benchmarks for evaluating data-driven and other models (Pan et al., 2020). Furthermore, several 78 
empirical machine learning ET models try to incorporate physical processes to yield more 79 
realistic results (Koppa et al., 2022; Reichstein et al., 2019). 80 

ET models based on mass-transfer theory (or Monin-Obukhov similarly theory: MOST) 81 
such as land surface models, Penman-Monteith based models, and thermal remote sensing-based 82 
surface energy balance models are commonly considered to be physically-based models. 83 
Rigorously speaking, however, parameters used in the mass-transfer theory are not completely 84 
based on first principles and rely on the semi-empirical parameterization of aerodynamic 85 
resistance (or aerodynamic conductance) due to the complex nature of turbulence (Kleidon & 86 
Renner, 2018; Lee, 2018). Uncertainty in the parameterization of aerodynamic resistance causes 87 
bias in ET estimation, particularly in surface energy balance models which rely largely on 88 
aerodynamic resistance (Mallick et al., 2018; Trebs et al., 2021). Furthermore, in Penman-89 
Monteith as well as in land surface models, semi-empirical parameterization representing surface 90 
conditions at a given time such as surface resistance is a primary source of uncertainty 91 
(Polhamus et al., 2013; Short Gianotti et al., 2019). Therefore, it is difficult to determine ET 92 
solely based on the first principles in these conventional approaches, despite commonly 93 
considered as physically-based approaches (Kleidon & Renner, 2018).  94 

Alternatively, a few related concepts from thermodynamics have been proposed to 95 
physically constrain turbulent heat fluxes (e.g., Conte et al., 2019; J. Wang & Bras, 2011). 96 
Among them, the recently introduced surface flux equilibrium (SFE) theory representing land-97 
atmosphere coupling is of great interest in that it can simply estimate ET using only 98 
meteorological information and available energy (McColl et al., 2019). This simple model quite 99 
successfully estimates actual ET at daily and multi-day time scales without any surface 100 
constraints or empirical parameters (S. Chen et al., 2021; McColl & Rigden, 2020). Yet, the SFE 101 
approach overestimates ET when ET is very low and underestimates it when ET is very high, 102 
implying that potential room for improvement exists (McColl & Rigden, 2020). By introducing 103 
the PMRH equation (Penman-Monteith equation expressed using relative humidity), Kim et al. 104 
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(2021) explicitly showed that SFE-based ET estimates can diverge from actual ET when vertical 105 
gradients of relative humidity from the land surface to the atmosphere are large. This finding 106 
provided the motivation for this present study.  107 

Here, we extend SFE theory in order to accurately estimate ET for various environmental 108 
conditions without any empirical parameterization by employing the maximum entropy 109 
production (MEP) principle, a thermodynamic principle for non-equilibrium conditions (Kleidon 110 
& Schymanski, 2008). In the proposed model, we merge SFE theory and the MEP principle with 111 
complementary characteristics, which improves the accuracy of the resulting ET estimation. 112 
Also, our proposed model only requires reference height air temperature and relative humidity, 113 
available energy, and radiometric surface temperature (which can be calculated from outgoing 114 
longwave radiation or obtained from thermal remote sensing). 115 

This study is structured as follows. First, we theoretically identify the conditions when 116 
SFE theory does not work well. To do this, we employ a simple closed box model of the 117 
atmospheric boundary layer (ABL). Then, we introduce the MEP principle that can be used when 118 
the SFE theory does not work well. Next, we propose a simple yet physically-based ET 119 
estimation which stems from the complementary role of the SFE theory and the MEP principle. 120 
We refer to the proposed model as the SFE-MEP model. Finally, we validate our approach using 121 
in-situ ET observations from eddy-covariance tower sites contained in the FLUXNET2015 122 
dataset (Pastorello et al., 2020). 123 
 124 

2 Theory 125 

2.1 When does SFE theory not work well? 126 

McColl et al. (2019) showed that the SFE state is achieved when moistening and heating 127 
at the land surface become equivalent in the RH budget. In this state, latent heat flux (𝐿𝐿𝐿𝐿 in units 128 
of W m-2) can be simply determined as follows. 129 

𝐿𝐿𝐿𝐿 = 𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠
𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾

(𝑅𝑅𝑛𝑛 − 𝐺𝐺)         (1) 130 

where 𝑠𝑠(= 𝜕𝜕𝑞𝑞∗

𝜕𝜕𝜕𝜕
) is the linearized slope of saturation specific humidity versus temperature (kg 131 

water vapour (kg moist air)-1 K-1), γ is psychrometric constant (K-1), Rn is net radiation (W m-2), 132 
G is soil heat flux (W m-2), RHa is relative humidity at a reference height, and Rn - G is available 133 
energy at the land surface. 𝐿𝐿𝐿𝐿 is the product of the latent heat of vaporization (L) and the 134 
evapotranspiration (ET) rate on a mass per unit land area basis (E). 135 

Using sensitivity tests, McColl et al. (2019) provided evidence that most initial conditions 136 
defined for an idealized ABL box evolve toward the SFE state within several days. Nevertheless, 137 
they did not provide a explicit solution for 𝐿𝐿𝐿𝐿, unlike previous studies addressing traditional 138 
equilibrium evaporation (McNaughton & Spriggs, 1986; Raupach, 2001). Therefore, it is 139 
difficult to intuitively understand how 𝐿𝐿𝐿𝐿 evolves toward the SFE state.  140 

To explicitly derive the solution yielding the SFE state, we revisit an idealized and closed 141 
ABL box model, which further simplifies the approach used by McColl et al. (2019). Following 142 
McColl et al. (2019), we consider an idealized ABL box model that can be interpreted as the 143 
daily averaged ABL with constant available energy input and constant aerodynamic resistance 144 
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(Figure A1 in Appendix A). Unlike McColl et al. (2019), we ignore the relaxation heat fluxes at 145 
the top of the ABL to simplify the ABL system following traditional equilibrium models 146 
(McNaughton & Jarvis, 1983; Raupach, 2001). This simplification is justified in that relaxation 147 
conductance at the top of the ABL is much smaller than aerodynamic conductance at the land 148 
surface at the multi-day time scale (McColl et al., 2019). The sensible and latent heat budgets for 149 
the closed ABL box model can be written as follows. 150 
𝑑𝑑𝜃𝜃𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝐻𝐻
𝜌𝜌𝑐𝑐𝑝𝑝ℎ

            (2) 151 

𝑑𝑑𝑞𝑞𝑚𝑚
𝑑𝑑𝑑𝑑

=  𝛾𝛾𝛾𝛾𝛾𝛾
𝜌𝜌𝑐𝑐𝑝𝑝ℎ

           (3) 152 

where h is the ABL box height (m), t is time, 𝜌𝜌 is the air density (kg m-3), cp is the specific heat 153 
capacity of air at constant pressure (J kg-1 K-1), θm is the mean potential temperature in the ABL 154 
(K), and qm is the mean specific humidity in the ABL (kg water vapour (kg moist air)-1). H and 155 
𝐿𝐿𝐿𝐿 are sensible and latent heat fluxes at the land surface (W m-2).  156 

In Appendix A, we provide a derivation of an expression for 𝐿𝐿𝐿𝐿 using Equations 2 and 3. 157 
In this derivation, we parameterize land surface dryness using the land surface relative humidity 158 
instead of the “big-leaf” surface resistance following Kim et al. (2021). This difference in the 159 
surface parameterization provides a different steady state evaporation from the traditional 160 
equilibrium evaporation (McNaughton & Jarvis, 1983). The resulting solution is as follows:  161 

𝐿𝐿𝐿𝐿 = 𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠
𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾

(𝑅𝑅𝑛𝑛 − 𝐺𝐺) + [𝐿𝐿𝐸𝐸|𝑡𝑡=0 −
𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠

𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾
(𝑅𝑅𝑛𝑛 − 𝐺𝐺)]𝑒𝑒𝑒𝑒𝑒𝑒(−𝑡𝑡

𝜏𝜏
)    (4) 162 

where 𝐿𝐿𝐸𝐸|𝑡𝑡=0 is the initial evaporation, and 𝜏𝜏 is the time constant of the approach to steady state 163 
given as follows 164 

𝜏𝜏 = 𝑞𝑞∗(𝑇𝑇0)(𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾)
𝑞𝑞∗(𝜃𝜃𝑚𝑚)(𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾)

ℎ𝑟𝑟𝑎𝑎          (5) 165 

where ra is the aerodynamic resistance to heat and water vapour transfer (s m-1), 𝑇𝑇0 is the land 166 
surface temperature, and 𝑅𝑅𝑅𝑅0 is the land surface relative humidity.  167 

Equation 4 demonstrates how 𝐿𝐿𝐿𝐿 evolves toward the SFE state. Since τ is a positive 168 
integer, the second term of the right-hand side of Equation 4 approaches zero with time, and thus 169 

𝐿𝐿𝐿𝐿 asymptotically approaches 𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠
𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾

(𝑅𝑅𝑛𝑛 − 𝐺𝐺) . This resulting steady state is exactly  the same 170 

as the SFE state. 171 

The time scales required for the closed ABL box to approach its steady state vary with τ 172 
in Equation 5. If τ is large, the length of time required to reach quasi steady state is large 173 
(McNaughton & Jarvis, 1983; McNaughton & Spriggs, 1986; Raupach, 2000). For most inland 174 

regions, 𝑞𝑞
∗(𝑇𝑇0)(𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾)

𝑞𝑞∗(𝜃𝜃𝑚𝑚)(𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾)
 in Equation 5 is close to 1.1 as we found in our recent study (Kim et al., 175 

2021). In these typical conditions, 𝜏𝜏 becomes 1.1ℎ𝑟𝑟𝑎𝑎 in Equation 5. This suggests that the time 176 
scale required for the SFE state is determined by the ABL depth and by turbulent mixing. As 177 
shown by McColl et al. (2019), various combinations of ℎ and 𝑟𝑟𝑎𝑎 allow the steady state within 178 
several days. 179 

Nevertheless, we can imagine largeτ in some extreme conditions, which make it difficult 180 
to approach steady state within several days. When the land surface is very dry (e.g., desert), the 181 
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ABL depth can be up to 4 km, much higher than typical conditions. Also, over very dry regions, 182 
vegetation cover is minimal and thus the aerodynamic roughness of the land surface is low, 183 
which results in weak turbulent mixing (i.e., large 𝑟𝑟𝑎𝑎). When turbulent mixing is weak, the 184 
temperature difference between the land surface and the atmosphere can increase substantially 185 

leading to a large 𝑞𝑞
∗(𝑇𝑇0)

𝑞𝑞∗(𝜃𝜃𝑚𝑚)
. Therefore, every component of 𝜏𝜏 in Equation 5 (i.e., 𝑞𝑞

∗(𝑇𝑇0)(𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾)
𝑞𝑞∗(𝜃𝜃𝑚𝑚)(𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾)

, ℎ, 186 

and 𝑟𝑟𝑎𝑎) reaches its maximum when the land surface is extremely dry. In this large 𝜏𝜏 condition 187 
over arid regions, the length of time required to reach quasi steady state increases substantially. 188 
Therefore, the ABL system cannot approach steady state within several days if the land surface is 189 
very dry and turbulent mixing is weak. In other words, the SFE theory estimating ET cannot 190 
properly determine ET for arid regions due to this non-equilibrium. Indeed, a recent study found 191 
the lowest performance of the SFE theory for very dry regions (S. Chen et al., 2021), supporting 192 
this theoretical evaluation. This is also further confirmed by our results in the result section. 193 
Therefore, in order to overcome the limitations of the SFE theory, we need an alternative theory 194 
for dry regions where SFE theory does not perform well in terms of ET estimation. 195 

 196 

2.2 A solution to non-equilibrium: the MEP principle 197 

The theoretical evaluation in the previous section is consistent with empirical findings 198 
that demonstrate the the SFE theory cannot accurately estimate ET in dry regions (S. Chen et al., 199 
2021). We demonstrate that the ABL over very dry regions cannot approach the equilibrium 200 
state, even within a period of several days. Therefore, we need an alternative physical principle 201 
to better estimate turbulent heat fluxes under non-equilibrium conditions. The principle of 202 
maximum entropy production (MEP) could be an alternative approach for non-equilibrium 203 
conditions. This is because the MEP principle suggests that a system far from equilibrium tends 204 
to organize in a way that the entropy production rate is maximized at steady state (Kleidon & 205 
Schymanski, 2008).  206 

Here, we employ the MEP principle to estimate the aerodynamic resistance (or 207 
conductance as the reciprocal of resistance) for dry conditions when sensible heat flux is 208 
dominant and SFE theory does not work well. We estimate aerodynamic resistance based on the 209 
entropy production equation introduced by Kleidon and Schymanski (2008), which is 210 
independent of the MOST theory. It should be noted that our work is different from some MEP-211 
related previous studies (J. Wang & Bras, 2010; J. Wang & Bras, 2011), which were based on 212 
the MEP formalism presented by Dewar (2005). 213 

We start by writing the energy balance equation at a single leaf for a condition for which 214 
there is no evaporation. 215 

𝑔𝑔𝑎𝑎𝜌𝜌𝑐𝑐𝑝𝑝(𝑇𝑇0 − 𝑇𝑇𝑎𝑎) = 𝑅𝑅𝑠𝑠𝑠𝑠 + ε𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎 + ε𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 2𝜀𝜀𝜎𝜎𝑆𝑆𝑆𝑆𝑇𝑇04     (6) 216 

where 𝑔𝑔𝑎𝑎 is aerodynamic conductance (m s-1), 𝑇𝑇0 is leaf surface temperature (K), Ta is near-leaf 217 
air temperature (K), 𝑅𝑅𝑠𝑠𝑠𝑠 is shortwave net radiation at the single leaf (W m-2), 𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎 is downward 218 
longwave radiation from the atmosphere to the leaf (W m-2), 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is upward longwave radiation 219 
from the soil below the leaf (W m-2), 𝜀𝜀 is leaf surface emissivity, and 𝜎𝜎𝑆𝑆𝑆𝑆 is Stefan-Boltzmann 220 
constant (W m-2 K-4). In Equation 6, the left-hand side represents turbulent sensible heat flux 221 
from the leaf surface to the air while the right-hand side represents the radiation budget (i.e., net 222 
radiation). The last term of the right-hand side represents the sum of outgoing longwave 223 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

radiation from the leaf to the atmosphere (upward) and to the soil (downward). We express net 224 
radiation at a single leaf instead of the land surface to faithfully represent the role of 𝑇𝑇0 in 225 
emitting heat energy while ignoring soil heat flux which is difficult to calculate without knowing 226 
soil thermal conductivity and heat capacity. 227 

 In order to effectively solve Equation 6 for the MEP state, we only consider 𝑔𝑔𝑎𝑎 and 𝑇𝑇0 as 228 
variables while others are constants although they interact with 𝑇𝑇0 through radiative feedback. 229 
Following isothermal net radiation introduced by Monteith (1981), we rewrite Equation 6 as 230 
follows to substitute 𝑇𝑇0 by 𝑇𝑇𝑎𝑎: 231 

𝑔𝑔𝑎𝑎𝜌𝜌𝑐𝑐𝑝𝑝(𝑇𝑇0 − 𝑇𝑇𝑎𝑎) = 𝑅𝑅𝑠𝑠𝑠𝑠 + 𝜀𝜀𝜀𝜀𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜀𝜀𝜀𝜀𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 2𝜀𝜀𝜎𝜎𝑆𝑆𝑆𝑆𝑇𝑇𝑎𝑎4 − 2𝜀𝜀𝜎𝜎𝑆𝑆𝑆𝑆(𝑇𝑇04 − 𝑇𝑇𝑎𝑎4)   232 

