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Abstract 1 

 2 

Whether tropical cyclones (TC) possess chaotic dynamics is an open question in current TC 3 

research. The existence of such chaotic dynamics is profound for TC model development and 4 

operational forecast, as it sets a limit on how much one can further improve intensity forecast skills 5 

or models in the future. Rapid advances of machine learning (ML) techniques and applications 6 

open up an opportunity to explore TC intensity chaos from a different angle. Building upon our 7 

recent results on the low-dimensional chaos of TC intensity, this study presents a novel use of ML 8 

models to quantify TC intensity chaos. By treating TC scales as input features for ML models, we 9 

show that TC intensity displays a limited predictability range of ~3 hours due to chaotic variability 10 

at the potential intensity (PI) equilibrium. This short predictability range for TC intensity is robust 11 

across ML architectures including deep neural networks (DNN), gated recurrent units (GRU), and 12 

long-short term memory (LSTM) examined in this study. Using the minimum central pressure as 13 

a metric for TC intensity could extend the predictability range to 5-6 hours, yet the limited 14 

predictability for TC intensity is still well captured in all ML models. As a result, the intrinsic 15 

variability of TC intensity related to low-dimensional chaos prevents intensity errors in any TC 16 

model from being arbitrarily reduced, regardless of how perfect a TC model or vortex initialization 17 

is. Our findings support the existence of chaotic dynamics at the PI limit and demonstrate an 18 

innovative way of applying ML to study atmospheric predictability. 19 

 20 

 21 

  22 
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Significance Statement 23 

 24 

How much further one can improve tropical cyclone (TC) intensity in the future is an important 25 

yet challenging question in current TC research and prediction. Recent studies have suggested a 26 

potential existence of TC intensity chaos at the maximum intensity limit that puts a bound on the 27 

improvement of TC intensity forecast. In this study, a novel use of machine learning is presented 28 

to detect chaos in TC intensity under idealized conditions. The results reveal a very short 29 

predictability range of only ~3-6 hours after TCs reach their maximum intensity equilibrium. Due 30 

to this chaotic nature, TC intensity must possess an intrinsic variability that cannot be eliminated, 31 

which dictates a limit in TC intensity forecast accuracy even for perfect TC models and initial 32 

conditions.    33 

 34 

  35 
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Tropical cyclone intensity predictability 36 

Searching for the limit in predicting tropical cyclone (TC) intensity has been a challenging 37 

problem in TC research and operation. One key difficulty in studying TC intensity predictability 38 

(TIP) is rooted in an open question of whether TC dynamics possesses chaos at any stage of TC 39 

development (Kieu and Rotunno 2022, Kieu et al. 2022, hereafter K22). For practical purposes, a 40 

TC intensity forecast must be issued from an early formation to the final dissipation stage, yet all 41 

predictability frameworks require a stationary attractor or fully-developed turbulent state such that 42 

statistical properties can be well-defined (e.g., Lorenz 1963, 1969, Kraichnan 1967, Leith 1971, 43 

Métais and Lesieur 1986, Vallis 2017). This fundamental requirement for chaotic dynamics 44 

explains confusingly different estimations for TIP, which varies from 3 hours to 7 days in previous 45 

studies (e.g., Hakim 2011, 2013, Emanuel and Zhang 2016, Kieu and Moon 2016 hereinafter 46 

KM16, Judt et al. 2016, Zhong et al. 2018). 47 

Of all TC development stages, the only one that appears to meet the requirement for 48 

examining chaos is the maximum intensity state, known as the TC potential intensity (PI, Emanuel 49 

1986, 2003). According to the PI theory, TCs will reach a steady state with a maximum intensity 50 

determined by environmental conditions. The existence of this PI state and its related stability have 51 

been extensively studied in numerous observational, theoretical, and modelling studies (e.g., 52 

Rotunno and Emanuel 1987, Holland 1997, Bryan and Rotunno 2009, Hakim 2011, 2013, Kieu 53 

2015). However, whether a PI limit really exists is still inconclusive, as several modelling studies, 54 

e.g., by Smith et al. (2014, 2021) or Persing et al. (2019) showed that a TC vortex cannot maintain 55 

a steady state due to the transport of low angular momentum from upper levels to the surface. This 56 

process cuts off the supply of high angular momentum from the outer-core region and eventually 57 

weaken TC intensity, even under idealized environments.   58 

Despite the controversial existence of the PI state, the fact that the maximum TC intensity 59 

can be captured and well maintained in very long integrations (e.g., Hakim 2011, Brown and 60 

