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Abstract13

Little is known about Southern Ocean under-ice phytoplankton, despite their sus-14

pected potential – ice and stratification conditions permitting – to produce blooms. We15

use a distributional approach to ask how Southern Ocean sea ice and under-ice phyto-16

plankton characteristics are related, circumventing the dearth of co-located ice and phy-17

toplankton data. We leverage all available Argo float profiles, together with freeboard18

(height of sea ice above sea level) and lead ( ice fractures yielding open water) data from19

ICESat-2, to describe co-variations over time. We calculate moments of the probabil-20

ity distributions of maximum chlorophyll, particulate backscatter, the depths of these21

maxima, freeboard, and ice thickness. Argo moments correlate significantly with free-22

board variance, lead fraction, and mixed layer depth, implying that sea ice dynamics drive23

plankton by modulating how much light they receive. We discuss ecological implications24

in the context of data limitations, and advocate for diagnostic models and field studies25

to test additional processes influencing under-ice phytoplankton.26

Plain Language Summary27

While sea ice undoubtedly influences under ice phytoplankton to some extent, lit-28

tle is known about under-ice phytoplankton in the Southern Ocean due to the paucity29

of field data. In the absence of plankton and ice measurements made at the same time30

and place, we can make inferences about the potential links between the two by com-31

paring the average and variability of many measurements made within the same region.32

We do so with satellite-based measurements of freeboard (the thickness of sea ice above33

the water level) versus measurements made from profiling floats that measure plankton34

characteristics. We find that average freeboard is unrelated to these plankton measures35

but that when freeboard is more variable, phytoplankton stocks tend to be higher and36

occur at shallower depths. These nonintuitive results encapsulate how plankton commu-37

nities’ response to light is complex, and suggest that plankton may respond positively38

to a more variable light field.39

1 Introduction40

Earth’s polar regions are extreme ecosystems, marked by perennial darkness and41

seasonal mosaics of sea ice that modify the salinity, temperature, and incoming light of42

subsurface waters. Recent work in the Arctic has shown that phytoplankton can thrive43

underneath sea ice, dwarfing previous estimates for phytoplankton productivity across44

the annual cycle (Arrigo et al., 2012, 2014; Assmy et al., 2017), and raising questions of45

how sea ice influences under ice phytoplankton.46

The e↵ects of sea ice on phytoplankton in the Southern Ocean remains largely un-47

known as much research has focused on the Arctic Ocean, although more recent stud-48

ies have expressed the possibility of widespread microbial life under Antarctic sea ice from49

observations (Hague & Vichi, 2021; Arteaga et al., 2020; Cimoli et al., 2020). Phytoplank-50

ton in the Southern Ocean are primarily limited by light and iron, and massive blooms51

under ice sea are generally not suspected in this region. However, nutrient replenishment52

from deeper Winter mixed layer depths combined with light at the onset of Spring may53

enable phytoplankton growth under ice. Still needed are assessments of how ice char-54

acteristics a↵ect the under ice environment. On one hand, the thicker snow cover of South-55

ern Ocean sea ice compared to the Arctic may prohibit the transmission of light to the56

waters below because snow has a higher albedo than sea ice. On the other hand, most57

Antarctic sea ice melts in the Austral Spring and Summer (Pfirman et al., 1990), which58

may create a stable mixed layer and enhance growth of an already active under ice phy-59

toplankton population previously living in deeper mixed layers (Hague & Vichi, 2021;60

A. A. Petty et al., 2014).61
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Figure 1. Maximum chlorophyll concentration of each under ice Argo profile is plotted

against the same day freeboard from ICESat-2’s ATL10 product, matched within a 25km ra-

dius and colored by daily sea ice concentration values at a 25 x 25 km grid spacing. The Argo

floats used in this plot are numbered ’5904767,’ ’5905995,’ and ’5905102.’

