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Abstract19

Diagnosing land-atmosphere fluxes of carbon-dioxide (CO2) and methane (CH4), is es-20

sential for evaluating carbon-climate feedbacks. Greenhouse gas satellite missions aim21

to fill data gaps in regions like the humid tropics, but obtain very few valid measurements22

due to cloud contamination. We examined data yields from the Orbiting Carbon Ob-23

servatory alongside Sentinel 2 cloud statistics. We find that the main contribution to low24

data yields are frequent shallow cumulus clouds. In the Amazon, the success rate in ob-25

taining valid measurements vary from 0.1% to 1.0%. By far the lowest yields occur in26

the wet season, consistent with Sentinel 2 cloud patterns. We find that increasing the27

spatial resolution of observations to ∼200m would increase yields by 2-3 orders of mag-28

nitude, and allow regular measurements in the wet season. Thus, the key effective trop-29

ical greenhouse gas observations lies in regularly acquiring high-spatial resolution data,30

rather than more frequent low-resolution measurements.31

Plain Language Summary32

Our research looks at how well satellites are able to observe greenhouse gases such33

as carbon dioxide and methane in tropical areas, which is important for understanding34

climate change. We find that these satellites often cannot make good measurements in35

places like the Amazon rainforest due to clouds. By using space-based instruments that36

can peek in between clouds (requiring about 200-300 meters spatial resolution), we would37

get much more frequent information, even during the rainy season. Our study shows that38

it’s better to have high-spatial resolution, detailed satellite data regularly rather than39

more frequent lower resolution observations that do not yield usable measurements.40

1 Introduction41

While in situ measurements of greenhouse gases provide the most accurate bench-42

mark (Komhyr et al., 1985; Andrews et al., 2014), they cannot provide spatially dense43

global coverage. Remotely sensed observations can’t match the accuracy of in-situ mea-44

surements; however they offer the potential to provide dense spatial coverage, especially45

in regions where in situ measurements are limited. In the tropics, space-based measure-46

ments could enable substantial knowledge gains, as the tropics are not only sparsely sam-47

pled by in situ observations but also essential to global carbon budgets.48
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The tropics are, however, much more cloudy, and these clouds obscure the view from49

space. In passive optical remote sensing of Earth’s atmosphere and surface, clouds shield50

the lower atmosphere and affect photon path-length distributions, greatly complicating51

the retrieval of greenhouse gas concentrations. This issue is particularly challenging due52

to the stringent accuracy and precision requirements for greenhouse gas observations (Miller53

et al., 2007; Merrelli et al., 2015). Consequently, rigorous cloud filtering is necessary, al-54

beit at the cost of reducing the fraction of usable observations. Understanding the trade-55

off between cloud filtering and data usability is vital for assessing the scientific value of56

space-borne missions.57

To alleviate the impact of clouds, the Orbiting Carbon Observatory (Crisp et al.,58

2004) utilises a pushbroom technique featuring a narrow cross-track swath width of 10 km59

and a spatial resolution of 1.29 km cross-track and 2.25 km along-track, which is finest60

resolution among existing missions targeted at atmospheric greenhouse gases. While this61

fine resolution was chosen to provide sufficient data even in the tropics, data yield pre-62

dictions were based on cloud climatologies (Rayner et al., 2002) based on AVHRR data63

(James & Kalluri, 1994) aggregated to coarser scales (Stowe et al., 1999), and ignored64

3D effects in the vicinity of clouds (Massie et al., 2017, 2022). The impact of small clouds65

ranging from tens to a few hundred meters was thus not fully captured.66

Here, we revisit the impact of clouds on GHG remote sensing by quantifying long-67

term OCO-2 data yields. These findings are compared against cloud-free probabilities68

computed from 4 years of Sentinel 2 cloud data at 10m resolution. This comparison helps69

us explore ways to improve the disappointing data collection from tropical regions in cur-70

rent satellite missions in the design of the next generation of satellites focused on space-71

based observations of greenhouse gases.72

2 Materials and Methods73

To assess the impact of clouds on greenhouse gas (GHG) remote sensing, we uti-74

lize data from the OCO-2 and OCO-3 missions (Wunch et al., 2017; Taylor et al., 2020)75

for actual GHG measurements and Sentinel 2 for cloud observations (Tarrio et al., 2020).76

