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INTRODUCTION. The Main Himalayan Thrust (MHT) is a pervasive décollement
that separates the down-going Indian plate from the Himalayan orogenic wedge (Fig.
1). The structure is responsible for a significant component of the present-day seis-
micity of the Himalayan range and is considered one the largest and fastest slipping
continental megathrusts on Earth. Understanding the geometry and history of the
development of the MHT and the large-scale fault systems that splay into the struc-
ture has implications for assessing and predicting the hazard impacts of major event
Himalayan earthquakes, including their initiation, propagation, and termination.
However, the MHT has an uncertain topography.
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Figure 1. Balanced, deformed-state, cross-section through the eastern Himalaya at about longitude 87.3°E (Schelling and Arita, 1991) connected to
a seismic reflection profile (Zhao et al., 1993). The section illustrates the juxtaposition of tectonostratigraphic units across the major Himalayan faults
and interprets the Lesser Himalaya as a hinterland-dipping duplex. The low-velocity layer and hypocenter of the Mw7.8 Gorkha earthquake (red circle)
and some larger aftershocks (black circles) are also plotted after Arora et al. (2017). We include the GCMT and USGS solutions of the Gorkha earth-
guake hypocenters and its aftershocks. The locations of the hypocenters for both datasets agree, except for two of the earthquakes selected by Arora
et al. (2017).

The 2015 April 25th Mw 7.8 Gorkha earthquake in central Nepal called attention to the
problem regarding the subsurface geometry of the MHT. Most attribute the main shock
to reverse fault displacement along the MHT. Still, the Gorkha earthquake, or at least
some of its aftershocks, may have nucleated above the MHT within the Lesser Himalaya
Formation (LHF) duplex system. An aftershock of the Gorkha earthquake lies along the
Main Central Thrust (MCT). The idea of a presently seismogenic MCT and the potential
for activity within the duplex has been proposed several years before the Gorkha event
based on focal plane solutions for earthquake events in western Nepal and India. Alter-
natively, the shallower events are explained by a segmented MHT that includes a ramp.
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Figure 2. Young monazite ages from rocks collected from
the Main Central Thrust shear zone. (Upper) Marsyandi
River Transect (Catlos et al., 2001; 2018) and (lower)
Bhagirathi River transect (Catlos et al., 2007). See Figure
3 for sample locations.

The ability exists now to generate high-resolution P-T paths from garnet-bearing rocks
from within the LHF duplex system to understand how rocks within the MCT zone grew
due to changes in their environmental conditions. However, the applicability of the
garnet-based paths to deciphering the present-day dynamics and possible architecture
of the LHF duplex system requires that the geometric constraints of Himalayan architec-
ture remained constant over the last few million years. Because Pliocene-age and
younger monazite (REEThPO4) grains exist within the MCT shear zone in central Nepal
and NW India (1-4 Ma, Fig. 2), these locations may be helpful in lending insight into the
present-day framework and dynamics of the Himalayas.

METHODS. We report high-resolution garnet P-T paths and new monazite ages from both the hanging wall and

footwall of the MCT from along the Bhagirathi River in NW India and Marysandi River in central Nepal (Fig. 2). The
Bhagirathi River region experienced an Mw 6.8 earthquake in 1991 (Uttarkashi earthquake, 21:23:14, 30.7800°
78.774°, USQGS). Like the Gorkha earthquake, the reported hypocenter depth varies (10, 10.3, 12, 15, 16.1, 19.0 km;
USGS catalog, GCMT focal depth, Yu et al., 1995; Cotton et al., 1995; Sandeep et al., 2014).
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Figure 3. Sample location map from the (left) Bhagirathi River and (right) Marysandi River. Monazite ages indicated. Inset shows the locations of the transect within the broader framework of
the Himalayan fault systems. The Bhagirathi River shows the epicenter of the Uttarkashi earthquake and its aftershocks (numbered 2-7; USGS catalog), as well as the epicenter of other earth-
guakes in the area. BSE images show new monazite ages from MCT footwall samples BR27 and BR29.

Rocks in this study were collected across the MCT shear zone (Catlos et al., 2001; 2007; 2018) (Fig. 3). All samples
are Al-rich Himalayan pelitic schists and gneisses and contain garnet + biotite + plagioclase + aluminosilicate +
muscovite + quartz with accessory minerals monazite, zircon, tourmaline, rutile, and/or ilmenite. The MCT shear
zone itself has an upper and lower bound, with its lower structure in this region termed the Munsiari Thrust or
MCT-I. Conventional P-T conditions and Th-Pb ion microprobe monazite ages exist from some of the assemblages
modeled here (Table 1; Fig. 3). In some cases, conventional pressures were unable to be estimated due to the lack
of minerals used in the calibration.
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Figure 4. After Harrison et al. (1998) and Catlos et al. (2018). (a) Thermal-kinematic model cross-section showing the MCT (dark line) and MBT (white line) from 25 to 8 Ma. The MCT and MBT sole into the MHT at
depth. Isothermal sections in degree increments are indicated by the color scale bar. Panel (a) is meant to show the thermal situation at 18 Ma after MCT slip. Rock trajectories are represented by arrows with dots at
the initial and heads at the final position. Samples MA24 and BR16 are labeled, and three different possible tracks for this rock are shown. The inset shows the locations of samples MA58, MA43, MA86, and two
options for the position of sample MA79. The MCT is active from 25 to 18 Ma, whereas slip transfers to the MBT from 15 to 8 Ma. (b) The model cross-section of the reactivation of the MCT shear zone from 8 to 2
Ma. In this case, the MCT and MCT-I sole into the MHT at depth. This panel represents the thermal situation at 6 Ma. Sample trajectories are shown for the MA and BR samples. (c) P-T paths for Greater Himalayan
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The first value is for three inclusions in the core, and second value is average of two values in the garnet rim. 'ng ’tS SE'Sm'C hazafd.



