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Introduction

In Text S1, we describe how we derived or calibrated the phase-field parameters τ ,

ω2
φ, and H from either known quantities or the interface width d, which numerically acts

somewhat like a viscosity/smoothing term. Figure S1 also gives relevant details as to how
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we calibrated d. In Text S2, we define and explain the relative L2 error, which is used in

Figure S2. In Text S3, we describe the choice of grid size ∆x for each simulation. Figures

S2-S7 describe and showcase several compelling yet somewhat tangential properties we

observed in our simulations, as well as detailed descriptions about how qualitative aspects

of the lava solidification dynamics change with the emplacement time interval temp and

lobe height h. Finally, we provide captions for three movies which correspond to the three

cases featured in Figure 1.

Text S1. Formulation of parameters

Rewriting the parameters in (Kim & Kim, 2005) in terms of the parameters in our

model, we have that ω = H, Mφ = M , ε = εφ, DT = α, ∆Hm = L, g (φ) = φ2 (1− φ)2,

fc = 0, and fφ (φ, T ) = (T−Tm)L
Tm

P ′ (φ), where P (φ) = (3− 2φ)φ2. Then, from here, we go

through the same derivations in (Kim & Kim, 2005) to derive the interface width d = 2ξ

and the interface energy σ.

Consider a partially-solidified lava system at equilibrium where we have a 1D interface

between solid φ = 1 at x = d and liquid φ = 0 at x = 0. Since this system is at equilibrium

and we assume the equal temperature condition for pure substances, ∂tφ = ∂tT = 0 and

T = Tm, such that equation (1) from the main paper (the PDE for the phase, φ) can be

integrated for the equilibrium phase-field profile φ0(x).

ω2
φ∂

2
xφ0 − g′ (φ0)− L

H

(Tm − Tm)

Tm
P ′ (φ0) = 0⇒ ω2

φ∂xφ0∂
2
xφ0 − ∂xφ0g

′ (φ0) = 0

⇒ d

dx

[
1

2
ω2
φ (∂xφ0)2 − g (φ0)

]
= 0⇒ 1

2
ω2
φ (∂xφ0)2 − g (φ0) = const., (1)

where we assume that ωφ is a constant and const. = 1
2
ω2
φ (∂xφ0 (x0))2− g (φ0 (x0)) at some

reference position x0. Finally, without loss of generality, we can let x0 = 0 and put a
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Dirichlet boundary condition here (we would expect one anyways if the lava is fully liquid

there), such that g (φ0 (x0)) = g (φ0 (0)) = g (0) = 0 and ∂xφ0 (x0) = ∂xφ0 (0) = 0. Hence,

const. = 0 in (1), in which case we can integrate (1):

1

2
ω2
φ (∂xφ0)2 = g (φ0)⇒ ∂φ0

∂x
=

√
2

ω2
φ

g (φ0)

⇒ d =

∫ φb

φa

dφ0√
2
ω2
φ
g (φ0)

=
ωφ√

2

∫ φb

φa

dφ0

|φ0| |1− φ0|
. (2)

As in Kim and Kim, we use φa = 0.1 and φb = 0.9 to integrate (2), from which we get

that

d = ωφ2
√

2 ln 3, (3)

which is essentially the same result derived in (Kim & Kim, 2005).

Next, to obtain the interface energy, we again repeat the steps in (Kim & Kim, 2005)

by considering an equilibrium system with a cylindrical solid in liquid matrix while main-

taining a diffuse interface between them. This gives us the following:

σ = ε2
φ

∫ ∞
−∞

(
dφ0

dr

)2

dr =
√

2εφ

∫ 1

0

√
Hg (φ0)dφ0

=
√

2εφ
√
H

∫ 1

0

|φ0| |1− φ0|dφ0 =
εφ
3

√
H

2
. (4)

Making necessary assumptions in the thin interface limit, equation (22) from (Kim &

Kim, 2005) gives us that

J =

∫ 1

0

hp (φ) [1− hd (φ)]√
g (φ)

dφ

=

∫ 1

0

φ3 (6φ2 − 15φ+ 10) [1− φ3 (6φ2 − 15φ+ 10)]

|φ| |1− φ|
dφ =

209

420
. (5)

Thus, using (5), equation (21) in Kim and Kim implies that

β =
1

3
√

2

Tm
√
H

εφLM
− L

αcp

εφ√
2H

J =
1

3
√

2

Tm
√
H

εφLM
− 209

420

L

αcp

εφ√
2H

. (6)
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Our only unknown parameter is ωφ ∼ d, which we have to adjust as we run simulations

to match known solidification data, but once given ωφ and d, we can derive H, τ , and εφ.

Therefore, our parameter search is only one-dimensional, since once we choose a value of

d or ωφ, all other parameters can be immediately determined.