Hakim 2013, KM16, K22) suggests that TC dynamics can settle down in a quasi-stationary 61 

equilibrium, if proper environments are designed. Such an equilibrium, hereinafter referred to as 62 

the PI equilibrium, offers a unique opportunity to quantify TIP in accordance with the current 63 

chaos theory. Specifically, the PI equilibrium helps define a reference climatology for TC 64 

intensity, on which one can measure an error growth over time. The range of predictability is then 65 

the maximum time interval at which a forecast distribution of TC intensity becomes 66 
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indistinguishable from its PI climatology. Given a measure for such difference between intensity 67 

distributions, a predictability range can be then obtained by using, e.g., the decorrelation time, 68 

integrated time, or signal-noise ratios as studied in e.g., Lorenz (1969), Shukla (1981), Schneider 69 

and Griffies (1999), DelSole and Tipett (2007, 2009). 70 

While real-time forecasts have strongly hinted at a possible limited predictability for TC 71 

intensity, quantifying the TIP range turns out to be difficult due to various ways that one can define 72 

a reference climatology for TC intensity. Note that predictability is not a universal measure, as it 73 

must be associated with one variable and a specific period during which a reference climatology 74 

is constructed. Thus, predictability can be different for different intensity metrics such as the 75 

maximum sustained wind (𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚), or the minimum central pressure (𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚). Because of this metric 76 

dependence, any estimation of TIP must be specific to an intensity metric and its climatology.  77 

In the next, we will examine TIP within a framework of deterministic chaos, which is well 78 

suited for point-like intensity metrics such as 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 or 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚. Any extension to the multi-scale 79 

predictability framework would require a different approach and interpretation that are beyond the 80 

scope of this work, and so we will not present this extension hereinafter.  81 

 82 

Intensity low-dimensional chaos 83 

Given that the PI equilibrium is a possible state of TC intensity whose statistical properties 84 

are stationary for a meaningful intensity climatology, a natural question is how this equilibrium 85 

can help evaluate the predictability range for TC intensity. Along this line, KM16 presented an 86 

interesting approach based on a fidelity-reduced dynamics model proposed by Kieu (2015), Kieu 87 

and Wang (2017). Using TC scales obtained from a long integration of Rotunno and Emanuel 88 

(1987)’s axisymmetric model as dynamical variables, KM16 demonstrated that TC intensity 89 

always approaches a chaotic region in the phase space constructed from the scales of TC tangential 90 

wind, radial wind, and warm core anomaly. In this phase space, PI is no longer a single point but 91 

a bounded region with all properties of a typical chaotic attractor. A direct implication of this 92 

chaotic PI attractor is that TC intensity must possess some intrinsic variability, even for a perfect 93 

TC model under ideal conditions.  94 

Of further importance about the existence of such a PI chaotic attractor is that TC intensity, 95 

once settling down in the PI equilibrium, should have limited predictability. KM16’s direct 96 

estimation from a leading Lyapunov exponent in their axisymmetric simulations gives a 97 
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predictability range of ~2-3 days. Any attempt to predict TC intensity beyond this limit would not 98 

be better than simply using an averaged PI value in a given environment. KM16’s estimation of 99 

TIP differs from that in previous studies, which proposed a wide range from 3-9 hours in K22, 1-100 

3 days in Hakim (2013) or Zhong et al. (2018) to even more than 7 days in Emanuel and Zhang 101 

(2016). Such a wide range of estimation for TIP is due not only to the dependence of PI on specific 102 

model dynamics, ocean basin, or environmental conditions, but also to how one defines the 103 

reference climatology for intensity.  104 

 Despite the inconclusive range for TIP, the possible existence of intensity chaos in a low-105 

dimensional space is itself important from several perspectives. First, this low-dimensional 106 

attractor helps justify why forecasters can use only few bulk numbers such as 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, storm 107 

size, or cloud top temperature to characterize a TC, instead of all possible details of TCs. This is 108 

also consistent with the fact that TC intensity models with only few degrees of freedom could 109 

capture well some broad properties of TC intensity as shown in previous studies (e.g., Emanuel 110 