Antarctic sea ice extent has increased in recent decades (Holland, 2014; Maksym62

et al., 2012) (although this trend has reversed in recent years), and the Southern Ocean63

is predicted to experience enhanced precipitation (Emori & Brown, 2005; Vignon et al.,64

2021) in the coming years which will a↵ect snow on sea ice processes (e.g., sea ice flood-65

ing as well as sea ice thinning via insulation (Jacobs & Comiso, 1993)), all of which will66

influence sea ice thickness and albedo to some extent (Maksym & Markus, 2008; Arrigo67

et al., 2014). Aside from physical processes, sea ice also directly influences the biogeo-68

chemistry of the water column (Tagliabue & Arrigo, 2006) and potential for phytoplank-69

ton growth, supplying up to 70% of the daily iron flux during melting periods (Lannuzel70

et al., 2007; Wang et al., 2014). As phytoplankton form the base of the marine ecosys-71

tem and as polar regions will continue to be modified by climate change, it is critical to72

document any relationships between phytoplankton and sea ice now, in order to both73

describe current conditions and to motivate future research directions.74

Ideally, mechanistic relationships between sea ice and phytoplankton would be quan-75

tified using numerous coupled direct sea ice - phytoplankton observations from field cam-76

paigns spanning season and location to capture a spectrum in sea ice thickness, nutri-77

ent, and light limitations. Unfortunately the scarcity of field measurements in the South-78

ern Ocean severely limits any such investigation currently. Instead, remote observations79

from either underwater profiling floats (such as the Argo program (Roemmich et al., 2009;80

Bittig et al., 2019)) or lidar satellites (e.g. ICESat-2 (Markus et al., 2017)) greatly im-81
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prove our ability to observe sea ice and water column properties during all times of the82

year. However, despite abundant remote observations from satellite and autonomous un-83

derwater floats, there are still very few same-day matchups of under ice phytoplankton84

and sea ice characteristics. As an illustration of this data paucity we plot the maximum85

chlorophyll concentration ([Chl], a pigment common to all phytoplankton) in the sur-86

face of an under ice float against the freeboard (height of sea ice above the sea surface),87

with ancillary information from daily sea ice concentration (Figure 1), totalling just 788

observations of 1020 total, or less than 1% of available observations. All points shown89

are within a radius of 25km (a liberal range, given the phytoplankton decorrelation length-90

scales in the Southern Ocean of 10-15km (Haëntjens et al., 2017; Bisson et al., 2020)).91

Given that under ice [Chl], sea ice concentration, and freeboard are uncoupled in space92

and time, sea ice paired within 25km of an under ice float profile may not share the same93

water mass, and variable sea ice features (i.e. deformation, ridges, leads) will adjust the94

under ice light environment in ways not explicitly accounted for this type of match-up95

comparison. Clearly, a paired-observation style analysis severely reduces the amount of96

available data, and consequently reduces the questions that can be addressed regarding97

sea ice and phytoplankton.98

While there are issues associated with using paired sea ice - phytoplankton data,99

it is plausible to expect some relationship between under ice biology and sea ice char-100

acteristics because sea ice influences light availability and mixed layer depths as men-101

tioned above (see also Behrenfeld et al. (2017), Arteaga et al. (2020), and Behera et al.102

(2020)). In this study we employ a distributional approach to leverage all available un-103

der ice observations during the same time period as the ICESat-2 satellite. The advan-104

tage of a distributional approach is to relate the quantities of interest via their proba-105

bility distributions’ moments rather than on a point -per-point basis, and ultimately to106

learn how one underlying distribution may a↵ect the other on broad scales of space and107

time. Distributional approaches have been used to identify new versus old ice apparent108

in the biomodal distributions of Arctic sea ice’s total freeboard (e.g. (Kwok et al., 2019)),109

and these approaches have also been used to overcome data sparsity in linking ocean bi-110

ological measurements across scales (Cael et al., 2018, 2021). Our aim here is to describe111

the variability of the under ice biological environment (via changes in the chlorophyll con-112

centration and particulate backscattering, bbp, which is known to covary with phytoplank-113

ton carbon) and to identity areas for future research.114

2 Materials and Methods115

2.1 Under Ice Argo Floats116

Vertical under ice profiles of particulate backscattering (bbp, m�1, 700 nm hereafter117

referred to as bbp) and adjusted chlorophyll concentration ([Chl], ug L�1) were acquired118

from the Southern Ocean Carbon and Climate Observations and Modeling Project (SOC-119