Using equations ωφ = εφ/
√
H and τ = 1/(HM) from (Provatas & Elder, 2010) along

with (3), (4), and (6) above, we can rewrite all unmeasured parameters in terms of mea-

surable quantities and d as follows:

ωφ =

√
2

4 ln 3
d, H = 12 ln 3

σ

d
, τ =

1

8 ln2 3

d2L

σTm

(
β +

209

1680 ln 3

dL

αcp

)
. (7)

Using the sample parameters from Table 1 in the main paper, the last two equations in

(7) become

H ≈ 6.592

d
J m−2, τ ≈ 2.899× 106d3 s m−3 + 3.454× 10−6d2 s m−2. (8)

Even if the solid-liquid interface width were microscopic, i.e., d ∼ 10−9 m, the second

equation in (8) would still imply that 3.454× 10−6d2 s m−2 � 2.899× 106d3 s m−3, since

in that case, 3.454×10−6d2 s m−2

2.899×106d3 s m−3 ∼ 10−3. Thus, we can further make the simplification

τ ≈ 2.899 × 106d3 s m−3, and in general, for parameters similar to basalt lava, the third

equation in (7) can be simplified to

τ =
209

13440 ln3 3

d3L2

αcpσTm
. (9)

Finally, by the above considerations and equations, we can also derive the following

informative scaling properties:

ωφ ∼ d, H ∼ σ

d
, τ ∼ d3L2

αcpσTm
, M ∼ αcpTm

d2L2
, εφ ∼

√
σ
√
d. (10)
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The scaling relationships in (10) provide a physical interpretation of these variables, as

well as simple sanity-checks of the validity of the assumptions we made for a given choice

of parameters. And as mentioned in (Kim & Kim, 2005), (10) should in theory hold as

long as d � α/V and d � R, where V and R are the velocity of the solidification front

and the local radius of curvature for the solid-liquid interface, respectively.

Text S2. Definition of relative L2 error

Say we have n data points in space. Suppose that f (x) is our exact function and f̂ (x)

is an approximation for f . Then, the exact L2 error on [0, L] would be

e =

[∫ L

0

(
f (x)− f̂ (x)

)2

dx

]1/2

.

However, given that f̂ lives on a grid with n points and spatial intervals of size ∆x, we

have to approximate e as follows, using a Riemann sum:

e ≈

[
∆x

n∑
i=1

(
f (xi)− f̂ (xi)

)2
]1/2

,

where xn = L and x1 = ∆x. Finally, to compute the relative L2 error, erel, we divide e by

the L2 norm of f , i.e.,

erel ≈

[
∆x
∑n

i=1

(
f (xi)− f̂ (xi)

)2
]1/2

[
∆x
∑n

i=1 f (xi)
2]1/2 =


∑n

i=1

(
f (xi)− f̂ (xi)

)2

∑n
i=1 f (xi)

2


1/2

.
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Text S3. Spatial grid size ∆x

The spatial grid size we use is

∆x = 10−3 min
{

nint
(√

10h
)
, 10
}
, (11)

where nint is the function which rounds its argument to the nearest integer. Intuitively,

we can think of Equation 11 as interpolating ∆x from 10−3 (for h = 0.1, 0.2) to 10−2 (for

h = 10, 15, 20) using the square root function, except rounding each value to the third

decimal place for simplicity’s sake. That way, ∆x roughly scales with h, which balances

computational efficiency with numerical precision.

Figure S2 Caption. Using nonlinear least squares, we fit the solidification data for a

single lobe cooling by itself to the function

th =
h2

α

[
A

hB
+ C exp (−Dh) + E

]
(12)

which heuristically models the nonlinear trend after the conventional cooling estimate

th ∼ h2 derived from solving the Stefan problem. The best fit parameters we find are

A ≈ 0.0110, B ≈ 0.2294, C ≈ 0.3346, D ≈ 24.8922, and E ≈ 0.0320. With these

parameters, the relative L2 error (as defined in Text S2) between thα/h
2 as fitted above and

the actual data is ≈ 9.8237×10−3 < 1%, which shows very respectable agreement. Hence,

(12) could be a starting point for modeling th with more general physical parameters and

initial conditions.

By using the term “strong nonlinearity” in Figure S2, we are referring to how there is

a qualitative difference in the curve for small enough lobe sizes. This difference is best

explained by the quick decay of the exponential term in our curve fit: For h not too large,

the exponential term quickly disappears and the trend becomes primarily dominated by
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the power law term. Hence, motivated by how the relative L2 error between our best-

fit curve and numerical solution is just under 1%, we heuristically have drawn the line

between the “strongly nonlinear” and “weakly nonlinear” regions by indicating where the

relative error between the fit with and without the exponential term falls below 1%. That

point is at roughly h = 0.26344, after which the exponential term contributes an error

which is below 1% and decreases further as h increases.