2012, DeMaria 2009, Wang et al. 2021, Schonemann and Frisius 2012, Kieu 2015, KM16).  111 

Second, the existence of a low-dimensional attractor indicates that PI should not be 112 

represented by a single 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 value as in the current PI framework. Instead, the maximum intensity 113 

that a TC can get must vary within a range around the PI equilibrium as presented in Hakim (2011, 114 

2013), regardless of how perfect an environmental condition or a TC model is. As a result, this 115 

intrinsic variability of TC intensity will act as a “noise” level in any TC intensity statistics that one 116 

has to take into account when detecting the change of PI under different climate conditions.  117 

Third, the PI equilibrium is no longer just about 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚. Instead, PI has to be characterized 118 

by other features as well such as the warm core anomaly, the maximum radial wind (𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚), the 119 

radius of maximum wind (RMW), or the maximum eyewall vertical motion (𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚). This 120 

important property of the PI equilibrium was well demonstrated in Kieu (2015)’s TC-scale model, 121 

which showed strong fluctuation of 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 with time even when the initial condition for 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 is set 122 

to be exactly equal to the PI value, but with the warm core anomaly reduced by half. In this regard, 123 

any factor that can influence other dimensions of PI would cause strong fluctuation in 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚, 124 

regardless of whether  𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 is equal to PI or not.          125 

 Given these implications of intensity chaos, a better understanding of its characteristics is 126 

needed so that a more accurate estimation of the TIP range can be obtained. Among several 127 

uncertainties in understanding the PI attractor, two important issues stand out. First, it is still not 128 
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known if a PI attractor can actually be represented by few dimensions as examined in KM16. The 129 

phase-space reconstruction method in K22 is one way to directly search for the dimension of the 130 

PI attractor in terms of attractor invariants. This technique is powerful to examine low-dimensional 131 

chaos, but it contains significant subjectivity and is highly sensitive to data noise as discussed in, 132 

e.g., Kantz and Schreiber (2003). Second, the current estimation of the TIP range still varies widely 133 

among different models and methods. Thus, improving this TIP estimation is a warranted question 134 

that we want to address next, using machine learning.     135 

Machine learning mapping 136 

Broadly speaking, machine learning (ML) can be considered as a framework that can 137 

search for rules from data. Given an ML architecture, a measure of accuracy (i.e., a loss function), 138 

and input data, the rules can be obtained within a prescribed accuracy. The key advantage of ML 139 

in practical applications lies in its ability to learn rules from a vast amount of data without a priori 140 

knowledge, provided that the input data is sufficiently good1.  With an inherently large volume of 141 

data, climate and weather prediction provide a great domain for ML applications, which justifies 142 

the surge of ML applications in atmospheric science recently. 143 

Specifically for TC intensity, ML offers a unique way to study low-dimensional chaos. To 144 

set up a context for applying ML to our TC intensity chaos problem, we will focus on supervised 145 

ML, which requires a set of input data and corresponding targets (labels) for training an ML model. 146 

At a basic level, supervised ML models need a surjective mapping between an input training 147 

dataset (𝒯𝒯) and a target dataset (ℒ) (i.e., one 𝑦𝑦 ∈ ℒ will have at least one 𝑥𝑥 ∈ 𝒯𝒯) so that the training 148 

can be carried out. For a typical time-prediction problem (i.e., given a state of a system at one time 149 

𝑡𝑡 = 0, one needs to predict the state of the system at a later time 𝑡𝑡 = 𝜏𝜏), this mapping can be 150 

considered as a propagator from a given initial condition to the later time 𝜏𝜏. Mathematically, this 151 

propagator can be expressed as 𝑥𝑥(𝜏𝜏)  =  𝑀𝑀(𝜏𝜏)𝑥𝑥(0), where 𝑀𝑀(𝜏𝜏) is the propagator from 𝑡𝑡 = 0 to 152 