OCO-2 and Sentinel 2 are on sun-synchronous orbits with an overpass time around 1:30pm77

and 10:30am, respectively. OCO-3 is hosted on the ISS with a precessing orbit, thus over-78

pass times vary, enabling measurements from early morning to late afternoon (see Text79
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and Figure S2). We find that overpass times matter somewhat, as OCO-3 data yields80

at the Sentinel 2 overpass time are almost a factor two higher than for the OCO-2 over-81

pass time. Thus, the time-of-day explains some of the discrepancies between Sentinel 282

statistics and OCO-2 observed data yields noted below.83

We analyze OCO-2 (v11r) and OCO-3 (v10r) data to determine the number of high84

quality GHG measurements, applying the ’xco2 quality flag = 0’ for accuracy. We cal-85

culate total number of measurement counts using the OCO-2’s L1b files which provide86

a total count of the number of observations downlinked from the spacecraft. For global87

spatially-resolved data yields, we use the ratio of high quality (passing the quality fil-88

ter) to total measurements.89

Cloud statistics at coarse scales, such as those provided by MODIS, are insufficient90

for our analysis. Even small cloud fractions within a greenhouse gas measurement’s foot-91

print can significantly impact data quality, and are often missed by cloud climatologies.92

One reason for this is the stark surface albedo contrast between the O2 A-band (about93

0.4-0.5 at 760 nm) and the GHG bands (as low as 0.05 at 1.6 or 2.3µm). Thus, a cloud94

with an albedo of 0.5 covering only 1% of a footprint can contribute 10% of the signal95

to the GHG bands but only 1% in the reference oxygen band. If this cloud shields 10%96

of the column (about 1 km cloud height), it can cause a low bias of 1% in retrieved gas97

concentrations. Thus, requiring a < ppm bias might require screening of scenes with <98

0.2% fractional cloud cover. This drives our stringent 0.2% cloud fraction thresholds in99

the tropics.100

To study the impact of clouds on OCO-2, we thus have to obtain cloud statistics101

at a much finer resolution than OCO-2’s footprint. In the tropics, frequent shallow cu-102

mulus clouds are often linked to forest surface fluxes (Heiblum et al., 2014), are spatially103

organized and have cloud gaps that are smaller than 1 km in scale. Sentinel 2, with its104

frequent revisits and 10m resolution (Drusch et al., 2012), is uniquely suited for this task.105

It enables us to accurately calculate the likelihood of obtaining cloud-free measurements.106

In our analysis, a ’cloud free’ pixel is one where less than 0.2% of the footprint area is107

covered by clouds or cloud shadows. We employ the Cloud Score+ product (Pasquarella108

et al., 2023) based on Sentinel 2 data, using a threshold of 0.65 to identify cloud-free pix-109

els. The analysis is performed using Google Earth Engine, focusing on specific latitude110

and longitude ranges and using square-sized convolution kernels to vary spatial resolu-111
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tions. Within each 1°x1°degree area, we compute the fraction of pixels passing our cloud112

filter threshold at a given footprint size for each individual Sentinel-2 image, which are113

acquired every five days. All individual cloud-free fractions per image are then used to114

compute probability distributions of cloud-fractions within a certain domain and time-115

period.116

3 Results117

A

B CJJA DJF

Figure 1. A) The data yield from OCO-2 within 1°x1° boxes from 2018 through 2022 on

a logarithmic scale. Bottom row: Seasonal average for June/July/August (B) and Decem-

ber/January/February (C). The data yields vary by three orders of magnitude, with by far

the lowest over areas with tropical rainforests.