We label these two regions in Figure S2 to give a rough estimate of where the usual

th ∼ h2 scaling relationships are relatively valid, and show how for small enough lobe sizes,

deviations from this trend begin to dominate significantly. The physical interpretation

of these regions is as follows: As we work with smaller and smaller lobes, the nonlinear

effects of convection cooling and radiative heat loss at the lava surface begin to dominate

the time it takes for a lobe of that size to cool. The usual Stefan problem formulation

often ignores these nonlinear effects in the boundary condition at the lava-air interface,

but based off of our results here, we suggest that these will contribute a non-negligible

effect to the solution when the lobe size is too small.

Notes for Figures S3-S7. For Figures S3-S7, we will consider the trends between differ-

ent lobe thicknesses once we weight the emplacement time by th. For every dimensionless

plot, the stars (*) represent merged cases, the crosses (×) represent in parallel cases, and

the pluses (+) represent in sequence cases.

Movie S1. Under the folder movies in the GitHub data repository, emplacementresults_10_10_843K_406hours.mp4

is a movie showing the solidification dynamics for the fused flow case shown in Figure 1.
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Movie S2. Under the folder movies, emplacementresults_10_10_843K_3250hours.mp4

is a movie showing the solidification dynamics for the in parallel case shown in Figure 1.

Movie S3. Under the folder movies, emplacementresults_10_10_843K_26000hours.mp4

is a movie showing the solidification dynamics for the in sequence case shown in Figure 1.
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Figure S1. The open red circles track how our simulated solidified crust thickness vs. time

varies with the interface width d, while the stars mark known field data measured from Makaopuhi

lava lake (Wright & Okamura, 1977; Wright et al., 1972; Wright & Marsh, 2016). All other

physical parameters that we used are given in Table 1, with initial conditions consisting of a lava

lake of arbitrarily large depth and initial temperature given according to (Wright & Okamura,

1977; Wright et al., 1972; Wright & Marsh, 2016). For the four cases we tested above, we observed

virtually the same, consistent agreement between our simulation and the measured data. Hence,

for simplicity’s sake, we took d = 1 in our simulations, whence our values for τ , ω2
φ, and H in

Table 1 follow.
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Figure S2. The caption was too large to be included here, and hence is contained in the text.
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Figure S3. (Compare with Figure S4.) The dimensionless log-log plot above shows the

solidification time including the time between emplacement, tsolidification, as a function of the

emplacement time interval, temp, with both axes scaled by th. Note in particular that the graph

at any lobe size has a minimum near or slightly below temp = th. This minimum reflects some

optimal balance between the emplacement time and the thermal/phase interaction between the

two lobes which minimizes the solidification time across the domain. This optimal balance lies

within the in parallel region.
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Figure S4. The above plot highlights an alternate interpretation of the solidification time in

which we neglect the time between emplacements. On either plot, we note that as temp → 0,

tsolidification → 4th. This reflects how, since th ∼ h2, t2h ∼ (2h)2 = 4h2. Meanwhile, in comparison

to Figure S3, this plot better demonstrates how as temp →∞, tsolidification → th + temp.
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Figure S5. The above plot only considers the time for the first lobe to solidify vs. temp/th,

thereby highlighting the thermal influence of the upper lobe upon how the lower lobe solidifies

relative to th. As expected, tsolidification → th when temp → ∞. Physically, we can interpret this

result as follows: If the lower lobe has fully solidified before the upper lobe is emplaced, then the

upper lobe will have no influence on the solidification of the lower lobe.
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Figure S6. This plot indicates the height, scaled to the lobe size, at which solidification

completed across the entire two-lobe system vs. temp/th. This variable is significant because

horizontal fractures often form wherever solidification completes in a lava lobe, i.e., where two

solidifying fronts meet. Note in particular that the smaller lobe sizes appear to have greater

solidification heights in the merged and in sequence regions, while the opposite behavior is ob-

served for the in parallel region. The quantitative differences in behavior across different lobe

sizes appears to be greatest for the in parallel region, which we also see in Figure S7.
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Figure S7. This plot is the same as Figure S6, except that this plot measures solidification

in the first lobe only, i.e., where the first lobe solidified. Note that for a given height, the graph

appears to increase during the fused region, decrease sharply during the in parallel region, and

then finally level out during the in sequence region. The trend in the in parallel region appears

to be sharper the smaller the lobe size is, which indicates how the thermal influence of the upper

lobe on the lower lobe increases as the lobe size decreases, assuming that the lobes do not just

merge entirely. As with Figure S6, the greatest disparity in dynamics across different lobe sizes

seems to be greatest for the in parallel region.
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