𝜏𝜏  and 𝑥𝑥(𝑡𝑡) is the model state at time 𝑡𝑡.  153 

For a full-physics model, 𝑀𝑀(𝜏𝜏) is nothing but a numerical model with governing equations 154 

integrated from 𝑡𝑡 = 0 to 𝑡𝑡 = 𝜏𝜏. For ML, 𝑀𝑀(𝜏𝜏)  is a however nonlinear operator that is learned from 155 

a training dataset. In principle, the more data we have, the better an ML model can search for 156 

underlying rules and build 𝑀𝑀(𝜏𝜏) without any physical equations. Thus, we can feed an ML model 157 

 
1 A good set of training data should ensure several criteria including i) comprehensiveness, ii) relevancy, ii) 
consistency, and iv) uniformity.  
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with a large amount of data, and let it figure out the best possible relationships between 𝑡𝑡 = 0 and 158 

𝑡𝑡 = 𝜏𝜏. For deep learning that is based on neutral networks, an ML model with sufficient layers and 159 

depth should capture a nonlinear mapping between two time slices, making it suitable for TC 160 

intensity prediction.  161 

From this perspective, it is immediate that chaotic systems will pose a challenge to any ML 162 

model, because one input2 may give totally different outcomes after reaching predictability limit 163 

𝑇𝑇 (i.e., one 𝑥𝑥 ∈ 𝒯𝒯 would give two different 𝑦𝑦1, 𝑦𝑦2 ∈ ℒ, ∀𝜏𝜏 > 𝑇𝑇). So, there exists no good mapping 164 

between the training and the label datasets, and ML models cannot learn any rule from data. This 165 

deterioration of ML models after entering the chaotic regime suggests, however, a very unique 166 

way to quantify predictability for chaotic systems. Specifically, we will search for a lead time 𝑇𝑇 167 

beyond which an ML model can no longer be trained from any input dataset, which gives us a 168 

direct estimation for a predictability range of the chaotic system. This approach is natural in the 169 

sense that an ML model should generally be able to predict the next state of a system from a given 170 

input, if the system remains predictable and sufficient training data is provided. Thus, ML models 171 

are a great tool for studying chaos.    172 

Our use of ML to examine predictability as proposed above is in fact well suited for the 173 

TC intensity problem, as this approach serves two purposes: i) it verifies if a low-dimensional 174 

representation is sufficient for TC intensity, and ii) it helps estimate the TIP range in that low-175 

dimensional phase space. Recall from the aforementioned discussions that the existence of low-176 

dimensional chaos for TC intensity is currently questionable because we do not know if the few 177 

dimensions based on TC scales suffice to characterize TC intensity at the PI equilibrium. Also, 178 

whether TC intensity displays any chaos on these dimensions is still inconclusive. Our underlying 179 

hypothesis here is that a ML model can predict TC intensity in a low-dimensional phase space, 180 

whose dimensions correspond to the few TC scales, up to a certain lead time 𝑇𝑇. Beyond this lead 181 

time 𝑇𝑇, ML models can no longer be trained to predict TC intensity, thus revealing TC low-182 

dimensional chaos and providing us a direct estimation for the TIP range.  183 

The results in K22 provide a pathway to verify this hypothesis with ML. Specifically, we 184 

will assume that TC intensity can be described by four dimensions corresponding to four TC scales 185 

including 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚, 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚,𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚,  and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,. While it is not known in advance the exact dimension of 186 

 
2 Note here that two input 𝑥𝑥1, 𝑥𝑥2 are considered to be the same in a practical sense if their difference is within 
some measurement errors, |𝑥𝑥1 − 𝑥𝑥2| ≤ 𝜖𝜖.. 
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the PI chaotic attractor, K22 suggested that a dimension of 4 should be sufficient to capture TC 187 

intensity chaos within the deterministic framework. As such, we will treat these four dimensions 188 

as input features for ML models and examine how these ML models can forecast intensity at 189 

different lead times, using the same output from a 100-day simulation with the CM1 model as in 190 

K22 (see Supplement Information for all details of our ML models and CM1 simulations). So long 191 

as ML training can still converge at a given 𝜏𝜏, TC intensity will be considered to be predictable 192 

for that lead time as desired.  193 

 194 

Detecting intensity chaos by machine learning 195 

Given the current definition of TC intensity in terms of the maximum 10-m wind, we 196 

examine first the TIP range using 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 as a metric for TC intensity in three different ML models 197 

including deep neural networks (DNN), gated recurrent units (GRU), and long-short term memory 198 