COM). As in Bisson et al. (2019), profiles were despiked with a 3 point moving median120

to remove contamination from bubbles and/or the presence of rare, large non-algal par-121

ticles. Under ice Argo profiles are flagged from an ice avoidant algorithm, which forces122

a float to retreat from its ascent if the median of the seven near surface (20-50m depth)123

temperatures is less than -1.78 �C (Klatt et al., 2007). We removed profiles with sea ice124

concentration < 15% (via satellite data, see Supporting Information) to be consistent125

with the ICESat-2 freeboard processing.126

We also calculate mixed layer depth (MLD, see Supporting Information) for each127

float based on the density gradient method (Dong et al., 2008). The MLD is thought to128

exert a large control on phytoplankton growth based on both bottom-up processes (light129

and nutrients) as well as the concentration of phytoplankton exposed to grazing pres-130

sure (Arteaga et al., 2020; Behrenfeld et al., 2013). We also compare Argo characteris-131

tics with the mean temperature within the MLD, as temperature is known to a↵ect pho-132
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tosynthetic rates (Eppley, 1972). Altogether we note that the surface structure of un-133

der ice profiles is incomplete (due to missing surface data), and therefore our derived MLD134

are an imperfect approximation of the true MLD that may be achievable if the full pro-135

file were available. In total we have 1020 independent profiles across the shared time pe-136

riod of November 2018 to October 2020 where ATL20 data are available (more details137

in Supporting Information). Note we do not include under ice Argo data from January138

to March, as sea ice extent is minimal during these times and there are only several Argo139

profiles available. Otherwise, the median number of Argo profiles available per given month140

and year is 51, with a range of 16 to 79 observations.141

Rather than e.g., calculating the median [Chl] and bbp values within the mixed layer142

or euphotic depth (Bisson et al., 2019), we characterize under ice phytoplankton by re-143

porting the maximum [Chl] and bbp values within a profile as well as the depth at which144

a maximum is found. Deeper [Chl] maxima that do not co-occur with the maxima of bbp145

may imply changes due to photoacclimation rather than enhanced biomass. In our dataset,146

there are zero instances where the depth of maximum [Chl] or bbp (hereafter zc, zb) is147

the shallowest depth in the profile, which suggests the reported zc or zb value is likely148

a good approximation of the true zc or zb value. One notable exception is if there are149

biomass peaks in the near surface (1-5m) waters that are not captured with the floats,150

which can be the case for ice algae sloughing from the ice bottom from melting ice (Ardyna151

et al., 2020).152

2.2 Sea Ice Data Products153

We acquire total freeboard from ICESat-2 (Ice, Cloud, and land Elevation Satel-154

lite), distributed via the National Snow and Ice Data Center (NSIDC) and downloaded155

using Icepyx (Scheick et al., 2019, 2019–). ICESat-2 was launched in October 2018 with156

the primary goal of quantifying cryosphere and terrestrial elevations with extremely high157

precision never before achieved from spacecraft (Markus et al., 2017). The primary in-158

strument aboard ICESat-2 is ATLAS (Advanced Topographic Laser Altimeter System),159

which is a lidar that generates roughly 10,000 laser pulses per second and converts the160

time it takes for a small fraction of photons to return into a distance, and ultimately into161

a surface height. In this study we use the ATL07, ATL10, and ATL20 products.162

Sea ice types are provided in ATL07 (Kwok et al., 2021b) and are used to compute163

the fraction of sea ice segments that are leads relative to the total segment length. While164

ICESat-2 delivers ungridded data in along-track granules, over the course of a month,165

the along-track segments approximate a 2D field (see Horvat et al. (2020)). In this study166

we use the specular lead (i.e., narrow gaps and fractures within the ice and between ice167

floes, (A. Petty et al., 2021) identification, which is determined from an empirical de-168

cision tree. ATL10 data (Kwok et al., 2021a) provide same day freeboard for under ice169

Argo data shown in Figure 1. The ATL20 product (A. A. Petty et al., 2021) provides170

monthly means of freeboard (m) in 25 x 25km pixels. Freeboard is determined from leads171