Figure 1 illustrates the stark geographic variation in OCO-2 data yield based on118

four years of data, revealing significant disparities spanning three orders of magnitude.119

In humid tropical areas, data yield frequently falls below 1%, especially during the wet120

season. Conversely, most other global regions consistently show yields above 5%, apart121
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from some spurious regions in the Sahara, which don’t pass the OCO-2 quality flag for122

unrelated reasons, likely due to brightness threshold used in OCO-2 filtering. On sea-123

sonal time-scales the largest changes are due to varying solar zenith angles at high lat-124

itudes and movement of the ITCZ in the tropics.125

Other peculiar patterns appear over the oceans, as orbit tracks that are predom-126

inantly over the oceans are almost exclusively performed in the glint observation mode,127

which has much higher data yields over dark oceans. OCO-2’s orbits have a repeat cy-128

cle of 16 days, which means that a location with a 0.2% data yield would essentially never129

be observed (i.e., less than once every 20 years). This represents a dramatic discrepancy130

between potential and actual revisit times in the humid tropics. While OCO-2 can the-131

oretically monitor tropical fluxes (Liu et al., 2017), the reliance on measurements from132

data-rich surrounding areas and from rare clear-sky conditions can introduce systematic133

biases when attempting to infer carbon fluxes with inverse analyses.134

For the TROPOMI methane product (Hu et al., 2016), similar reductions in data135

yields have been observed, spanning more than three orders of magnitude (Qu et al., 2021).136

TROPOMI’s larger footprint of 5-7 km allows a wide swath and daily revisit times, but137

might at the same time explain the even lower data yields. Thus, OCO-2 and TROPOMI138

data yields raise questions about the effectiveness of frequent km-scale resolution obser-139

vations in data-sparse tropical regions.140

The humid tropics show the worst data yields but are arguably the most impor-141

tant place for observing the global carbon cycle, as they have the highest above-ground142

carbon stocks (Santoro et al., 2020) and natural methane emissions (Saunois et al., 2020).143

To obtain more reliable flux estimates across major tropical areas and, more importantly,144

to capture spatial variations within the heterogeneous major tropical basins, higher data145

density both spatially and temporally is key. Towards that goal, we have to evaluate why146

the current missions have such low data yields and how we can mitigate this shortcom-147

ing.148

To quantify the role of clouds on data yields, we derive probabilities of cloud-free149

satellite footprints at varying footprint resolutions using Sentinel-2 data. Due to com-150

putational demands, we focused on the tropics, the areas with the lowest data yields in151

OCO-2, OCO-3, TROPOMI, and GOSAT (Yokota et al., 2009).152
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Figure 2. OCO-2 data yields and Sentinel-2 cloud statistics in South America. The rows

show seasonal variations individually averaged over three months, while the columns show the

mean OCO-2 data yield, the mean and median cloud free fraction at a spatial footprint of 2 km,

and the ratio of the median and 75-percentile cloud-free fraction for a spatial footprint of 200m

vs. 2000m.

Figure 2 shows the seasonal variations of OCO-2 data yields and Sentinel-2 cloud153

statistics in the Amazon region (see SOM for other areas). There are strong spatial and154

temporal commonalities between the OCO-2 data yields and the cloud statistics, con-155

firming that clouds are a major contributor to yield reductions. A striking feature is the156

difference between the mean and median of cloud-free probabilities for a 2 km pixel size.157

This is especially true within the Amazon basin, where the mean can be more than an158

order of magnitude higher than the median. A 200m resolution would increase the me-159

dian of the cloud-free likelihoods by 2-3 orders of magnitude compared to 2 km pixels.160

The 75 percentile would increase by 1-2 orders of magnitude. Overall, it appears that161

OCO-2 obtains fewer valid measurements than we would expect just on the basis of clouds,162

missing out on the occasional cloud-free scenes that contribute dis-proportionally to the163

mean. It may be related to the challenge that tropical rainforests are much darker in the164

CO2 bands at 1.6 and 2µm. For instance, there are large areas below 5 degrees south165
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in June/July/August, with relatively cloud-free conditions yet unexpectedly low OCO-166

2 data yields, warranting further investigations into the filter criteria employed by the167