(LSTM) model. Figure 1 shows the training absolute mean error as a function of iterations (epoch) 199 

for three forecast lead times including 3 minutes, 1 hour, and 3 hours. One notices first that the 200 

training errors rapidly decrease for 𝜏𝜏 =3 minutes in all three ML models, reaching a relative 201 

minimum error of ~ 1%, 5% and 7% for LSTM, GRU, and DNN models on a test data. Looking 202 

at the correlation between the ML-forecast and the true TC intensity for the test data in Fig. 2 (red 203 

points), it is apparent that all ML models could predict TC intensity variability for 𝜏𝜏 =3 minutes 204 

in the 4-dimensional phase space (𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚, 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚,𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚) as expected. This is interesting, as 205 

these ML models require a minimum number of input features (4 in our case here), yet they could 206 

produce good forecast of TC intensity based solely only a training data. In this regard, Figs. 1 and 207 

2 confirm that a low-dimensional phase space could predict well TC intensity variability at least 208 

for a short lead time of 3 minutes, without any physical or governing equations. 209 

At the 1-hour lead time, Fig. 1 shows however that all three ML models start losing their 210 

forecast accuracy quickly, and by 3 hours, all ML models cannot be trained any longer, with their 211 

errors roughly the same ~75-85% relative to the initial error value during the entire training period. 212 

Their predictions for the test set at the 3-hour lead time displays indeed almost completely no 213 

correlation to the true intensity (Fig. 2, blue dots). This result is consistent with the estimation from 214 

attractor invariants based on a leading Lyapunov exponent and the Sugihara-May correlation in 215 

K22, which also showed that TC intensity loses predictability in just ~3-6 hours at the PI 216 

equilibrium.   217 
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 218 

 219 

 220 
Figure 1. ML accuracy metric based on the mean absolute error (dotted lines) during the training 221 
process as a function of iterations (epochs) for three different ML models a) LSTM, b) GRU, and 222 
c) DNN at forecast lead times of 𝜏𝜏 = 3 minutes (black), 1 hour (red), and 3 hours (blue). All 223 
absolute errors are normalized by the errors at the first iteration (epoch 1) for better comparison 224 
among different lead times. Solid lines denote the mean absolute errors for the corresponding 225 
validation dataset in each training process.    226 

 227 

(a) 

(b) 

(c) 



11 
 

   The dependence of these ML intensity predictions on forecast lead times is best seen 228 

when we compare their predictions to a reference (or climatology) forecast, which is taken to be a 229 

simple average of 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 at the PI equilibrium. Figure 3a shows the forecast skill of three ML models 230 

relative to this reference forecast as a function of lead times. It is apparent from Fig. 3a that ML 231 

models perform best for 𝜏𝜏 < 3 hours. Beyond this, the ML-based prediction skill is no better (in 232 

terms of absolute errors) than a simple forecast using the average of 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 at the PI equilibrium. 233 

We emphasize here that such decaying of the ML forecast skill with 𝜏𝜏 does not hold true for any 234 

system. In fact, a simple experiment using purely random data for ML training would result in zero 235 

forecast skill at all lead times (not shown). On the other hand, for periodic systems, the forecast 236 

skill is a constant value of 1 for 𝜏𝜏 as discussed in, e.g., Sugihara and May (1990). In this regard, 237 

the decaying curve of the forecast skill shown in Fig. 3 is a manifestation of chaotic systems as 238 

captured by ML models.       239 

Given the average 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 84 m s-1 with a standard derivation is ~7.5 m s-1 at the PI 240 

equilibrium, the TIP range obtained from Fig. 3a implies that TC intensity will vary 241 

indistinguishably within an internal of 84 ± 7.5 m s-1 in just 3 hours, even for a perfect TC model. 242 

This TIP range may be shortened further if stochastic forcings, asymmetric processes, or model 243 

internal errors are taken into account as discussed in Nguyen et al. (2020) or K22, which are 244 

however beyond the scope of our study here. Despite these issues, the results obtained from the 245 