𝑔𝑔𝑎𝑎𝜌𝜌𝑐𝑐𝑝𝑝(𝑇𝑇0 − 𝑇𝑇𝑎𝑎) + 8𝜀𝜀𝜎𝜎𝑆𝑆𝑆𝑆𝑇𝑇𝑎𝑎3(𝑇𝑇0 − 𝑇𝑇𝑎𝑎) = 𝑅𝑅𝑠𝑠𝑠𝑠 + 𝜀𝜀𝜀𝜀𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜀𝜀𝜀𝜀𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 2𝜀𝜀𝜎𝜎𝑆𝑆𝑆𝑆𝑇𝑇𝑎𝑎4   (7) 233 

Here, the second term of the left-hand side of the resulting Equation 7 is the longwave radiative 234 
correction using a linear approximation (i.e., 𝑇𝑇04 − 𝑇𝑇𝑎𝑎4 ≈ 4𝑇𝑇𝑎𝑎3(𝑇𝑇0 − 𝑇𝑇𝑎𝑎)), which is introduced 235 
since 𝑇𝑇𝑎𝑎4 replaces 𝑇𝑇04 (Monteith, 1981).  236 

Equation 7 can be rearranged to obtain an expression for 𝑇𝑇0 − 𝑇𝑇𝑎𝑎 as follows 237 

𝑇𝑇0 − 𝑇𝑇𝑎𝑎 = 𝑅𝑅𝑛𝑛𝑛𝑛
𝑔𝑔𝑎𝑎𝜌𝜌𝑐𝑐𝑝𝑝+8𝜀𝜀𝜎𝜎𝑆𝑆𝑆𝑆𝑇𝑇𝑎𝑎3

         (8) 238 

where 𝑅𝑅𝑛𝑛𝑛𝑛(= 𝑅𝑅𝑠𝑠𝑠𝑠 + 𝜀𝜀𝜀𝜀𝜀𝜀𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜀𝜀𝜀𝜀𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 2𝜀𝜀𝜎𝜎𝑆𝑆𝑆𝑆𝑇𝑇𝑎𝑎4) is isothermal net radiation. 239 

According to Kleidon and Schymanski (2008), entropy production (𝜎𝜎) (W m-2K-1) by 240 
sensible heat flux (H) can be expressed as follows: 241 

𝜎𝜎 = 𝐻𝐻( 1
𝑇𝑇𝑎𝑎
− 1

𝑇𝑇0
) ≈ 𝐻𝐻 𝑇𝑇0−𝑇𝑇𝑎𝑎

𝑇𝑇𝑎𝑎2
         (9) 242 

where temperature is in K. Equation 9 can be rewritten by using Equation 8 and the aerodynamic 243 
expression of sensible heat flux (i.e., 𝐻𝐻 = 𝑔𝑔𝑎𝑎𝜌𝜌𝑐𝑐𝑝𝑝(𝑇𝑇0 − 𝑇𝑇𝑎𝑎)) as follows: 244 

𝜎𝜎 = 𝑔𝑔𝑎𝑎𝜌𝜌𝑐𝑐𝑝𝑝
𝑇𝑇𝑎𝑎2

( 𝑅𝑅𝑛𝑛𝑛𝑛
𝑔𝑔𝑎𝑎𝜌𝜌𝑐𝑐𝑝𝑝+8𝜀𝜀𝜎𝜎𝑆𝑆𝑆𝑆𝑇𝑇𝑎𝑎3

)2         (10) 245 

Equation 10 provides a relationship between the entropy production and ga for given 246 
values of 𝑅𝑅𝑛𝑛𝑛𝑛 and 𝑇𝑇𝑎𝑎. We illustrate this relationship in Figure 1. This illustration demonstrates 247 
that while the temperature difference (i.e., 𝑇𝑇0 − 𝑇𝑇𝑎𝑎) increases with decreasing ga reaching a finite 248 
maximum value at ga = 0, there is a maximum 𝜎𝜎 state (i.e., MEP) with respect to ga(>0) for a 249 
given meteorological condition. In Figure 1, 𝜎𝜎 reaches its maximum when 𝑔𝑔𝑎𝑎 is approximately 250 
0.0011 m s-1 (or aerodynamic resistance, 𝑟𝑟𝑎𝑎 is approximately 90 s m-1). This condition can be 251 
defined as the MEP state.  252 

Mathematically, this MEP state state can be determined by calculating the partial 253 

derivative of Equation 10 with respect to 𝑔𝑔𝑎𝑎. That is, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑔𝑔𝑎𝑎

= 0 is equivalent to the MEP state, and 254 

the solution for 𝜕𝜕𝜕𝜕
𝜕𝜕𝑔𝑔𝑎𝑎

= 0 is (detailed derivation in Appendix B): 255 

𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀

= 8𝜀𝜀𝜎𝜎𝑆𝑆𝑆𝑆𝑇𝑇𝑎𝑎3

𝜌𝜌𝑐𝑐𝑝𝑝
         (11) 256 
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where 𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 are the aerodynamic conductance (m s-1) and aerodynamic resistance (s m-257 
1), respectively, that yield the MEP state. Equation 11 shows that aerodynamic conductance (or 258 
resistance) for the MEP state is determined using only absolute temperature.   259 

 260 

 261 
Figure 1. Temperature difference (a and b) and entropy production (c and d) as a function of 262 
aerodynamic conductance (a and c) and aerodynamic resistance (b and d). Here, Equations 8 and 263 
10 are used to show this relationship with ρ = 1.2 kg m-3, cp = 1.01 J g-1K-1, Ta = 288.15 K, and 264 
varying Rni (100, 120, and 150 W m-2). 265 

 266 

Is this theoretical derivation for 𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 also empirically meaningful although it is 267 
independent to wind speed? To confirm the robustness of Equation 11, we compute 𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 and 268 
𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀, and validate them in Figure 2 using daily turbulent heat fluxes observations contained in 269 
the FLUXNET2015 database (Pastorello et al., 2020) (details for the dataset are provided in the 270 
Methods section). We used values of observed sensible heat flux, air temperature, and 271 
radiometric surface temperature to calculate aerodynamic conductance and resistance as 𝑔𝑔𝑎𝑎 =272 
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𝐻𝐻
𝜌𝜌𝑐𝑐𝑝𝑝(𝑇𝑇0−𝑇𝑇𝑎𝑎) and 𝑟𝑟𝑎𝑎 = 𝜌𝜌𝑐𝑐𝑝𝑝(𝑇𝑇0−𝑇𝑇𝑎𝑎)

𝐻𝐻
 (details of the calculation of the radiometric surface temperature 273 

(𝑇𝑇0) are provided in the next section). We compare calculated aerodynamic conductance (or 274 
resistances) and 𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 (or 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀) values in Figure 2 by selecting conditions for which H is 275 
dominant (𝐿𝐿𝐿𝐿 < 10 W m−2 and 𝐻𝐻 > 50 W m−2).  276 

As shown by Figure 2, when the entropy production (𝜎𝜎) is low compared to theoretical 277 
maximum (𝜎𝜎𝑀𝑀𝑀𝑀𝑀𝑀: derived by substitituing Equation 11 into Equation 10), 𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 underestimates 278 
the measured 𝑔𝑔𝑎𝑎 values and 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 overestimates observed aerodynamic resistance. However, 279 
when 𝜎𝜎 approaches its maximum, observed 𝑔𝑔𝑎𝑎 (or 𝑟𝑟𝑎𝑎) approaches 𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 (or 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀). This result 280 
demonstrates the robustness of Equation 11 in determining aerodynamic conductance or 281 
resistance for the MEP state without requiring any conceptual or empirical parameters and wind 282 
speed information.  283 

