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Key Points 8 

 9 

• Criteria are found for a simple model with liquid freeze-up versus flow-through in 10 

freezing tubes  11 

• Upstream flows alter upstream pressures so that the freezing flow is modified 12 

• Three examples of combining freezing with upstream dynamics are analyzed, 13 

compressible upstream, throttled upstream, and an upstream manifold 14 

 15 
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Abstract 19 

 20 

The flow and stability of liquid through a tube at subfreezing temperature can be 21 

modified by the upstream flow conditions. A simplified model for the dynamics is used 22 

to show behavior 3 different upstream configurations.  When certain stability parameters 23 

are met: 1. A compressible reservoir has oscillatory behavior . 2. A tube fed by a 24 

constriction with a large upstream pressure behaves like a freezing faucet during winter.  25 

3. Multiple tubes connected by an upstream manifold evolve to some selected flowing 26 

tubes and others seeping with their spacing inversely proportional to manifold flow 27 

resistance. Numerically, a minimum radius needs to be invoked in many cases to avoid 28 

excessive upstream pressure. Results have numerous applications such as wintertime ice 29 

formation at natural springs, the formation of magma tubes, spacing of volcanism, and 30 

the distance that liquid flows through freezing surroundings. 31 

Plain Language Summary 32 

The dynamics of viscous liquid flow in an upstream region must naturally be considered 33 

in conjunction with flow through a freezing region. This is because when liquid flows 34 

into a freezing region, the pressure change that arises from the accumulation of solid 35 

modifies the upstream pressure, which can in turn modify flow rates in both regions. This 36 

paper shows examples of three different upstream situations that produce feedback 37 

between upstream flow and the freezing region. The interaction leads to complicated 38 

results such as oscillations, intense flow channelization in subfreezing surroundings, and 39 

freeze-up of some portions of the downstream region. The fundamental nature of the 40 

interaction between upstream and freezing flows begins to explain the complicated nature 41 

of freezing flows in many areas of earth science.  42 

1. Introduction 43 

As liquid flows into a region with boundary temperature below the solidus 44 

temperature, the solid typically forms near the boundaries leaving one or more melted 45 

cores where liquid flows. With complicated regions, some of the cores might become 46 

tortuous or freeze shut progressively in time. Naturally the conditions separating flow and 47 

freeze-up depend upon the dimensions and geometry of the layout, the relative 48 



temperatures of the upstream fluid and the walls compared to the temperature of 49 

solidification and fluid properties (e. g. viscosity, thermal conductivity, and latent heat of 50 

solidification) (Mulligan and Jones 1976, Epstein and Chueng 1983, Richardson 1983, 51 

1985, 1986, Kavanagh et al. 2018). A notable feature, to be expounded here using three 52 

configurations, is a dependence of the results upon the nature of the upstream conditions, 53 

(Figure 5 in Epstein and Chueng 1983, Holmes 2007, Holmes-Cerfon and Whitehead 54 

2011 (called HCW here)).  55 

Three configurations are used because numerous studies exist with little attention 56 

paid to the upstream conditions in engineering and earth sciences. In engineering these 57 

include injection molding, (Richardson 1983, 1985, 1986), freezing of water (Zerkle and 58 

Sunderland 1968, Mulligan and Jones 1976), ventilation (Hirata and Ishihara 1985, 59 

Weigand et al. 1997) and metallurgy (Chadam, et al. 1986, Daccord 1987).  In Earth 60 

sciences, examples include the dynamics and stability of lava and magma tubes (Rubin 61 

1993, Sakimoto and Zuber 1998, Dragoni et al. 2002, Sakimoto and Gregg 2001, 62 

Klingelhofer et al. 1999), glacier drainage, (Björnsson 1998), and magma fissure flows 63 

(Bruce and Huppert 1989, 1990).  64 

If viscosity increases with colder temperature, liquid flowing into cold regions has 65 

similar behavior. For progressively larger viscosity contrast, flow becomes focused into 66 

narrow channels surrounded by cold sluggish flow. A similar dependence also exists 67 

upon the upstream conditions (Whitehead and Helfrich 1991, Helfrich 1995). Various 68 

geometries include regular circular slots, (Whitehead and Helfrich 1991, Helfrich, 1995, 69 