ML models herein can at least support that TC intensity must have some intrinsic variability due 246 

to TC chaotic dynamics, which prevents TC intensity errors in any TC model or real-time forecast 247 

from being reduced indefinitely.    248 

Among the three ML models, we note that LSTM appears to perform best in terms of the 249 

training and validation mean errors. Such a better performance of recurrent models over DNN 250 

models has more subtle implication in practical weather prediction. To see the significance of this 251 

recurrent networks, recall that an input at single time 𝑡𝑡 = 0 is needed for DNN to make predictions 252 

at a lead time 𝜏𝜏, very similar to a typical weather or climate model procedure. For LSTM/GRU 253 

models, the input data is however given over an interval of past data (i.e., 𝑡𝑡 ∈ [−𝑁𝑁, 0]) for a 254 

prediction at a lead time 𝜏𝜏. This interval information allows these models to learn and memorize 255 

long-term dependencies in the past via multiple memory cells and gate controls as in LSTM or a 256 

single gate as in GRU models. The different performance between DNN and LSTM/GRU is seen 257 
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more apparent at the longer lead times, as the past memory becomes increasingly more important 258 

when the data from a single time slice is no longer sufficient. 259 

 260 

 261 

 262 

 263 
Figure 2. Scatter plots of the ML-predicted TC intensity anomaly (x-axis) and the CM1 true 264 
intensity anomaly (y-axis) for a test dataset taken between 𝑡𝑡 = 90 − 100 days of the CM1 265 
simulation at three lead times: 𝜏𝜏 =3 minutes (red), 1 hour (black), and 3 hours (blue) for a) LSTM, 266 
b) GRU, and c) DNN model. Note that TC intensity anomaly is relative to the average PI value of 267 
84 ms-1 and normalized by its standard deviation 𝜎𝜎𝑉𝑉 = 7.5 m s-1. The 𝑅𝑅 values for each lead time 268 
best fit are also provided in each panel.  269 

(a) 

(b) 

(c) 
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The use of extra information from a past interval to help improve future prediction as in 270 

LST/GRU presents a very different way of forecasting as compared to the traditional approach 271 

based on physical principles. To some extent, recurrent networks improve their prediction in the 272 

same way that four-dimensional data assimilation optimizes an initial condition over an interval 273 

instead of just one time slice. Despite this extra information from the past, the predictability of TC 274 

intensity could not be lengthened beyond 3 hours in both LSTM and GRU models as shown in 275 

Fig. 3. In fact, our sensitivity with deeper neural networks or a longer interval of past information 276 

for LSTM/GRU does not improve at all this TIP range, so long as TC intensity settles down in its 277 

PI equilibrium. Such a robust TIP estimation among ML models thus highly indicates the existence 278 

of TC intensity chaos at the PI equilibrium as previously speculated.  279 

 280 

 281 
Figure 3. (a) Forecast skill of three ML models LSTM (blue), GRU (red) and DNN (black) as a 282 
function of lead time relative to the reference forecast that uses the average 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 value at the PI 283 
equilibrium, and (b) similar to (a) but using 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 for TC intensity. Here, the forecast skill is defined 284 

as 1 − 𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟

, where 𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀𝑀𝑀and 𝑀𝑀𝑀𝑀𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 are the mean absolute errors from the ML predictions 285 

and reference prediction of TC intensity over the test dataset, respectively.   286 
           287 

Because predictability is metric-dependent, an apparent question is how the TIP range 288 

varies when using 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 for TC intensity instead of 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚. By applying the phase-space 289 

reconstruction for a 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 time series, K22 noticed that 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 possesses a smaller Lyapunov 290 

exponent and a longer Sugihara-May correlation. This suggests that 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 would take a longer time 291 

to approach its saturation limit, thus allowing for a longer range of predictability as noticed in 292 

previous studies (e.g., Magnusson et al. 2019, Klotzbach et al. 2020). Given the capability of our 293 

ML models, it is natural to extend the above analyses of ML forecast skill to 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚. In this regard, 294 

Fig. 3b shows the ML forecast skill of 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 as a function of lead time for three ML models, similar 295 

(a) (b) 
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to Fig. 3a. It is of significance to observe that all ML models could capture similar decaying of the 296 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 forecast skill, but with a longer TIP range of ~5-6 hours as compared to 3 hours for 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚. 297 