 284 

 285 
Figure 2. Validation of Equation 11. (a) relationship between between gMEP and observed ga. (b) 286 
relationship between rMEP and observed ra. (c) relationship between normalized ra and 𝜎𝜎 by their 287 
respective MEP states. Here, we only include daily scale data points when sensible heat flux is 288 
dominant (𝐿𝐿𝐿𝐿 < 10 𝑊𝑊 𝑚𝑚−2 and 𝐻𝐻 > 50 𝑊𝑊 𝑚𝑚−2). In panels (a) and (b), color represents entropy 289 
production relative to its maximum and the dashed lines are one-to-one lines for the respective 290 
panels. In panel (c), the dotted lines indicate conditions for which the normalized ratios are unity. 291 

 292 

2.3 Proposed model: the SFE-MEP model 293 

In the previous sections, we presented two independent theories that can constrain surface 294 
heat fluxes: SFE and MEP. The SFE theory works for the well-mixed equilibrium ABL 295 
particularly over wet or moderate-wet land surfaces, while the MEP theory can be applied to the 296 
non-equilibrium ABL over dry land surfaces. Is it the case that real world ABL and the surface 297 
heat fluxes are simultaneously affected by the mechanisms underpinning these two physical 298 
theories? In this section, we propose an additive model that merges the SFE theory and the MEP 299 
principle with complementary characteristics.  300 

We propose a novel partitioning of  sensible heat flux as follows: 301 

𝐻𝐻 = 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀          (12) 302 
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where 303 

𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆 ≡
𝛾𝛾

𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠
𝐿𝐿𝐿𝐿          (13) 304 

𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀 ≡ 𝜌𝜌𝑐𝑐𝑝𝑝
𝑇𝑇0−𝑇𝑇𝑎𝑎
𝑟𝑟𝑀𝑀𝐸𝐸𝐸𝐸

          (14) 305 

 Substituting the Equation 12 into the energy balance equation (i.e., 𝐻𝐻 + 𝐿𝐿𝐿𝐿 = 𝑅𝑅𝑛𝑛 − 𝐺𝐺) 306 
and arranging it for 𝐿𝐿𝐿𝐿 yields. 307 

𝐿𝐿𝐿𝐿 = 𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠
𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾

(𝑅𝑅𝑛𝑛 − 𝐺𝐺 − 𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀)        (15) 308 

Equation 15 is the proposed ET estimation model. This combinatory sensible heat flux 309 
model can blend SFE theory with the MEP principle. For a well-mixed system where 𝑇𝑇0 − 𝑇𝑇𝑎𝑎 is 310 
small and 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 is much larger than true aerodynamic resistance due to strong turbulent mixing, 311 
𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀 becomes negligible (Equation 14), with 𝐻𝐻 converging to 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆. This condition is exactly 312 
equivalent to the SFE theory since Equation 15 becomes equivalent to Equation 1. On the other 313 
hand, when turbulent mixing is weak and the system is dry, 𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀 becomes much larger than 314 
𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆, and thus 𝐻𝐻 is close to 𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀. This condition is equivalent to the MEP state. Therefore, the 315 
proposed can reconcile and explain two physical theories without any conflict. 316 

According to the PMRH (Penman-Monteith using RH) equation introduced by Kim et al. 317 

(2021), 𝐿𝐿𝐿𝐿 can be mathematically expressed as 𝐿𝐿𝐿𝐿 = 𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠
𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾

�𝑅𝑅𝑛𝑛 − 𝐺𝐺 + 𝜌𝜌𝑐𝑐𝑝𝑝𝑞𝑞∗(𝑇𝑇0)
𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠

𝑅𝑅𝑅𝑅0−𝑅𝑅𝑅𝑅𝑎𝑎
𝑟𝑟𝑎𝑎

�. The 318 

last term of the right-hand side of the PMRH equation, representing the relative humidity flux, 319 
plays a significant role in non-equilibrium conditions when the relative humidity difference 320 
between the land surface and the atmosphere is significant. In Equation 15, this last term of the 321 
PMRH equation is estimated using 𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀, implying that the physical meaning of the 𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀 term is 322 

correcting the non-equilibrium in the PMRH equation. Indeed, 𝑅𝑅𝑅𝑅0−𝑅𝑅𝑅𝑅𝑎𝑎
𝑟𝑟𝑎𝑎

 is negatively correlated 323 

with sensible heat flux in dry conditions (Kim et al., 2021), which justifies the 𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀 term in 324 
Equation 15. 325 

Similar to the SFE theory, Equation 15 should be applied to time scales longer than daily 326 
instead of at a sub-daily time scale since underlying theories are based on the steady state 327 
principles, which require some time for converging. Therefore, each variable in Equation 15 328 
should be considered as a time average for daily or longer than daily time scales (e.g., weekly 329 
and monthly etc.).  330 

Using Equation 15, ET can be easily estimated by readily obtainable or predictable 331 
meteorological information including relative humidity, air temperature, net radiation, soil heat 332 
flux, and the radiometric land surface temperature. The land surface temperature is an additional 333 
component for ET estimation compared to the SFE theory, and it can be calculated from the 334 
outgoing longwave radiation if measurements are available or thermal remote sensing from 335 
satellites.  336 

Here, we calculate 𝑇𝑇0 as follows: 337 

𝑇𝑇0 = (𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎 (1 − 𝜀𝜀))/𝜀𝜀𝜎𝜎𝑆𝑆𝑆𝑆)1/4       (16) 338 

where 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜 is outgoing (upward) longwave radiation observation (W m-2). We used land cover 339 
type-specific emissivity (𝜀𝜀) values reported in Feltz et al. (2018) based on the IGBP (The 340 
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International Geosphere-Biosphere Programme) land cover classification for each flux site 341 
represented in the FLUXNET2015 dataset (Table S1). 342 

After calculating T0 based on Equation 16, we adjust T0 for the following conditions since 343 
the MEP principle may be not appropriate in these conditions. 344 

𝑇𝑇0 − 𝑇𝑇𝑎𝑎 = �𝑇𝑇0 − 𝑇𝑇𝑎𝑎,        𝑇𝑇𝑎𝑎 − 1 ≤ 𝑇𝑇0 ≤ 𝑇𝑇𝑎𝑎  + 10
0,        𝑇𝑇0 < 𝑇𝑇𝑎𝑎 − 1 𝑜𝑜𝑜𝑜 𝑇𝑇0 > 𝑇𝑇𝑎𝑎 + 10     (17) 345 

The MEP principle implicitly assumes positive 𝑇𝑇0 − 𝑇𝑇𝑎𝑎 when available radiation energy 346 
is positive. Accordingly, we set the lower limit of the land surface temperature as 𝑇𝑇0 ≥ 𝑇𝑇𝑎𝑎 − 1 347 
with a 1 Kelvin buffer to address measurement uncertainty. The upper limit of the land surface 348 
temperature (i.e., 𝑇𝑇0 ≤ 𝑇𝑇𝑎𝑎  + 10) is introduced since too large 𝑇𝑇0 − 𝑇𝑇𝑎𝑎 values do not correspond 349 
to the maximum entropy state, as 𝜎𝜎 declines with increasing ra (corresponding to increasing 𝑇𝑇0 −350 
𝑇𝑇𝑎𝑎) after the peak (Figure 1) (Kleidon & Schymanski, 2008). For low values of 𝜎𝜎, 𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀 cannot 351 
well constrain sensible heat flux (Figure 2). Therefore, we set this upper limit in Equation 17. 352 

Similarly, we adjust 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 to reduce possible uncertainties as follows. 353 

𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 = �
𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀,        𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 ≥

𝜌𝜌𝑐𝑐𝑝𝑝(𝑇𝑇0−𝑇𝑇𝑎𝑎)
𝑅𝑅𝑛𝑛−𝐺𝐺

𝜌𝜌𝑐𝑐𝑝𝑝(𝑇𝑇0−𝑇𝑇𝑎𝑎)
𝑅𝑅𝑛𝑛−𝐺𝐺

,        𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 < 𝜌𝜌𝑐𝑐𝑝𝑝(𝑇𝑇0−𝑇𝑇𝑎𝑎)
𝑅𝑅𝑛𝑛−𝐺𝐺