OCO missions. In general, the OCO-2 yields are often more similar to the median of our168

cloud statistics. While time-of-day of our cloud statistics (10:30am) vs. OCO-2 (1:30pm)169

might be a reason for worse yields in OCO-2, it does not fully explain the discrepancies170

(see Text and Figure S2).171
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Figure 3. Frequency distribution of the fraction of cloud-free scenes for the dry (left, July

through September) and wet (right, December through May) season within the Amazon (70W-

60W; 2S-2N)]. Note the scale break at 2 km. The distribution on a log-scale as a function of

footprint size is shown color-coded on the top row, with the percentiles (median as thick line,

including 10th percentile steps with decreasing thickness) and the mean shown as lines. Towards

larger footprints, the distribution gets more skewed, especially during the wet season, where the

mean and 90th percentile lines intersect at around 5 km footprint size. The bottom row shows

the fraction of scenes that had less than 0.1% cloud free pixels, reaching 80% in the wet season at

a pixel size of 7.5 km.

A peculiar feature in the Amazon is the extreme skewness of cloud free likelihood172

distributions, while the mean and median are closer to each other outside the Amazon173

basin, and when yields are higher in general. The much higher mean indicates that a few174
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large-scale cloud-free events contribute disproportionately to overall data yields. The me-175

dian, however, is more indicative in how likely each satellite overpass is of exceeding a176

cloud-free fraction, i.e. there is a 50% chance of observing a higher cloud free fraction177

than the median.178

In Figure 3, we show the probability distribution of obtaining cloud free pixels (on179

a logarithmic scale) as a function of footprint size in the dry and wet season, respectively.180

In the dry season, there is a probability peak at high cloud-free fractions, consistent across181

all footprint sizes. In the wet season, the peak at large cloud-free fractions diminishes182

and a peak around 5-30% likelihoods appears at smaller footprints, moving towards 0.5%183

at 2 km footprint size. The median drops by two orders of magnitude moving 30m to184

2 km footprints. In both seasons, the mean and median diverge with footprint size. In185

the wet season, the mean intersects the 90th percentile at 5 km footprint size, underlin-186

ing that rare events dominate the mean with increasing pixel size. Also, there are a few187

scenes available with very high cloud free fractions, likely caused by large-scale subsi-188

dence. These few scenes contribute substantially to the mean data yield, which decays189

much less with footprint size than the median or the percentiles. In addition, some of190

the regions where the ratio in the median and 75%ile is not as enhanced in the middle191

of the Amazon in Figure 2 are associated with rivers or open water, which can cause large-192

scale subsidence and cloud-free scenes but which are dark in the nadir observation ge-193

ometry. Thus, some of these scenes might be filtered out in OCO-2 because of the lack194

of reflected light from open water surfaces.195

In principle, we can leverage the finding that smaller footprint sizes can dramat-196

ically increase the fraction of cloud free pixels. However, smaller pixels will be more noisy197

and limit the theoretical revisit time in the absence of clouds, as it is harder to feature198

a wide swath while having small pixels. As long as measurements are photon shot noise199

limited, however, the noisiness of individual pixels is less of a concern, as we can aggre-200

gate valid pixels. In this case, aggregating valid smaller pixels within a larger domain201

to cover an integrated surface area of 2x2 km2 will have the same precision as one sin-202

gle cloud-free measurement at 2x2 km2 footprint size within that larger domain. In the203

case of shallow cumulus cloud fields, many small pixels within cloud gaps can be aggre-204

gated while almost all large-footprint measurements will have failed due to fractional cloud205

cover. Thus, the increase in data yield with footprint size strongly depends on the spa-206
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tial scales of clouds and gaps in between, which can be highly structured in tropical forests207