The fact that these ML models could capture such a different predictability range between 298 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 is intriguing. Recall that 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 are highly correlated in terms of temporal 299 

variability due to their pressure-wind relationship. However, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 represents the total mass at the 300 

storm center while 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 fluctuates more vigorously due to fine-scale processes at each model grid 301 

point. As such, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 tends to better display a slow component of TC dynamics for which ML 302 

models could indeed detect, even when training data contains strong fluctuations from the wind 303 

field. From this perspective, using 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 for TC intensity could lengthen the range of intensity 304 

predictability for the operational forecast as previously noticed.    305 

Regardless of intensity metrics, the above results demonstrate the existence of a TIP range 306 

consistent with the phase-space reconstruction reported in K22. While the practical application of 307 

this predictability range is somewhat restricted due to the requirement of a PI equilibrium, it 308 

indicates that intensity variability is an inherent part of TC dynamics in the world of TC numerical 309 

models. Thus, one needs to take into account intrinsic intensity variability when planning for the 310 

future improvement of any operational models.     311 

Discussions 312 

In this study, we presented a different use of ML to answer a question “can machine 313 

learning detect any chaos in TC intensity?”. Our answer is “Yes, it can”. This answer was obtained 314 

from a premise that TC intensity at the PI equilibrium can be described by a chaotic attractor in a 315 

low-dimensional phase space. By treating the dimensions of TC intensity attractor as input features 316 

for ML training, the skill of ML prediction can be estimated as a function of forecast lead times. 317 

Searching for a lead time that ML models can no longer provide skillful TC intensity prediction 318 

could establish the range of intensity predictability, which is ~2-3 hours based on 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚. The 319 

predictability range could be lengthened up to 5-6 hours if 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 is used for TC intensity instead of 320 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚, yet the limited predictability for TC intensity is still warranted in all ML models.  321 

Our ML estimation of the predictability range is based on an assumption that TC intensity 322 

can be characterized by a four-dimensional phase space consisting of (𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚). 323 

How this TIP range changes in higher dimensions or with a different set of phase space variables 324 

remains elusive at present. There are several TC scales such as the radius of maximum wind, cloud 325 

top temperature, outflow temperature, or TC outer size that one could use to reconstruct TC 326 
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intensity phase space. However, the insofar consistency among different ML models and 327 

estimation methods for TIP highly indicates that adding more dimensions or variables may not 328 

improve much the predictability range that is obtained in our ML models. From this perspective, 329 

our results present a unique use of ML for quantifying TIP. In fact, the approach of estimating a 330 

predictability range based on ML models as proposed herein is very generic and can be applied to 331 

any dynamical system. One can, for example, use the Lorenz 40-variable model to extract a time 332 

series of one variable in the chaotic regime and construct a ML model to search for the 333 

predictability range in a phase space of the delayed coordinates. Comparing this ML-based 334 

predictability range with that estimated from leading Lyapunov exponents or Sugihara-May 335 

correlation can help validate our approach, for which we will report in our upcoming study. So 336 

long as a dynamical system contains low-dimensional chaos, one can always use the data on those 337 

dimensions as input features for ML training to search for the range of predictability as designed.  338 

Beyond the point-like intensity metrics such as 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 or 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, one can also examine TIP 339 

from a multi-scale error growth framework as for turbulent systems. In this multi-scale framework, 340 

a prerequisite is the existence of a fully-developed homogeneous and isotropic state such that its 341 

energy spectrum and related error growth can be measured (Lorenz 1969, Leith and Kraichnan 342 

1972, Métais and Lesieur 1986, Rotunno and Snyder 2007, Durran and Gingrich 2014). As 343 

discussed in Kieu and Rotunno (2022), TC dynamics is however generally nonhomogeneous, even 344 

at the quasi-stationary PI equilibrium. Unlike a homogenous turbulence for which all points are 345 

equally important, TCs possess an eye whose dynamics and thermodynamics are different from 346 

the rest. Using spectral analyses, Kieu and Rotunno (2022) showed in fact that the power spectrum 347 

of kinetic energy is different between these radial and azimuthal directions. In both directions, the 348 

error growth approaches a saturation limit between 9-18 hours, suggesting a limited predictability 349 

from the energy spectra perspective. Quantifying the TIP range in this multi-scale framework 350 

requires an error growth equation for each direction that is however beyond the scope of ML 351 

applications. Thus, we have not applied ML to studying TC intensity predictability within the 352 

multi-scale framework in this study.  353 
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Data availability statement. The TC intensity time series used in this study are obtained from 357 

the same CM1 simulations as used in Kieu et al. (2022), which can also be directly accessed 358 
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Supplementary Information 448 