Wylie and Lister 1995, Wylie et al. 1999a),  gelatin (Pansino et al. 2019 and citations 70 

therein) and cracks (Taisne and Tait 2011, Taisne, et al. 2011). 71 

An upstream region might have many configurations. In engineering the injection 72 

can come from one or more pumps or from a reservoir at fixed pressure. In the earth, the 73 

source can be chambers, mushy zones, lakes or fluids squeezed out by high pressure 74 

regions. A personal witness of the interplay came from a lava outbreak that I watched in 75 

Hawaii. Each lobe of molten lava broke out and temporarily flowed only to gradually be 76 

retarded by an accumulating solidified crust. Meanwhile, the older upstream crust visibly 77 

inflated as flow resistance in the solidifying lobe increased. This greater upstream 78 

pressure ultimately ruptured crust at another location, producing an additional lobe. The 79 



result was a growing cluster of lobes that produced a complicated pattern of pahoehoe. 80 

The interplay of solidifying flow and upstream pressure was both clearly apparent and 81 

obviously complicated. 82 

The manner in which the width of a channel of melt adjusts in sheet-flow as flow 83 

magnitude changes was first apparent to me observing an unpublished laboratory 84 

experiment using liquid flowing in a gap radially outward from the center of a carefully 85 

levelled aluminum disk painted black and kept at a temperature below the solidus. The 86 

gap (of fixed thickness) was between a transparent acrylic lid and the disk. The apparatus 87 

was similar to those for transient experiments with paraffin [Whitehead and Helfrich. 88 

1991] and flow of oversaturated water [Kelemen et al., 1994], both of which 89 

demonstrated the formation of a channel. We used a positive displacement pump at a 90 

steady volume flux rate to provide a liquid with its temperature above the solidus into the 91 

center of the disk. Therefore, the liquid was forced to flow outward in the radial direction 92 

to the outer radius where it was cooled. Some of it solidified and the rest spilled into a 93 

catch basin. 94 

A channel of flowing clear melt revealed the black bottom that increasingly 95 

became surrounded by white stagnant solid. For very small pumping rate, the evolution 96 

was complicated but it still ended with the formation of a tiny channel. After the pump 97 

was started, the flow channel terminated at a frozen fan of material, (Figure 1a) and then 98 

a new outbreak of flowing liquid would form to the left or the right (Figure 1b). This 99 

would make a second fan, which was followed by another outbreak. Then, there were 100 

many subsequent cycles of outbreak-fan formation (Figure 1c). In some cases the fans did 101 

not even extend to the outer radius of the disk before they were completely frozen. In 102 

other cases an air hole became surrounded with solid. However, the sequence of fan 103 

formation and outbreak ultimately spiraled around the entire 3600 circle of the disk so that 104 

the total region ended up being filled with solid. At that point, flowing liquid was still 105 

present in a crescent shaped region near the center. The video (in supplementary 106 

materials) indicates that the liquid forced the lid upward a small amount and then flowed 107 

radially outward within a very thin gap between the solid and lid. This radial flow is 108 

almost completely axisymmetric, and it is always followed by the appearance of one 109 

rapidly amplified dark drainage channel (Figure 1d) extending from the central hole to 110 



the outside rim of the cylinder. The dark line becomes progressively darker and wider 111 

over about a five-minute period, during which we believe the channel melted its way 112 

through the wax down to the aluminum disk. Thereafter, the entire flow occupied this 113 

channel whose size remained fixed (Figure 1e). Some student projects were started in this 114 

way and this sequence always happened. Measurement showed that the width of the final 115 

channel is proportional to flux rate, (C. J. Mills, private communication).  116 

 117 
Figure 1. The evolution of a drainage tube at very small flow rate. 118 



Here, the mathematical solution in HCW for flow through a freezing tube is 119 

replaced by a simple model with analytic functions. Section 2 reviews the HCW solution 120 

and develops the simple model. Section 3 analyzes the stability properties of this model 121 

with a compressible upstream condition as in HCW and then shows numerical 122 

calculations. Freeze-up with pressure approaching infinity causes some difficulty that is 123 

overcome by adopting a minimum radius, which generates seepage flow instead of 124 