(Heiblum et al., 2014).208

Thus, a hypothetical instrument that averages measurements over a given surface209

area will have the same precision irrespective of footprint size. If we define a threshold210

for the cloud free fraction that enables enough measurements within a larger geographic211

domain, we can derive how often and how evenly spaced in time an area will be observed212

depending on the footprint size. Here, we chose a 2% cloud fraction cutoff, which is equiv-213

alent to a single 2000m footprint pixel within a 20x10 km2 domain.214

A

B C

Longest data-free periods

Figure 4. A) Time series of the cloud-free fraction of individual Sentinel-2 images (every 5

days) for a 200m and 2000m footprint resolution. Dots mark scenes that exceed the 2% thresh-

old and the bars outline the longest three periods without any valid data acquisitions passing

this threshold. B) Map of the average of the three longest data-free periods at 2000m footprint

size (in days). C) as B) but for 200m footprints, 5-10 times shorter than for 2000m. At smaller

footprint sizes, more data is acquired over and spaced over more regular time intervals, even in

the wet season.

–10–



manuscript submitted to Geophysical Research Letters

The skewness in the cloud statistics already hinted at the fact that rare events dom-215

inate the mean at coarser spatial resolutions, while most observations have much lower216

cloud free scenes. This should increase the time-period in between useful measurements.217

Figure 4 shows a time-series of cloud free fractions computed from individual Sentinel-218

2 images within a 1x1 degree area in the Amazon. The very skewed distribution at 2000m219

footprint size can be observed: Most scenes are below the 2% cutoff and many that pass220

the threshold have very high cloud free fractions, indicating the absence of broken cloud221

fields. At 200m footprint size, the distribution of the cloud-free fraction is more evenly222

distributed and no long periods devoid of any useful measurements exist. Panels B-C223

show the average length (in days) of the three longest data-free periods at 2000m and224

200m resolution, respectively. The data free periods (at 2000m) exceed 150 days in many225

regions within the Amazon, even if sampled every 5 days as Sentinel 2 does. Thus, it ap-226

pears unlikely that even daily revisit times in the Amazon at coarse spatial resolution227

would provide shorter data-free periods. Somewhat contrary to intuition, the key to ob-228

serving the humid tropics more frequently is thus not to have more frequent measure-229

ments but to have finer spatial resolution (see also Fig. S3 for the trade-off between re-230

visit times and footprint sizes). Given the importance of the tropics for GHG fluxes and231

the currently poor revisit times for valid measurements in these regions, prioritizing high232

resolution greenhouse gas measurements is needed.233

4 Discussion and Conclusions234

To minimize the impact of prior assumptions on estimation of GHG fluxes, inverse235

methods require dense measurements in both space and time. In the tropics, in situ ob-236

servations are very sparse and provide motivation for using remote sensing from space237

to fill in the gaps. To date, however, GHG missions have had little success in observing238

CO2 and CH4 above tropical forests, with the fraction of valid retrievals varying over239

space and time and being as low as 0.1% during the wet season.240

Using Sentinel 2 data at 10m resolution, we illustrate that the Achilles heel of trop-241

ical remote sensing of GHGs is clouds. For example, at the footprint size of OCO-2, we242

find that the likelihood of obtaining a cloud-free satellite footprint is low and the dis-243

tribution of likelihoods is highly skewed. Generally, both large-scale cloud systems or shallow-244

cumulus cloud fields reduce the likelihood of observing cloud-free scenes by several or-245

ders of magnitude, such that most satellite orbits passing the humid tropics yield almost246
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no measurements. Periodically, however, the observations coincide with large-scale sub-247

sidence, suppressing clouds and contributing most of the valid measurements; this, in turn,248

might bias the flux inversion. Thus, mean data yields can hide the fact that there can249

be prolonged data-free periods.250

The choice of equator crossing time also plays a role in limiting data. While con-251

vective systems and their associated clouds typically follow solar heating – increasing in252

the late morning and peaking in the early to late afternoon, our analysis with time-of-253

day resolved statistics from the OCO-3 mission, suggests maximum data yield just be-254

fore mid-day likely because the lower solar zenith angle reduces the spatial domain through255

which the direct light-path traverses and lowers the amount of shading in between the256

clouds (Text and Figure S2).257

What spatial resolution is ideal for measurements in the tropics? Even though data258