(which provide a reference sea surface height) along each beam from the ATL07 photon172

height product, and the data do not include cloudy conditions or when daily sea ice con-173

centration < 15%. Only the strong beams were used in analysis, and we use ICESat-2174

products from October 2018 until October 2020.175

Total freeboard (F , hereafter F from the ATL20 product) is the sum of sea ice and176

snow present above the ocean’s surface. The total sea ice thickness (I, meters) will vary177

depending on the ratio sea ice ice thickness to snow depth, or R. We calculate sea ice178

thickness in addition to F , where R values are calculated dynamically from F depend-179

ing on the location of the sea ice (Li et al., 2018). We note that we choose to show our180

results using F rather than I due to the assumptions and error in calculating I, but choos-181

ing I rather than F did not change our results. Finally, daily gridded (25x25km) sea ice182

concentration data were downloaded for the same day paired ATL10-Argo data shown183
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in Figure 1. Argo and sea ice data were aggregated into unique year-month bins to fa-184

cilitate comparison between both classes of data. We use these broad space/time con-185

straints due to the location uncertainty in under ice floats as well as temporal resolu-186

tion di↵erences between Argo and ice data (which do not permit a point-by-point ex-187

amination). We take Argo observations within a given month to be representative of that188

month, due to good spatial coverage of the Southern Ocean (See Supporting Informa-189

tion).190

2.3 Statistical framework191

The complexity underlying the distributions of F , I, bbp, [Chl], zc, and zb is dis-192

tilled and described through the first three moments of each distribution: the mean, vari-193

ance, and skewness. While the mean and variance describe the average and spread of the194

data, skewness quantifies how lopsided a distribution is relative to a perfectly symmet-195

rical distribution (i.e., a positively skewed distribution has a heavier tail on the right side,196

meaning the mean exceeds the median). We calculate the mean, variance, and skewness197

for each distribution (i.e. bbp, [Chl],zb, zc, F , I ) for each unique month and year when198

data are available. Both bbp and [Chl] are logarithmically distributed (i.e. span a large199

dynamic range) so we calculate their moments of the log-transformed variables. The strength200

of any relationships between variables is assessed through Kendall’s ⌧ , a non-parametric201

rank correlation.202

We note that while bbp and [Chl] both covary with phytoplankton biomass, neither203

variable perfectly quantifies phytoplankton. Although bbp has better performance met-204

rics with phytoplankton carbon compared to chlorophyll (see Gra↵ et al. (2015)), bbp is205

imperfect as it also covaries with non-algal particles. For most of the year, the major-206

ity of particles under the ice will be phytoplankton, but there may be times in the Aus-207

tral summer (e.g., export of fecal material and cell aggregates, (Moreau et al., 2020)) when208

a portion of particles are non-algal. On the other hand, [Chl] is found in all phytoplank-209

ton, but it is plastic and varies with the light field. A change in [Chl] does not necessar-210

ily imply a change in biomass because cells can modify their pigment concentration ac-211

cording to irradiance levels. Both quantities are useful to assess phytoplankton under212

ice, and bbp might be useful for assessing particles under ice for times of the year when213

particles are expected.214

3 Temporal Patterns in under ice properties215

Distributions of bbp and [Chl] show clear seasonality for the month and year pair-216

ings when all data are available (Figure 2). The maximum F occurs in December and217

there are subtle shifts in the width of F throughout the annual cycle, with June and July218

representing the least variable F distributions in both 2019 and 2020.219

The shapes of maximum bbp vary tremendously from month to month across the220

annual cycle, with long tails of bbp in October - December, and shorter tails in June and221

July. There are times of the year when the distribution of bbp is unimodal, and other times222

when its roughly bimodal (e.g., December 2018, May 2019, September - December 2019,223

August - September 2020). Like bbp, [Chl] distributions tend to have longer tails from224

October - December, but unlike bbp, [Chl] distributions tend to be left-skewed from April225

to June. In general [Chl] has wider distributions throughout the annual cycle compared226

to bbp.227

The seasonal cycle in bbp and [Chl] is more pronounced than that of F or zb and228

zc. Previous work found that under ice phytoplankton growth initiates before melting229

(Hague & Vichi, 2021), and also that phytoplankton can grow under low light conditions230

compared to what was previously thought in the Antarctic (Arteaga et al., 2020)). Our231

work is in broad agreement with these studies, especially as there are longer tails in the232
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Figure 2. Ridge plot comparing probability density functions of F (grey, left), bbp (orange,

log10 transformed), [Chl] (green, log10 transformed), zc (teal), and zb (purple) across month (y-

axis). Note that Jan-March are not shown and are not included in analyses because there are too

few Argo observations in those months.