complete freezing. This bends the pressure curve for slow flow down to zero at the 125 

origin. The resulting oscillations are like those with viscosity-temperature variation in the 126 

laboratory (Whitehead and Helfrich 1991). Section 4 presents a criterion for freeze-up of 127 

a dripping faucet in freezing weather and Section 5 analyzes flow and freeze-up for 2 up 128 

to 104 multiple tubes fed by a manifold. The calculations must include seepage flow and 129 

results produce a formula relating the spacing of active tubes to the parameter expressing 130 

the relative resistances of the active and manifold tubes divided by the upstream volume 131 

flux rate. Results are applied to some problems in igneous flow.  132 

 133 

2. A freezing pipe flow 134 

The three upstream situations are used along with a simplified model for the flow 135 

in the freezing region that comes from one of the simplest examples: a liquid flowing 136 

through a pipe held below the liquid solidus temperature developed by Zerkle and 137 

Sunderland (1968), and Sakimoto and Zuber (1998, and references therein).  Solutions 138 

are based on separation of variables with eigenvalues and eigenfunctions by Graetz 139 

(1883). Holmes (2007) and subsequently HCW asserted that the central attribute that 140 

leads to instability of these flows is that pressure drop becomes infinite in the limits of 141 

zero and infinite flux rate. Therefore, there is a pressure drop minimum in the middle.  142 

2.1 The solution 143 

HCW’s formulation is briefly reviewed (using some different symbols). Liquid 144 

enters one end of a pipe of radius r0 and length L (x-direction) at temperature Ti, (Figure 145 

2a,b).  Pipe wall temperature T0 is colder than the solidus temperature Ts that lies at 146 

radius 𝛼(𝑥, 𝑡&), where x is distance downstream and 𝑡& is dimensional time. The 147 

coefficients for thermal conductivity, specific heat, density, viscosity and latent heat of 148 

fusion are all constant. Volume flux rate Q and pressure (P) gradient along the pipe is 149 



found by integrating the low Reynolds number Stokes flow equations over the radial 150 

coordinate r from the center to the solid surface 151 

𝑑𝑃
𝑑𝑥**** = −

8𝜇𝑄
𝜋𝛼1(𝑥, 𝑡&)*************         (2.1.1) 152 

where 𝜇 is fluid viscosity. Temperature field within the solid is called Te  and is assumed 153 

to evolve slowly enough for thermal conduction to be steady. For a small pipe aspect 154 

ratio, conduction along the pipe axis direction is neglected so  155 

 𝑇3 =
𝑇4 − 𝑇5

𝑙𝑛
𝑟4

𝛼(𝑥, 𝑡&		)***********
**************𝑙𝑛

𝑟
𝛼(𝑥, 𝑡&)********** + 𝑇5   .     (2.1.2) 156 

In the liquid, temperature T is advected along-stream and diffused across-stream.  157 

𝑢𝜕𝑇𝜕𝑥*** =
𝜅
𝑟̅	
𝜕
𝜕𝑟*** ?𝑟

𝜕𝑇
𝜕𝑟***@,         (2.1.3) 158 

where 𝜅	is thermal diffusivity.  This has boundary conditions T=Ts at r=𝛼(x,𝑡&), T=Ti at 159 

r=x=0, and 𝜕𝑇𝜕𝑟*** = 0 at r=0. 160 

Last, the evolution of the solidus radius follows the Stefan equation at each value of x. 161 

𝐿C
𝐶E***
𝜕𝛼(𝑥, 𝑡&)
𝜕𝑡&***** = 𝜅 F𝜕𝑇3

𝜕𝑟***
G
HIJ(K,LM)

− 𝜕𝑇𝜕𝑟***
N
HIJ(K,LM)

O,     (2.1.4) 162 

where 𝐿C is latent heat of fusion and 𝐶E is specific heat of the liquid.  163 

The non-dimensional forms are derived using  𝑡& = (𝑟4P 𝐿C 𝐶E𝜅(𝑇Q − 𝑇R))𝑡⁄ , 𝑥 = 𝐿χ 164 

, 𝛼 = 𝑟4𝑎(𝜒, 𝑡), 𝜃 = (𝑇 − 𝑇4) (𝑇Q − 𝑇5)⁄ , 𝜃3 = (𝑇3 − 𝑇5) (𝑇Q − 𝑇5)⁄ , 𝑄 = X
Y𝜋𝜅𝐿𝑞, and