yields improve with smaller pixel size, the revisit time increases, thereby offsetting some259

of the benefit of the high spatial resolution. We find that footprint sizes around 200-400m,260

can optimize coverage and revisit times, potentially solving the data-drought problem261

in the humid tropics (Figure and Text S3).262

To improve greenhouse gas remote sensing in the tropics in the future, we need dra-263

matically increase the amount of measurements that are not impacted by clouds. Thus,264

we need either more cloud-free observations or use algorithms that are less sensitive to265

fractional cloud cover. For cloud-avoidance, better spatial and temporal sampling requires266

much better spatial resolution than currently available. How can we leverage that find-267

ing? Obtaining high spatial and spectral resolution using passive spectroscopy is diffi-268

cult, but recent studies have shown that very high spectral resolution is not necessar-269

ily required (Cusworth et al., 2019; Jongaramrungruang et al., 2021; Wilzewski et al.,270

2020; Galli et al., 2013). In terms of algorithm choices, a major complication for the op-271

erational OCO-2 retrievals is that the contrast between cloud and surface albedo within272

the O2 A-band and the CO2 bands is very different. As the radiative transfer forward273

model requires horizontal homogeneity, sub-pixel clouds violate that requirement and274

can thus be very sensitive to fractional clouds, as the relative contribution from clouds275

to back-scattered light will be much higher in the CO2 bands. For complex retrieval meth-276

ods that rely on a separate oxygen band to constrain the light-path distribution, this can277

be critical. Methods that can use a proxy gas for light path referencing within the same278
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—or nearby— wavelength window as the target gas of interest avoid that problem. Thus,279

these methods are less sensitive to clouds and can make use of simpler radiative trans-280

fer schemes. Such a proxy retrieval has been successfully implemented with SCIAMACHY,281

which measured at 1.35 nm FWHM (Frankenberg et al., 2005) and yields results com-282

parable to more complex algorithms (Schepers et al., 2012). Similarly, a proxy retrieval283

substantially increased data yields in the tropics for the GOSAT mission (Parker et al.,284

2020) as cloud filters could be relaxed. However, these methods so far rely on CO2 mea-285

surements as a proxy gas; thus, a different proxy gas would be required to constrain CO2286

itself. N2O could be a viable alternative as it varies much less in the troposphere than287

either CH4 and CO2 and has absorption features in the vicinity of the strong CO2 and288

CH4 bands within the 2-2.4µm range. Active systems with small footprint are also pos-289

sible, especially as they observe in a true nadir geometry, both for illumination and re-290

ceiver, eliminating cloud shadows and maintaining a constant viewing geometry across291

the globe. Lidar observations thus provide another path forward, as the laser pulses typ-292

ically have footprints of less than 100m, thus also being able to observe in between clouds293

or over fully cloudy pixels, as this fine spatial resolution greatly reduces horizontal het-294

erogeneity in both surface and cloud properties (Ramanathan et al., 2015; Ehret et al.,295

2017; Mao et al., 2018). In essence, small ground pixels are key for solving the data drought296

in the humid tropics. They offer the additional advantage of observing stronger spatial297

concentration gradients in greenhouse gases, which improves flux inversions.298

5 Open Research299

5.1 Data Availability Statement300

All datasets used in this manuscript are publicly available and archived either through301

NASA data centers or Google Earth Engine. OCO-2 and OCO-3 XCO2 lite files are avail-302

able from the DAAC archive (OCO-2/OCO-3 Science Team, Payne, & Chatterjee, 2022;303

OCO-2/OCO-3 Science Team, Chatterjee, & Payne, 2022). OCO-2 and OCO-3 L1b files304

are are available from the same DAAC (OCO-2 Science Team et al., 2022, 2022). Cloud305

identification data based on Sentinel 2 are obtained through the Cloud Score+ product306

(Pasquarella et al., 2023), publicly available as Image collection at https://developers307

.google.com/earth-engine/datasets/catalog/GOOGLE CLOUD SCORE PLUS V1 S2 HARMONIZED.308
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