distribution of bbp and [Chl] from August through September, implying more instances233

of anomalously high biomass.234

What di↵erences in the distributions of sea ice and phytoplankton characteristics235

might be expected? For example, bbp or [Chl] reflect a balance between phytoplankton236

growth and losses, ultimately depending on the light and nutrient environment as well237

as viral activity and grazing pressure. Photoacclimation and physical mixing in the wa-238

ter column influence zb and zc, including algae released into waters from the base of melt-239

ing sea ice (Yoshida et al., 2020). One might expect enhanced bbp and [Chl] with decreas-240

ing µ(F ) and µ(I)) if phytoplankton are primarily light limited. If algae living in sea ice241

are a dominant control on variability in zb or zc, we expect zb and zc will shoal in tan-242

dem with melting ice.243

There are seasonal patterns in the distributions of zb and zc as well, where the mean244

zb is usually much less than zc during November and December, but zb slightly exceeds245

zc during Winter and Spring. The former might imply a flux of algae and their aggre-246

gates into the water from melting sea ice (Moreau et al., 2020), and/or possibly fecal pel-247

lets from krill feeding on algal ice populations at the near surface (Arrigo & Thomas,248

2004). We note that algal ice is expected to contribute a greater fraction of productiv-249

ity (relative to the in water phytoplankton) in October and November (Lizotte, 2001),250

so it is plausible that there could be enhanced export flux (i.e., higher particle loads, or251

enhanced µ(bbp) relative to µ([Chl]) in November and December. A combination of slough-252

ing algae from sea ice, as well as export of particles (including senescent algal cells), might253

create bimodal distributions in bbp, [Chl], zb and zc, as is observed to di↵erent degrees254

from September through December.255

4 Relating Distributions Through Their Moments256

A distributional approach doesn’t provide causal links between sea ice and phy-257

toplankton, but it is nevertheless useful to identify what the current data suggests. The258

Argo moments (in particular the mean, µ(·)) correlate moderately well with ice variance259

(�(·)) and ice skewness but not with ice mean (Figure 3). Both µ(bbp) and µ([Chl]) in-260

crease with increasing ice variance, and µ(zc) and µ(zb) decrease with increasing �(F ).261

In general, the Argo � moments do not relate well to ice moments, with the exception262

of �(bbp), which is positively correlated with �(F ). µ(zb) increases with increasing ice263
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Figure 3. Trends in Argo moments and ice variance (top panel) as well as Argo zb and ice

skewness (bottom panel) across Argo variates (bbp, [Chl], zb and zc). For top plot, separate y-

ticks are given for each moment-variable combination to show their ranges. Note that bbp and

[Chl] are shown in log-scales, and all points are the monthly values.
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Figure 4. Time series of µ(bbp) (m
�1) using all available under ice Argo data and the sea ice

lead fraction of specular leads (gaps and fractures between ice floes). Error bars represent the

coe�cient of variation for each month.

skewness. Put another way, a variable ice environment coincides with higher bbp and [Chl]264

at shallower depths. Months with greater proportions of thicker ice have deeper depths265

of maximum bbp. Neither µ(bbp) nor µ[Chl] are significantly correlated with statistical266

moments of temperature (p values exceed 0.1 in all cases, and generally exceed 0.5). MLD267

correlates most strongly and negatively with phytoplankton (µ(MLD) and µ(bbp) have268

a ⌧ of -0.73 and a p-value < 0.005, while µ(MLD) and µ([Chl]) have a ⌧ of -0.54 and a269

p-value < 0.005), evincing that light exerts a strong control over phytoplankton in this270

study. We cannot assess the role of nutrients (and iron in particular) in this study due271

to lack of data, and therefore cannot say e.g., if iron versus sea ice and MLD has a stronger272

influence on phytoplankton under ice.273

The presence of significant, moderate correlations between sea ice variance and Argo274

moments, as opposed to the weak correlations between sea ice mean and Argo moments,275

implies that variance in ice thickness is more influential than mean ice thickness for phy-276

toplankton growth. The negative relationship between ice variance and µ(zb) is some-277

what counter intuitive, as one might expect zb to become more variable as ice variance278

increases.279

However, if the relationship between F and plankton characteristics is nonlinear,280

it is plausible that �(F ) is what drives greater and shallower plankton stocks. Light trans-281

mission through sea ice is / e�kF (Beer’s law) for a given k related to sea ice proper-282

ties. As light penetration decreases nonlinearly with ice thickness, theres a greater dif-283

ference in light transmission through F of e.g., 0 and 1m than between 1 and 2m, and284

so on as F increases. All other factors constant, average light penetration in a region is285