 
𝑃 =165 

4𝜇𝜅𝐿P𝑝/𝑟41	so
 

166 

𝑝(𝑡) = 𝑞(𝑡) ∫
1

𝑎1(𝜒, 𝑡)**********𝑑𝜒
`
4 .        (2.1.5) 167 

and (2.1.4) is  168 

𝜕𝑎(𝜒, 𝑡)
𝜕𝑡

= 1
𝑎(𝜒, 𝑡)*********[𝐸(𝑎(𝜒, 𝑡)) − 𝐼(𝜒, 𝑞(𝑡))]      (2.1.6)  169 

where the conductive heat flow from the solid-liquid interface toward the outer radius is 170 



𝐸e𝑎(𝜒, 𝑞, 𝑡)f =
−𝑇g

ln𝑎(𝜒, 𝑞, 𝑡)**************,       (2.1.7) 171 

and the conductive heat flow from the liquid onto the interface is 𝐼(𝜒, 𝑞). To calculate I, 172 

the solution for liquid temperature T uses the eigenvalues and eigenfunctions from Graetz 173 

(1883). The results are governed by the dimensionless temperature difference 𝑇g =174 

(𝑇R − 𝑇4) (𝑇Q − 𝑇R)⁄  (this sign and the sign in front of the right hand side of (2.1.7) are 175 

opposite to HCW). The radius changes with the downstream distance (Figure 2c), and for 176 

steady flow, the scaling dictates that for given values of Q and 𝜅 the dimensional distance 177 

downstream from the origin scales like 𝜒 𝑞⁄ . This geometric independence from Tn 178 

means the 4 interface profiles in Figure 2c are all versions of the same curve. 179 

 180 
Figure 2. (a) A tube held at a temperature below the solidus with liquid flowing from left to right. 181 

The radius 𝛼(x) of the solid-liquid interface changes in the flow direction.  (b) View into the axis. (c) 182 
Profiles of the dimensionless radius of liquid 𝑎(𝜒) along the tube for 4 different values of volume flux rate 183 
q. The curves are identical except that each is stretched differently in the lateral direction (From Holmes 184 
2007).  (d, e) Side and end views of the simplified model of the tube. (f) Pressure drop p through the tube as 185 
a function of flow rate q for two values of Tn (dashed curve), and the curve from this simplified model 186 
(heavy curve). (g) A compressible upstream, represented here by a reservoir in a field of gravity with a free 187 
surface fed by constant flux rate. (h) A fixed resistance in series with the tube fed at constant upstream 188 
pressure, represented here by an infinite upstream reservoir at fixed elevation in a field of gravity. (i) 189 
Multiple tubes connected with a manifold (top view). Each upstream location is fed by the same flux rate.  190 
Flow between each segment of the manifold has resistance coefficient C.  This example shows a 191 
hypothetical situation with smaller flow rate in one tube. 192 
 193 

The pressure drop across the tube is a function of volume flux rate q (shown by 194 

dashed lines in Figure 2f) that requires solving the eigenfunctions and eigenvalues of the 195 

problem. The solution has a minimum value 𝑝jQg  over the entire range, and 𝑝 goes to 196 

infinity at q=0,∞.  197 
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2.2 The simplified model 198 

It is convenient to use a simpler pressure-flux rate relationship than HCW but one 199 

with the same form (Figure 2f). This simplified model has a liquid-solid interface with 200 

constant radius 𝑎(𝑡) that does not change in the flow direction (Figure 2d,e). 201 

The dimensionless form of (2.1.1) is simply 202 

𝑝 =
𝑞
𝑎1*** .        (2.2.1) 203 

The conductive heat flux relation along the tube into the solid 𝐸(𝑎(𝑥), 𝑞, 𝑡)	is 204 

replaced by one that does not vary along the flow direction. The dimensionless equivalent 205 

for the first term in a Taylor series expansion about ln(1-a) is 𝐸(𝑎) = −𝑇g/	(1 − 𝑎). This 206 

makes the heat flow equation analytically solvable. The relation is best for 𝑎 close to 1 207 

with the values changing significantly from (2.1.7) as 𝑎 ⟶ 0.2. Therefore, the term 208 