       (18) 354 

where  𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 on the right-hand side of the equation is aerodynamic resistance for the MEP state in 355 

Equation 11, while 𝜌𝜌𝑐𝑐𝑝𝑝(𝑇𝑇0−𝑇𝑇𝑎𝑎)
𝑅𝑅𝑛𝑛−𝐺𝐺

 is aerodynamic resistance when there is no evaporation. Although 356 

conditions meeting 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 < 𝜌𝜌𝑐𝑐𝑝𝑝(𝑇𝑇0−𝑇𝑇𝑎𝑎)
𝑅𝑅𝑛𝑛−𝐺𝐺

 are very rare, we introduce this adjustment in order to 357 

minimize the possible overestimation of 𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀 when true aerodynamic resistance is greater than 358 
𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 in Equation 11. 359 

The final values of 𝑇𝑇0 − 𝑇𝑇𝑎𝑎 and 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 derived from Equations 17 and 18 are used to 360 
determine 𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀 using Equation 14. Based on this, we estimate LE using Equation 15, and this is 361 
the proposed ET model, referred to as the SFE-MEP model. In the following sections, we test the 362 
proposed model using FLUXNET2015 as the observational dataset. 363 

 364 

3 Materials and Methods 365 

The FLUXNET2015 dataset (Pastorello et al., 2020), which includes 212 eddy-366 
covariance flux tower sites around the globe, was used for evaluating the proposed ET model. 367 
Latent and sensible heat fluxes, net radiation, soil heat flux, air temperature, relative humidity (or 368 
vapour pressure deficit), barometric pressure, incoming longwave radiation, and outgoing 369 
longwave radiation were obtained at daily, weekly and monthly scales from the FLUXNET2015 370 
dataset. Eddy-covariance observations of latent heat flux and energy balance corrected latent 371 
heat flux based on the Bowen ratio preservation method (Pastorello et al., 2020; Twine et al., 372 
2000) were used as references to evaluate the proposed ET estimation model and the SFE ET 373 
estimation.  374 

We only selected periods for which all required variables for ET calculations based on 375 
Equation 15 were available. Also, we only included data for periods for which the quality control 376 
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flag indicated more than 80% of the half-hourly data were used for generating the daily, weekly, 377 
or monthly datasets (i.e., measured data or high quality gap-filled data). We filtered out data 378 
points when available energy (i.e., net radiation minus soil heat flux) was negative or latent and 379 
sensible heat fluxes were negative. Also, data in which surface energy imbalance (available 380 
energy minus the sum of sensible and latent heat flux without energy balance correction) was 381 
greater than 50 W m−2 were excluded to reduce systematic uncertainty in the observations 382 
(Rigden & Salvucci, 2015). Following these filtering processes, 103 flux sites around the globe 383 
were retained (Table S1). We remove six additional sites that are located within 35 km of the 384 
coast since the SFE theory should be applied to inland continental regions (McColl et al., 2019).  385 
Details on this specific 35 km criterion will be discussed in the next section.  386 

The root-mean-square error (RMSE), mean bias (model – observation), and coefficient of 387 
determination (R2) were calculated to evaluate the SFE ET estimates and the proposed SFE-MEP 388 
model estimates against measured values. All statistical analyses were conducted using the R 389 
statistical language version 4.0.2 (R CORE TEAM, 2020). Also, the bigleaf R package (Knauer 390 
et al., 2018) was used to calculate required variables for ET estimations (e.g., 𝑇𝑇0 in Equation 16).  391 

 392 

4 Results 393 

Across time scales from daily to monthly, the proposed SFE-MEP model (Equation 15) 394 
performed consistently better than the SFE theory (Eequation 1) against observed LE as shown in 395 
Figure 3. In particular, low values of observed daily scale LE were overestimated by the SFE 396 
theory (e.g., high density of points around LESFE < 75, LEobs = 0 W m-2 in Figure 3d). This 397 
difference was eliminated when estimating LE with the proposed SFE-MEP model (Figure 3a). 398 
Both models showed improved performance when the aggregation time period was increased 399 
from daily to monthly; however, model performance using the SFE-MEP model was consistently 400 
better than the SFE estimation regardless of time scale. 401 

However, although the proposed SFE-MEP model consistently outperforms the SFE 402 
model  estimation in terms of RMSE and R2 across temporal scales, the absolute improvement is 403 
small. This may be because the performance of the SFE is already close to the systematic 404 
uncertainty of the eddy-covariance observation as demonstrated by McColl and Rigden (2020). 405 
Owing to the well-known energy imbalance problem of the eddy-covariance method (i.e., 𝐻𝐻 +406 
𝐿𝐿𝐿𝐿 < 𝑅𝑅𝑛𝑛 − 𝐺𝐺) (Wilson et al., 2002), observed LE by eddy covariance is subject to systematic 407 
uncertainty. The systematic measurement uncertainty may be revealed by the difference between 408 
the observed LE and the energy balance residual LE (i.e., 𝑅𝑅𝑛𝑛 − 𝐺𝐺 − 𝐻𝐻) (Mauder et al., 2013; 409 
McColl & Rigden, 2020). Although we filtered out data points that corresponded to periods with 410 
a large energy imbalance (see Methods), the RMSE and R2 between the observed LE and the 411 
energy balance residual in our dataset were 21.8 W m-2 and  0.82, respectively, for the daily time 412 
scale, representing the approximate upper bound on the performance of any ET estimate. In 413 
particular, daily LE values in semiarid sites are commonly similar to or less than the closure error 414 
implying it is difficult to improve model performance (Garcia et al., 2014). Therefore, the RMSE 415 
improvement at the daily time scale from 22 W m-2 (with R2 = 0.67) using SFE to 20.3 W m-2 416 
(with R2 = 0.71) using the SFE-MEP is significant, with the 10% reduction in RMSE resulting in 417 
a model uncertainty that approaches the measurement uncertainty for LE using the eddy 418 
covariance method.  419 
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 420 

 421 
Figure 3. Comparison between eddy covariance LE measurements (LEobs) and model-based LE 422 
estimations using the proposed SFE-MEP model (i.e., Equation 15) (LESFE-MEP) (a-c), and the 423 
SFE model (i.e., equation 1) (LESFE) (d-f). Each column represents daily (a and d), weekly (b and 424 
e), and monthly (c and f) time scales, respectively. 425 

 426 

The improved performance of the proposed SFE-MEP model relative to the SFE model is 427 
consistent, even if we replace the reference LE from the observations with observations for 428 
which the energy balance was corrected (i.e., forcing closure of the energy balance based on the 429 
Bowen ratio preservation method, which is a technique commonly used in eddy covariance 430 
studies (Twine et al., 2000)). Model performance for the SFE-MEP model and SFE relative to 431 
observed values with and without forced energy balance closure is summarized in Table 1. In 432 
terms of RMSE, bias and R2, the proposed SFE-MEP model shows better performance than the 433 
SFE model across temporal scales against observed LE. However, mean bias for the models 434 
changes slightly when LE observations are adjusted to force energy balance closure in the 435 
reference dataset. The SFE-MEP model slightly overestimates uncorrected LE observations, 436 
while it slightly underestimates LE when the energy balance is corrected. Bias for the SFE model 437 
also changes based on if the LE observations are forced to have energy balance closure or not, 438 
with bias values becoming smaller and changing from overestimates without closure to 439 
underestimates with energy balance closure.  440 

The slightly underestimated bias for the SFE-MEP model under conditions of forced 441 
energy balance closure could be due to a combination of errors in the LE model and 442 
measurements. Recent evidence suggested that true LE may be larger than the uncorrected LE 443 
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observations and smaller than the energy balance corrected LE based on the Bowen ratio 444 
preservation method (Mauder et al., 2020). Therefore, the true bias of the SFE-MEP model to 445 
true LE may be between the biases with the uncorrected LE and with the energy balance 446 
corrected LE. In this case, the absolute value of the mean bias of the proposed model is 447 
remarkably small, supporting the accurate performance of the proposed SFE-MEP model. 448 