a↵ected by how much of the total ice is su�ciently thin to permit light transmission, and286

by how thick ice is in this area - in other words, the low tail of F . The low tail of F is287

best captured by �(F ) given that F is positively skewed, so ultimately, this low tail of288

small-F values can be what dominates total light penetration, and hence plankton char-289

acteristics.290

Underlying the statistically significant relationships of sea ice, MLD, and phyto-291

plankton are possible mechanistic explanations. The near seasonality in bbp and [Chl],292

coupled with the correlations of Argo moments to ice variance and leads implies leads293

and/or thin sea ice permit light to reach the phytoplankton at all times of the year to294

varying degrees (Figure 4). Indeed, the seasonal cycle of maximum bbp tracks very well295

with the sea ice specular lead fraction (Figure 4, note that Spearman’s rank correlation296

between lead fraction and µ(bbp) is 0.78, and ⌧ = 0.58), where higher specular lead frac-297

tions also coincide with greater incident photosynthetically active radiation in the South-298

ern Ocean and more shallow MLD. Under ice phytoplankton are mobile, embedded in299
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water masses transiting beneath both snow covered ice and brief exposure to open wa-300

ter, and consequently are likely to experience intermittent pulses of light that they may301

have adapted to use e�ciently.302

Our findings di↵er with those of the Lowry et al. (2018) study, which found that303

leads inhibited phytoplankton blooms via convective mixing in the Arctic Ocean. In the304

Southern Ocean, we found that a higher fraction of leads corresponds to larger maxima305

in under ice [Chl] that occur at more shallow depths, which is most similar to the find-306

ings of Assmy et al. (2017) in the Arctic Ocean. The magnitude of under ice [Chl] in the307

Southern Ocean is generally less than that of Arctic blooms, but the magnitude of un-308

der ice [Chl] in the Southern Ocean is comparable (at times exceeding) to that of the309

ice-free areas of the Southern Ocean (Rembauville et al., 2017; Haëntjens et al., 2017)(i.e.,310

in this study the maximum [Chl] is 8 µg per L).311

5 Concluding remarks312

We have employed a statistical approach as a way to overcome the shortage of data.313

Although there are numerous measurements of either Argo of ICESat-2 observations by314

themselves, there were no true paired observations between ICESat-2 and Argo. The in-315

herent position uncertainty associated with under ice Argo floats almost certainly means316

no exact match ups (i.e., those within reasonable space and time constraints) between317

Argo and any other sensor can be expected in the future, unless under ice acoustic po-318

sitioning can help decrease position uncertainty. Still, the continued presence of Argo319

floats in the Southern Ocean will undoubtedly help to address the role of sea ice and phy-320

toplankton growth. Ideally all SOCCOM Argo floats would be equipped with photosyn-321

thetically active radiation sensors, unlike those used herein. While there were su�cient322

profiles in this study to examine monthly distributions, we could not examine regional323

di↵erences due to the dataset size. In the coming years, more under ice data will become324

available and perhaps permit such an analysis. Here we found enhanced phytoplankton325

biomass and variability with decreasing MLD, increasing F variance, and increasing lead326

fractions, which might plausibly be explained by factors not addressed in this study (i.e.,327

spatial di↵erences in iron availability and grazing pressure).328

Despite the limitations, statistical approaches remain useful to understand general329

patterns in under ice phytoplankton, and time series analyses will become important as330

more data become available in the coming decades. In order to build a mechanistic un-331

derstanding of phytoplankton under sea ice, synergistic models could incorporate data332

from Argo with other platforms. Large scale climate modeling is also important for as-333

sessing the likelihood of phytoplankton growth based on environmental conditions (e.g.,334

ice cover, MLD) that might be informed from our findings here.335

Neither models nor statistical methods replace field work. We recommend field stud-336

ies incorporating under ice light, phytoplankton, and zooplankton in particular,as well337

as measuring sea-ice algal communities, (Cimoli et al., 2017). Under ice phytoplankton338

blooms have commonly been treated as the result of bottom-up processes (i.e., light and339

nutrient status), and our study focused on ice and phytoplankton characteristics. More340

Information about nutrient status, zooplankton (perhaps from the deployment of imag-341

ing sensors, such as the Underwater Vision Profiler) and other heterotrophic activity would342

help to more explicitly characterize the many mechanisms influencing phytoplankton un-343

der sea ice beyond what has been considered here.344
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