1/𝑎(𝑡) in front of E  is also set to 1.  The resulting formula governs heat flow in cartesian 209 

coordinates through a slab over the inside area of the tube at r =1. We set 𝑙(𝜒, 𝑞) = 𝑞 4⁄  210 

in (2.1.6) so the model has the inflowing hot liquid deposit as much heat along the tube as 211 

possible and exit at the solidus temperature. These all are significant physical 212 

simplifications from the exact problem but they do express the physics of melt back and 213 

freeze forward with simple and useful relations. The radius evolution for the simplified 214 

model in Figure 2c,d is thereby substantially simplified to  215 

 𝑑𝑎
𝑑𝑡*** = − 𝑇g

1 − 𝑎******* +
𝑞
4𝑎****.      (2.2.2) 216 

Equations 2.2.1 and 2.2.2 for steady flow produce the pressure-flux rate relation shown in 217 

Figure 2f. It has the same shape as the HCW solutions and it	is close to HCW with 𝑇g =218 

0.1.  219 

It is convenient to use the rescaled variables 𝑞n =
𝑞
4𝑇g***** , 𝑝′ =

𝑝
4𝑇g***** , and 𝑡n = 𝑇g𝑡.  220 

(2.2.1) is the same and (2.2.2) becomes  221 

 𝑑𝑎
𝑑𝑡′****

= − 1
1 − 𝑎******* +

𝑞′
𝑎*

.      (2.2.3) 222 



 The fundamental objective of this study is to use (2.2.1) and (2.2.3) explore the 223 

dynamics with the three different upstream configurations sketched in Figure 2h-i.  The 224 

first is a compressible storage reservoir lying upstream of the tube.  The second is a fixed 225 

resistance in series with the tube fed by a reservoir at constant pressure.  The third has 226 

multiple tubes connected by a manifold.  227 

3. Compressible upstream 228 

The addition of a compressible upstream reservoir can be considered to be a model of a 229 

magma delivery system in the earth, and possibly to planets and moons, too. Time-230 

dependence is a fundamental feature of magma production in the earth irrespective of 231 

composition, temperature and geometry. Many mechanisms such as volatile content and 232 

outgassing, brittle behavior, viscosity variation, and crystal settling have been included in 233 

models, but this model produces time dependence without them.   Additional features 234 

such as outgassing and viscosity variation might be added later to produce highly 235 

eruptive cycles with faster time scales (Wylie, et al. 1999b). 236 

The simplest upstream condition consists of a reservoir of fluid with a free surface 237 

(essentially a compressible reservoir, Figure 2g) that is fed by a constant inflow 𝑞p. (The 238 

prime is omitted here to be consistent with steady flow notation in section 3.1). Fluid 239 

flows out of the reservoir and into the tube with volume flux rate 𝑞′. The pressure change 240 

obeys 241 

𝑑𝑝′
𝑑𝑡q = 𝜏(𝑞p − 𝑞′) .      (3.1) 242 

The dimensionless growth rate is 𝜏 = 𝜋𝑔𝑆𝑟4u

8𝐴𝜈𝜅𝐿*********, where, g is acceleration of gravity, 𝜈 is 243 

kinematic viscosity, and L is length of the tube. It is the previous timescale scale (Stefan 244 

number 𝑆 = 𝐿C 𝐶E(𝑇Q − 𝑇R)⁄  times 𝑟4P/𝜅) divided by a timescale for emptying an 245 

upstream reservoir of surface area A by viscous flow through the tube. 246 

 247 

3.1 Stability with Compressible Upstream 248 

Flow rate, radius and pressure is expanded into a zeroth order steady component and a 249 

time-dependent component 250 



𝑞′ = 𝑞4 + 𝜀𝑞`
𝑎 = 𝑎4 + 𝜖𝑎`
𝑝′ = 𝑝4 + 𝜖𝑝`

  . 251 

Assume that the unsteady flow is smaller than the basic flow, 𝜖 ≪ 1. The O(1) steady 252 

solutions from 2.2.3 are 253 

 𝑞4 =
𝑎4

(1 − 𝑎4)*********** = 𝑞p.      (3.2) 254 

thus   𝛼4 =
𝑞4

𝑞4 + 1********       (3.3) 255 

and from (2.2.1 for the primed values 256 

   𝑝4 =
𝑞4
𝑎41***

,       (3.4)  257 

thus   𝑝4 =
(𝑞4 + 1)1

𝑞4{
|  .     (3.5) 258 

The shape of (3.5) has the desired form shown in Figure 2f. The large asymptotic log-log 259 

slope corresponds to simple tube flow independent of Tn as in previous cases (Figure 2f). 260 