 449 
Table 1. Summary of model performance for LE estimation. Two references dataset are used 450 
including: eddy covariance LE observation and energy balance corrected LE (Bowen ratio 451 
preservation method). LE is estimated by the SFE theory and the proposed SFE-MEP model. 452 
Here, units for RMSE and mean bias are in W m-2. 453 

 
SFE-MEP model  SFE model 

RMSE Bias R2  RMSE Bias R2 
(W m-2) (W m-2)   (W m-2) (W m-2)  

Daily        

    LE observation 19.5 1.6 0.72  22 5.6 0.67 
    Energy balance corrected LE 22.3 -4.6 0.74  23.7 -0.6 0.69 
        
Weekly        

    LE observation 17.1 1.4 0.74  19.4 5.2 0.70 
    Energy balance corrected LE 18.9 -5.3 0.77  20.1 -1.5 0.72 
        
Monthly        

    LE observation 15.6 1.5 0.76  18 5.1 0.72 
    Energy balance corrected LE 17.4 -5.7 0.80  18.7 -2.1 0.74 

 454 

In order to understand how the proposed SFE-MEP model improves the performance of 455 
the SFE estimation by incorporating the HMEP term in Equation 15, we analyzed model bias with 456 
respect to volumetric soil water content (VWC) observations (Figure 4). Consistent with a 457 
previous study (S. Chen et al., 2021), the SFE model overestimates LE when soil moisture is 458 
very low (Figure 4b). This poor performance of the SFE model in dry regions can be explained 459 
by our theoretical evaluation in the previous section, which shows that it is difficult to approach 460 
the equilibrium state in dry regions due to the large time constant required to approach steady 461 
state.   462 

This limitation of the SFE theory in dry regions can be reduced by using the proposed 463 
SFE-MEP model (Figure 4a) as the proposed model less overestimates LE compared to SFE 464 
when VWC is very low. Since the SFE-MEP model is constrained by the MEP principle in dry 465 
conditions, the overestimation by the SFE theory in dry regions can be reduced. This may be the 466 
key reason for the performance improvement obtained using the SFE-MEP model instead of 467 
using only SFE theory.   468 

 469 
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 470 
Figure 4. Bias (LE estimation - observation) of the SFE-MEP estimation (a) and the SFE 471 
estimation (b) as a function of volumetric water content (VWC). Here, monthly scale LE 472 
observations (energy balance uncorrected) are used as reference. Sites, which provide VWC 473 
observations, are only included in this figure. It should be noted that some wetland sites show 474 
saturated VWC, but they are not included here in order to zoom in on the low VWC.   475 

 476 

Next, we further analyzed the performance of the SFE theory and the SFE-MEP model 477 
by grouping sites according to IGBP land cover types (Figure 5). As we would expect from the 478 
VWC analysis, the largest model performance increase was observed for arid and semi-arid 479 
regions such as savanna, open shrublands, woody savanna, and closed shrublands. The SFE LE 480 
estimations showed the poorest performance in these dry regions compared to other land cover 481 
types such as forests, which is consistent with our theoretical expectation. This problem is 482 
resolved using the SFE-MEP model. The proposed model shows relatively consistent 483 
performance with low RMSE values across the land cover types compared to the SFE theory. 484 
The performances of the two approaches are similar for the non-dry regions, which is expected 485 
since the SFE-MEP model becomes equivalent to the SFE theory.   486 

 487 
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 488 

Figure 5. Monthly scale RMSE of the SFE-MEP model and SFE estimations across the land 489 
cover types (box plot with outliers). Monthly scale LE observations (energy balance uncorrected) 490 
are used as reference. The IGBP land cover classification is used for grouping of the sites, which 491 
is as follows. SAV & OSH: Savannas and Open Shrublands, WSA & CSH: Woody savanna and 492 
Closed Shrublands, GRA: Grasslands, CRO: Croplands, ENF & MF: Evergreen Needleleaf 493 
Forests and Mixed Forests, DBF: Deciduous Broadleaf Forests, EBF: Evergreen Broadleaf 494 
Forests, WET: Permanent Wetlands. 495 

 496 

5 Discussion  497 

We have demonstrated the robustness of SFE theory when applied to ET estimation for 498 
most of inland regions, except for conditions for which the land surface is dry and turbulent 499 
mixing is weak. To resolve this limitation of the SFE theory in dry regions, we propose to 500 
augment SFE theory to include the MEP principle, which is applicable for dry and weak 501 
turbulence conditions when SFE theory shows limitations for ET estimation. Based on these 502 
theoretical evaluations, we introduce a model that integrates  SFE theory and the MEP principle 503 
into a single equation, and which is as simple to apply as SFE theory. The two physical theories 504 
are complementary to one another in the proposed SFE-MEP model. We have demonstrated that 505 
our approach improves the performance of ET estimation compared to using only SFE theory. 506 
Using eddy-covariance observations included in the FLUXNET2015 dataset, we have 507 
demonstrated the improved performance of the SFE-MEP model compared to SFE, which is 508 
particularly improved for dry regions.   509 

Nevertheless, the proposed SFE-MEP model still includes several limitations. Since the 510 
proposed model becomes equivalent to the SFE theory except for the arid regions, the proposed 511 
SFE-MEP model and SFE theory share similar limitations. In principle, SFE theory only works 512 
when the atmospheric state within the ABL is largely determined by latent and sensible heat 513 
fluxes at the land surface. If heat fluxes at the top of the ABL significantly affect the ABL state 514 
(e.g., strong entrainment),  SFE theory can fail to properly estimate ET (McColl & Rigden, 515 
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2020). Similarly,  SFE theory does not work well for sites close to a coast due to the horizontal 516 
advection from the ocean, which decouples the atmospheric state and the land surface heat fluxes 517 
(McColl & Rigden, 2020). Indeed, when analyzing the FLUXNET2015 dataset based on 518 
distance from a coast, we found low performance for both SFE theory and the SFE-MEP model 519 
in matching observed ET for sites located near the ocean (distance from the coast < 35 km; 520 
Figure 6).  521 

Unlike SFE theory, the SFE-MEP model is subjected to uncertainty of the radiometric 522 
surface temperature (T0). This may cause a decrease in performance using the SFE-MEP model 523 
for some sites compared to SFE theory. Also, field measurement of T0 is relatively difficult to 524 
obtain compared to air temperature although thermal remote sensing from satellites may resolve 525 
this problem. In spite of these potential caveats, our theoretical evaluation and the empirical 526 
results demonstrated the robustness of the proposed SFE-MEP model across a wide range of 527 
environmental conditions. The performance of the SFE-MEP model was consistently better than 528 
that obtained using SFE theory, with performance of the SFE-MEP model approaching the 529 
measurement uncertainty of the eddy-covariance method, which is particularly notable. 530 

 531 

 532 

Figure 6. Monthly scale RMSE for each site of the SFE-MEP model (a) and the SFE model (b) 533 
as a function of distance from the coast. Filled colours represent the IGBP land cover 534 
classification. Monthly scale LE observations (energy balance uncorrected) are used as reference. 535 
The dashed vertical lines show 35 km from the coast. 536 