Method and Data 449 
 450 

a. Deep-learning models 451 
 452 

Given the low dimension of feature vectors used for ML training, we present in this study 453 

several deep-learning models for TC intensity prediction. Specifically, three ML architectures 454 

including a deep neural network (DNN) model, a gated recurrent unit (GRU) model, and a long-455 

short term memory (LSTM). The applications of these deep learning models have been rapidly 456 

grown due to the availability of more computational power, which helps accelerate their execution 457 

in practical problems. With four input features of TC scales and one real-value output 458 

corresponding to TC intensity, predicting TC intensity becomes a familiar supervised regression 459 

problem for which the above ML models are very well suitable.  460 

Because the feature vectors are of dimension four, a design of 3 hidden layers with layer 461 

sizes of 32, 64, and 64 was used for DNN, followed by an output layer of size 1 that corresponds 462 

to TC intensity. Each neural layer was applied a standard ReLU activation, which helps ML models 463 

capture nonlinear effects as well as increase the interaction among layers. One could certainly 464 

design a deeper neural network for more complex relationship between input and output layers. 465 

However, our trial-and-error experiments with different neural designs showed very little 466 

improvement with more than 2 hidden layers for predicting TC intensity in such a low-dimensional 467 

input. As such, a fixed design of 32, 64, and 64 nodes is used, with further layer-sensitivity analyses 468 

provided.       469 

For LSTM and GRU, these are recurrent neural models that require a data interval in the 470 

past to capture the memory in the training data. Our model architectures for these LSTM and GRU 471 

models thus need some additional setups. Specifically for these recurrent networks models, we 472 

used three layers of size 16, 32, and 64, with a dropout rate of 0.5. Technically, dropout is a type 473 

of regularizations that can help reduce overfitting. There is no particular formula to choose the 474 

value for this hyperparameter, other than empirical trials. In our intensity chaos problem, this 475 

dropout turns out to be an important for ensure the good model performance. For the past interval, 476 

we used 21 time slices, i.e., 𝑡𝑡𝑖𝑖, 𝑖𝑖 ∈ [−20,0], as input for LSTM/GRU models when predicting TC 477 

intensity at any given lead time.    478 
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All of these ML models employed the mean absolute error (MAE) metrics for the accuracy 479 

and the root mean squared errors for the loss function, with a fixed number of training epochs set 480 

to be 300. The standard optimizer for the gradient search based on the stochastic mini-batch 481 

learning method, the so-called Root Mean Squared Propagation (RMSprop), was applied in all 482 

training. Because of the different scales of the wind and pressure variables, all input data was 483 

scaled by the standard deviation around a mean value, which corresponds to the maximum 484 

intensity of the model vortex at the quasi-stationary equilibrium.     485 

b. Data 486 
 In this study, the data from a CM1 model’s 100-day simulations at 9-km resolution was 487 

used, which is model output from the CM1 simulations presented in Kieu et al. (2022). By applying 488 

a fixed Newtonian cooling relaxation of 2 K day-1, K22 could obtain a long integration of 100 days 489 

that maintain well the quasi-stationary maximum intensity equilibrium, similar to Kieu and Moon 490 

(2016). Given this quasi-stationary simulation of TC intensity, the time series of several key TC 491 

scales including the maximum boundary-layer inflow 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚, the maximum wind speed  𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 at 492 

the model lowest level, the maximum vertical motion in the eyewall region  𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚, and the 493 

minimum central pressure  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 were output at a sampling frequency of 36 seconds for the purpose 494 

of training in ML models. With 100-day simulations and 36-s sampling frequency, a dataset of 495 

length 250,000 was therefore generated, which was split into training, validation, and test sets with 496 

a ratio of 90%, 5%, and 5%, respectively. To ensure that the CM1 model settled down in the PI 497 

equilibrium before training, the first 10 days of simulations were also discarded. All other details 498 

of this CM1 100-day simulation including model domain, physical parameterization, boundary 499 

and/or initial conditions can be found in K22.  500 

 501 
 502 
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