Minimum pressure is 𝑝4=256/27=9.48 and this corresponds to the minimum at 𝑞4 = 3 261 

with radius 𝑎4 = ~
�. It has the same value of minimum pressure as approximately Tn =0.1 262 

(from Figure 3 of Holmes (2007). The small asymptotic log-log slope of 2/1 has no 263 

counterpart in HCW. 264 

The linear stability equations occur at order . Equation 2.2.1 leads to 265 

  𝑞` = 4𝑎4{𝑝4𝑎` + 𝑎41𝑝`  ,     (3.6) 266 

(2.2.3) is  267 

� 𝑑𝑑𝑡*** +
𝑞4
𝑎4P***
+ 1
(1 − 𝑎4)P************� 𝑎` =

𝑞` 𝑎4q  ,    (3.7) 268 

and (3.1) is  269 

  ? 𝑑𝑑𝑡*** + 𝜏𝑎4
1@ 𝑝` = −4𝜏𝑝4𝑎4{𝑎` .    (3.8)

 
270 

These three are sufficient to calculate a growth rate. Substituting (3.6) in (3.7), using 271 

𝑞4 = 𝑝4𝑎41 , and setting 𝑎`, 𝑝` ∼ 𝑒�L, (3.8) becomes   272 

  (𝜎 + 𝜏𝛼41) �𝜎 − 3𝑝4𝑎4P +
1

(1 − 𝑎4)P************� = −4𝜏𝑎4u𝑝4  (3.9)  273 

ε



with roots (using 3.2 and 3.5) 274 

𝜎 = X
Y �3𝑝4𝑎4

P − 𝜏𝑎41 −
1

(1 − 𝑎4)P************ ± ��3𝑝4𝑎4P − 𝜏𝑎41 −
1

(1 − 𝑎4)P************�
P
−

4𝜏𝑎4{

(1 − 𝑎4)P************�. 275 

(3.10) 276 

The flow is unstable if growth rate  has a positive real part. Because 𝜏 and 𝑎4 are 277 

positive, the term 
−4𝜏𝑎4{

((1 − 𝑎4)P)*************** is negative and the term under the radical sign has smaller 278 

real magnitude than the term to the left of the radical sign.  Therefore, positive growth 279 

rate exists for  280 

 3𝑝4𝑎4P − 𝜏𝑎41 −
1

(1 − 𝑎4)P************ > 0.     (3.11) 281 

At zero (neutral stability), (3.10) is imaginary and the flow oscillates but is overdamped 282 

for very small 𝜏. Using (3.2-3.5), this can be rewritten as a function of either the upstream 283 

flux condition or of other steady flow properties. Defining  284 

𝜏� = (3 − 𝑞p)(𝑞p + 1)u𝑞p��    or    𝜏� = (3 − 𝑞4)𝑝4(𝑞4 + 1)P𝑞4�P (3.12a)  285 

There is instability for  286 

𝜏 < 𝜏�.        (3.12b) 287 

Curves for five values of 𝜏� are plotted in Figure 3a. Intersection progressively occurs 288 

further to the left with greater 𝜏. Positive growth, which leads to instability and 289 

presumably ultimately freeze-up, lies to the left of the intersection and stability to the 290 