 537 

6 Conclusions  538 

ET is a key process in the global climate system that links water, energy, and carbon 539 
cycles. However, in most Earth-systems models, the relationships linking water, energy, and 540 
carbon cycles through ET are parameterized semi-empirically (Short Gianotti et al., 2019). This 541 
is particularly problematic in evaluating the Earth system under changing climate conditions, 542 
with ET remaining as a major source of uncertainty in the earth-systems models. Unlike common 543 
ET estimation approaches which constrain ET using semi-empirically parameterized 544 
formulations for aerodynamic resistance and surface resistance, there is no empirical parameters 545 
requiring calibration or tuning in our SFE-MEP ET model. Also, the land-atmosphere coupling is 546 
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faithfully represented in our model similar to SFE theory. Therefore, the SFE-MEP model can be 547 
an alternative or benchmark for evaluating existing or proposed ET models. Also, our SFE-MEP 548 
model can be used to analyze trends in ET in that there is no systematic uncertainty that would 549 
be introduced through tuning an empirical parameter for a specific time period and then applying 550 
the tuned model to other periods. This is particularly important for climate change studies given 551 
non-stationarity in future climatic conditions relative to the historical record (Milly et al., 2008). 552 
Finally, although we use the radiometric surface temperature observed at the flux tower to 553 
evaluate the SFE-MEP model, the SFE-MEP model can be applied to larger spatial scales using 554 
radiometric surface temperature obtained from thermal remote sensing derived by satellites such 555 
as MODIS, Sentinel 3, Landsat, and ECOSTRESS missions. 556 

 557 

  558 
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Appendix A: Steady state evaporation in an idealized ABL box 559 

Here, we revisit a closed atmospheric boundary layer (ABL) box model (Figure A1). The 560 
idealized ABL box does not have diurnal and seasonal variations and it could be interpreted as a 561 
time-averaged ABL over a period of time (t). This is conceptually similar to the ABL box model 562 
introduced by McColl et al. (2019), but it is simplified further by ignoring relaxation fluxes at the 563 

top of the ABL. For the time period t, we presume constant available energy input (i.e., 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑅𝑅𝑛𝑛 −564 

𝐺𝐺) = 0), constant aerodynamic resistance to heat and water vapour transfer (i.e., 𝑑𝑑𝑟𝑟𝑎𝑎
𝑑𝑑𝑑𝑑

= 0). The 565 

following heat and moisture budget equations govern the closed ABL box system. 566 
𝑑𝑑𝜃𝜃𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝐻𝐻
𝜌𝜌𝑐𝑐𝑝𝑝ℎ

          (A1) 567 

𝑑𝑑𝑞𝑞𝑚𝑚
𝑑𝑑𝑑𝑑

=  𝛾𝛾𝛾𝛾𝛾𝛾
𝜌𝜌𝑐𝑐𝑝𝑝ℎ

          (A2) 568 

where qm is the mean specific humidity in the ABL, θm is the mean potential temperature 569 
in the ABL (K), cp is the specific heat of air at constant pressure (J kg-1 K-1), h is the ABL box 570 
height (m), 𝜌𝜌 is the air density (kg m-3), 𝛾𝛾 is psychrometric constant, and t is the time. LE and H 571 
are land surface latent and sensible heat fluxes, respectively. In Equations A1 and A2, radiative 572 
divergence and horizontal advection are assumed to be negligible following McColl et al. (2019). 573 

 574 

 575 

Figure A1. Schematic conceptualization of heat and moisture budgets in the idealized ABL box. 576 
Rn represents net radiation based on components of the radiation balance that enter/exit the ABL 577 
box.  578 

 579 

Using Equations A1 and A2, we derive Equations 4 and 5. Most previous studies using 580 
an ABL box model have applied the “big-leaf” framework for surface resistance to parameterize 581 
land surface conditions which resulted in the traditional equilibrium evaporation for a closed 582 
system (Culf, 1994; de Bruin, 1983; McNaughton & Jarvis, 1983; McNaughton & Spriggs, 1986; 583 
Raupach, 2000, 2001; van Heerwaarden et al., 2009). McColl et al. (2019) also used surface 584 
resistance to parameterize land surface. In the present derivation, however, we express 585 
evaporation using land surface relative humidity (RH0) instead of surface resistance and assume 586 
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constant RH0 with time instead of constant surface resistance. This different parameterization is 587 
conceptually similar with Li and Wang (2019). Using RH0, the land surface heat fluxes are 588 
expressed as follows. 589 

𝐿𝐿𝐿𝐿 = 𝜌𝜌 𝑐𝑐𝑝𝑝
𝛾𝛾
𝑅𝑅𝑅𝑅0𝑞𝑞∗(𝑇𝑇0)−𝑞𝑞𝑚𝑚

𝑟𝑟𝑎𝑎
           (A3) 590 

𝐻𝐻 = 𝜌𝜌𝑐𝑐𝑝𝑝
𝑇𝑇0−𝜃𝜃𝑚𝑚
𝑟𝑟𝑎𝑎

           (A4) 591 

where q* is saturation specific humidity, T is temperature, ra is aerodynamic resistance to water 592 
vapour and sensible heat transfer (s m-1). The subscript m indicates the mean atmospheric state in 593 
the ABL (including both the surface and mixed layers), and the subscript 0 indicates the land 594 
surface. Then, changes of LE and H with respect to time can be expressed as follows. 595 
𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑅𝑅𝑅𝑅0𝑠𝑠
𝛾𝛾

𝜌𝜌𝑐𝑐𝑝𝑝
𝑟𝑟𝑎𝑎

𝑑𝑑𝑇𝑇0
𝑑𝑑𝑡𝑡
− 1

𝛾𝛾
𝜌𝜌𝑐𝑐𝑝𝑝
𝑟𝑟𝑎𝑎

𝑑𝑑𝑞𝑞𝑚𝑚
𝑑𝑑𝑑𝑑

          (A5) 596 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝑐𝑐𝑝𝑝
𝑟𝑟𝑎𝑎

𝑑𝑑𝑇𝑇0
𝑑𝑑𝑑𝑑
− 𝜌𝜌𝑐𝑐𝑝𝑝

𝑟𝑟𝑎𝑎

𝑑𝑑𝜃𝜃𝑚𝑚
𝑑𝑑𝑑𝑑

           (A6) 597 

where 𝑠𝑠(= 𝑑𝑑𝑞𝑞∗

𝑑𝑑𝑑𝑑
) is the linearized slope of saturation specific humidity versus temperature (kg 598 

water vapour (kg moist air)-1 K-1). In Equations A5 and A6, we assume aerodynamic resistances 599 

are constant with time as mentioned above. Since Equations A5 and A6 both include 𝜌𝜌𝑐𝑐𝑝𝑝
𝑟𝑟𝑎𝑎

𝑑𝑑𝑇𝑇0
𝑑𝑑𝑑𝑑

, we 600 

can eliminate 𝜌𝜌𝑐𝑐𝑝𝑝
𝑟𝑟𝑎𝑎

𝑑𝑑𝑇𝑇0
𝑑𝑑𝑑𝑑

 in equation A5 by substituting equation A6. Therefore, equation A5 can be 601 

rewritten as follows 602 

 𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 𝑅𝑅𝑅𝑅0𝑠𝑠
𝛾𝛾

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑅𝑅𝑅𝑅0𝑠𝑠
𝛾𝛾

𝜌𝜌𝑐𝑐𝑝𝑝
𝑟𝑟𝑎𝑎

𝑑𝑑𝜃𝜃𝑚𝑚
𝑑𝑑𝑑𝑑

− 1
𝛾𝛾
𝜌𝜌𝑐𝑐𝑝𝑝
𝑟𝑟𝑎𝑎

𝑑𝑑𝑞𝑞𝑚𝑚
𝑑𝑑𝑑𝑑

        (A7) 603 

In this ABL box model, we assume 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑅𝑅𝑛𝑛 − 𝐺𝐺) = 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝐻𝐻 + 𝐿𝐿𝐿𝐿) = 0. Thus, we can write 604 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. Substituting this relationship into the second term of the left-hand side in Equation 605 