right.  291 

σ



 292 
Figure 3. Results for compressible upstream. (a) Pressure-flux rate relation for steady flow (heavy 293 

curve (3.5)) along with small and large asymptotic logarithmic slopes for steady flow.  294 
Dashed curves are neutral stability (3.12a) for 5 different values of upstream 295 
compressibility rate 𝜏.  Inset, sketch of the curve with minimum radius added. (b) – (d) 296 
and (e) – (g) Flux rate, radius and pressure, for oscillating flow for qu=1.1, 𝜏 = 100 with 297 
a minimum radius of 0.05.  (b) Flux rate during the short time interval when the 298 
minimum radius is reached by oscillating flow. (c) Radius over a longer time interval 299 
from the start until after the minimum radius is reached. (d) Pressure during the short 300 
time interval when the minimum radius is reached by oscillating flow. (e), (f), (g) The 301 
same records for an even longer time interval up to t=400 until after the second type of 302 
oscillation has developed. (h) Upstream elevation h (pressure) and temperature for 303 
viscous fluid flowing out of a cold tube with compressible upstream (Whitehead and 304 
Helfrich 1991).  (i)  Trajectory of h in phase space. 305 

 306 
The curves are similar to those in Figure 6a of HCW. The limit 𝜏� = 0 has pressure 307 

constant for all time and flow is stable for q0>3. On the other hand, for 𝜏 → ∞ (very rapid 308 

response time) values of flux rate are stable and the entire curve is stable. These limits 309 

agree with those for the complete problem in Holmes (2007) and HCW. 310 

 311 

3.2 Numerical results 312 

Equations (2.2.1), (2.2.3) and (3.1) are easily integrated forward in time with 313 

finite differencing. Calculations over a wide range of many parameters verify the linear 314 

instability criteria with a typical example shown in (Figure 3b,c,d). The oscillation 315 

amplitude initially increases as in Figure 3c. At t=191.226, when amplitude becomes 316 

sufficiently large, there is an abrupt decrease in radius signifying a collapse to freeze up 317 

This starts at the instant when the smallest radius occurs in the cycle. Although this figure 318 
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is typical, some cases can be highly damped with perturbations decaying exponentially 319 

from the beginning. In all cases the sudden decrease signifies freeze-up and radius 320 

plunges toward zero.  321 

At the freezing stage in every one of our early numerical calculations, not only 322 

did radius plunge to zero, but also the calculation failed because (2.2.3) crossed zero, no 323 

matter how small the time step. At that point there were two options.  One was to simply 324 

terminate the calculation and conclude freeze-up. This is fine in many instances, but in 325 

some cases, the calculation needed to continue. The second was to substitute a steady 326 

small minimum radius at every time step where radius is calculated to be negative or 327 

smaller than a fixed value.  We found that this minimum radius always produces a small 328 

seepage flow that generates interesting new behavior without numerical failure. For the 329 

example in Figure 3c, the minimum radius was first invoked at t=191.226. After this, 330 

seepage flow continues and (3.1) leads to a gradual increase in pressure (Figure 3d,g) that 331 

occurs until flow rate is great enough for the seepage flow to melt back and open the tube 332 

following (2.2.3). In the model, the minimum radius adds an additional straight line in the 333 

pressure-flux rate curve from zero up to a point where it intersections (3.5) (see the inset, 334 

in Figure 3a). Then a new limit cycle oscillation occurs (Figure 3e,f,g) with pulses of 335 

rapid flow separated by very slow flow. Figure 3g shows that the upstream pressure 336 

during the limit cycle is much greater than the original pressure, and this is true for all 337 

oscillations throughout parameter space. 338 

The period of the limit cycle depends on the minimum radius value, so in this 339 

sense, the minimum radius is now a property of the model. All aspects of the cycle are 340 

affected by minimum radius value including the time for build-up to the start of the limit 341 

cycle, the value of upstream pressure that is needed before the limit cycle begins, the 342 

limit cycle frequency, and the minimum and maximum values of flow rate and pressure 343 

for the limit cycle. The limit cycle involves a melt-back of the solid when pressure build 344 

up enough to make the seepage flow rapid enough. Surprisingly, this flow rate is less than 345 

the flow rate at the instant of the beginning of freeze up. This is apparently because the 346 

flow rate at melt back occurs when the linear flux versus pressure curve for the minimum 347 

radius intersects the far left end of the curve for steady flow as sketched in the inset in 348 



Figure 3a. This aspect is noted also by Helfrich 1995 for flow focusing with temperature-349 

dependent viscosity. 350 

The cycles are similar to oscillations in tube flow with temperature-dependent 351 

viscosity and upstream compressibility (Figure 3h,i, from Whitehead and Helfrich 1991). 352 