A7 yields 606 

(1 + 𝑅𝑅𝑅𝑅0𝑠𝑠
𝛾𝛾

) 𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑅𝑅𝑅𝑅0𝑠𝑠
𝛾𝛾

𝜌𝜌𝑐𝑐𝑝𝑝
𝑟𝑟𝑎𝑎

𝑑𝑑𝜃𝜃𝑚𝑚
𝑑𝑑𝑑𝑑

− 𝜌𝜌𝑐𝑐𝑝𝑝
𝛾𝛾𝑟𝑟𝑎𝑎

𝑑𝑑𝑞𝑞𝑚𝑚
𝑑𝑑𝑑𝑑

         607 

∴ 𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝑐𝑐𝑝𝑝
𝑟𝑟𝑎𝑎

1
𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾

(𝑅𝑅𝑅𝑅0𝑠𝑠
𝑑𝑑𝜃𝜃𝑚𝑚
𝑑𝑑𝑑𝑑

− 𝑑𝑑𝑞𝑞𝑚𝑚
𝑑𝑑𝑑𝑑

)        (A8) 608 

Substituting Equations A1 and A2 into equation A8 gives 609 
𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝑐𝑐𝑝𝑝
𝑟𝑟𝑎𝑎

1
𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾

(𝑅𝑅𝑅𝑅0𝑠𝑠
𝐻𝐻

𝜌𝜌𝑐𝑐𝑝𝑝ℎ
− 𝛾𝛾𝛾𝛾𝛾𝛾

𝜌𝜌𝑐𝑐𝑝𝑝ℎ
)        610 

∴ 𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1
𝑟𝑟𝑎𝑎ℎ

1
𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾

(𝑅𝑅𝑅𝑅0𝑠𝑠𝑠𝑠 − 𝛾𝛾𝛾𝛾𝛾𝛾)        (A9) 611 

Next, we use the energy balance equation (𝑅𝑅𝑛𝑛 − 𝐺𝐺 = 𝐿𝐿𝐿𝐿 + 𝐻𝐻)  to replace H in Equation 612 
A9 and rearrange it to give 613 
𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1
𝑟𝑟𝑎𝑎ℎ

1
𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾

[𝑅𝑅𝑅𝑅0𝑠𝑠(𝑅𝑅𝑛𝑛 − 𝐺𝐺) − (𝑅𝑅𝑅𝑅0𝑠𝑠 + 𝛾𝛾)𝐿𝐿𝐿𝐿]   614 

∴ 𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1
𝑟𝑟𝑎𝑎ℎ

[ 𝑅𝑅𝑅𝑅0𝑠𝑠
𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾

(𝑅𝑅𝑛𝑛 − 𝐺𝐺) − 𝐿𝐿𝐿𝐿]        (A10) 615 
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In order to express 𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 using relative humidity at a reference height (𝑅𝑅𝑅𝑅𝑎𝑎 = 𝑞𝑞𝑚𝑚
𝑞𝑞∗(𝜃𝜃𝑚𝑚)

) 616 

instead of 𝑅𝑅𝑅𝑅0, we employ the PMRH evaporation model (Kim et al., 2021). The two forms of the 617 
PMRH equations for LE provides following relationship 618 

[ 𝑅𝑅𝑅𝑅0𝑠𝑠
𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾

(𝑅𝑅𝑛𝑛 − 𝐺𝐺) − 𝐿𝐿𝐿𝐿] = 𝑞𝑞∗(𝜃𝜃𝑚𝑚)(𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾)
𝑞𝑞∗(𝑇𝑇0)(𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾)

[ 𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠
𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾

(𝑅𝑅𝑛𝑛 − 𝐺𝐺) − 𝐿𝐿𝐿𝐿]     (A11) 619 

Substituting equation A11 into equation A10 yields 620 

𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1
𝑟𝑟𝑎𝑎ℎ

𝑞𝑞∗(𝜃𝜃𝑚𝑚)(𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾)
𝑞𝑞∗(𝑇𝑇0)(𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾)

[ 𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠
𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾

(𝑅𝑅𝑛𝑛 − 𝐺𝐺) − 𝐿𝐿𝐿𝐿]      (A12) 621 

The solution of Equation A12 can be obtained by integrating this equation from the initial 622 

condition (𝐿𝐿𝐸𝐸|𝑡𝑡=0) to time 𝑡𝑡 by assuming that changes in 𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠
𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾

(𝑅𝑅𝑛𝑛 − 𝐺𝐺) and 1
𝑟𝑟𝑎𝑎ℎ

𝑞𝑞∗(𝜃𝜃𝑚𝑚)(𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾)
𝑞𝑞∗(𝑇𝑇0)(𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾)

 623 

are negligible over this time scale (McNaughton & Jarvis, 1983).   624 

𝐿𝐿𝐿𝐿 = 𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠
𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾

(𝑅𝑅𝑛𝑛 − 𝐺𝐺) + [𝐿𝐿𝐸𝐸|𝑡𝑡=0 −
𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠

𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾
(𝑅𝑅𝑛𝑛 − 𝐺𝐺)]𝑒𝑒𝑒𝑒𝑒𝑒(−𝑡𝑡

𝜏𝜏
)    (A13) 625 

where 𝜏𝜏 is time constant of the approach to steady state given as follows 626 

𝜏𝜏 = 𝑞𝑞∗(𝑇𝑇0)(𝑅𝑅𝑅𝑅0𝑠𝑠+𝛾𝛾)
𝑞𝑞∗(𝜃𝜃𝑚𝑚)(𝑅𝑅𝑅𝑅𝑎𝑎𝑠𝑠+𝛾𝛾)

ℎ𝑟𝑟𝑎𝑎          (A14) 627 

 628 

Appendix B: Derivation of 𝒈𝒈𝑴𝑴𝑴𝑴𝑴𝑴 629 

In order to simplify the calculation of 𝜕𝜕𝜕𝜕
𝜕𝜕𝑔𝑔𝑎𝑎

, we rewite Equation 10 as follows: 630 

𝜎𝜎 = 𝛼𝛼𝑔𝑔𝑎𝑎
(𝑔𝑔𝑎𝑎+𝛽𝛽)2

           (B1) 631 

where 𝛼𝛼 = 𝜌𝜌𝑐𝑐𝑝𝑝
𝑇𝑇𝑎𝑎2

(𝑅𝑅𝑛𝑛𝑛𝑛−𝐺𝐺
𝜌𝜌𝑐𝑐𝑝𝑝

)2 and 𝛽𝛽 = 8𝜀𝜀𝜎𝜎𝑆𝑆𝑆𝑆𝑇𝑇𝑎𝑎3

𝜌𝜌𝑐𝑐𝑝𝑝
. The partial derivative of 𝜎𝜎 with respect to 𝑔𝑔𝑎𝑎 can be 632 

obtained using the quotient rule. 633 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑔𝑔𝑎𝑎

= 𝛼𝛼(𝑔𝑔𝑎𝑎+𝛽𝛽)2−2𝛼𝛼𝑔𝑔𝑎𝑎(𝑔𝑔𝑎𝑎+𝛽𝛽)
(𝑔𝑔𝑎𝑎+𝛽𝛽)4

  634 

∴ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑔𝑔𝑎𝑎

= −𝛼𝛼
(𝑔𝑔𝑎𝑎+𝛽𝛽)4

(𝑔𝑔𝑎𝑎2 − 𝛽𝛽2) = −𝛼𝛼
(𝑔𝑔𝑎𝑎+𝛽𝛽)3

(𝑔𝑔𝑎𝑎 − 𝛽𝛽)      (B2) 635 

Using Equation B2, we know that 𝜕𝜕𝜕𝜕
𝜕𝜕𝑔𝑔𝑎𝑎

= 0 is equivalent to 𝑔𝑔𝑎𝑎 − 𝛽𝛽 = 0 because −𝛼𝛼
(𝑔𝑔𝑎𝑎+𝛽𝛽)3 636 

on the right hand side of Equation B2 is always negative. Therefore, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑔𝑔𝑎𝑎

= 0 is achieved when: 637 

𝑔𝑔𝑎𝑎 = 𝛽𝛽 = 8𝜀𝜀𝜎𝜎𝑆𝑆𝑆𝑆𝑇𝑇𝑎𝑎3

𝜌𝜌𝑐𝑐𝑝𝑝
          (B3) 638 

This solution is the same as Equation 11.  639 
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