There, instead of a minimum radius and seepage flow, there is the flow of a cold viscous 353 

“plug”. This plug flow has a smooth p-q curve without discontinuous slopes like the cusp 354 

from the intersection of a straight line and (3.5) in our model, but both of them seem to 355 

produce the same behavior.  356 

4.  The dripping frozen faucet 357 

4.1 Formulation 358 
The second upstream condition imposed here has the configuration in Figure 2h.  359 

It is inspired by the very well-known flow of water in pipes and in natural springs that 360 

continues to persist during freezing temperatures. In fact, a common trick used by 361 

homeowners and plumbers to prevent pipe rupture during periods of freezing is to leave a 362 

water faucet with a the dripping rate that is quite small for small ranges of subfreezing 363 

temperature or short durations, the water in the pipe does not freeze shut. In another 364 

example of a similar process, water continues to flow out of rock fractures long after air 365 

temperatures fall to below freezing, resulting in large accumulations of ice.  These can 366 

become hazards in subfreezing railroad and highway road cuts, with some of them 367 

reaching great size. A hint of why flow exists with below freezing temperature is found in 368 

the limit of large  (Section 3) which is equivalent to an imposed steady flux rate where 369 

flow continues for any value (Epstein and Chueng, 1983, Holmes 2007, HCW). 370 

Therefore, an analysis of this problem that includes upstream dynamics of the dripping 371 

water pipe is useful. 372 

 First, the formula in the previous section 2.2.1 becomes 373 

𝑝′ = 𝑞′
𝑎1***

.        (4.1) 374 

Second, the upstream constriction, representing the valve in a faucet, can be pictured as a 375 

tube of radius 𝑟� and length 𝐿�. The scaled faucet pressure drop is thus 376 

τ



𝑝′� =
𝑞′𝑟41𝐿�
𝐿𝑟�1*****   .      (4.2) 377 

The freezing tube and the faucet (either upstream or downstream) are connected in series 378 

to a reservoir at fixed large upstream pressure 𝑝′p so that 379 

 𝑝′ + 𝑅𝑞′ = 𝑝′p   .    (4.3) 380 

This introduces the faucet resistance scale 𝑅 = 𝑟41𝐿� 𝑟�1𝐿q .  The value of critical 381 

resistance is Rc.  382 

The other dimensionless equations are the same as in the preceding section and 383 

they are expanded as a power series about a steady flow.  The steady flow occurs at the 384 

intersection of the basic steady flow (3.5) and the straight line for equation (4.3) (Figure 385 

4b).  386 

4.2 Stability 387 

For stability, (3.6) and (3.7) for the first order perturbations are used along with  388 

𝑝` + 𝑅𝑞` = 0.        (4.4) 389 

Setting 𝑞`, 𝑝` ~𝑒�L, combining	(3.6), (3.7)and(4.4), and then and using (3.2-5) to 390 

simplify the coefficients, the formula for growth rate is   391 

𝜎 = �
(𝑞4 + 1){{(3 − 𝑞4)(𝑞4 + 1){ − 𝑅𝑞41}		

𝑞4{(𝑞4 + 1)1 + 𝑅𝑞41}
 .   (4.5) 392 

The sign of the perturbation does not matter. Because the slope of (3.5) is  393 

𝑑𝑝4 𝑑𝑞4⁄ =(𝑞4 − 3)(𝑞4 + 1){ 𝑞41⁄  ,     (4.6) 394 

growth rate is 395 

𝜎 = �
(𝑞4 + 1){{−𝑑𝑝4 𝑑𝑞4⁄ − 𝑅}		
𝑞4�{(𝑞4 + 1)1 + 𝑅𝑞41}

 .      (4.7) 396 

Equation (4.7) has a simple physical interpretation. Simply start with the line 𝑝4 +397 

𝑅𝑞4 = 𝑝p at the zero flux axis whose intersection with (3.5) is indicated by the star in 398 

Figure 4a. Then, as 𝑝p gradually decreases, pressure drop across the tube 𝑝4 goes through 399 

the minimum at 𝑞4 = 3 and then increases and remains stable until the slope 𝑑𝑝4 𝑑𝑞4⁄ =400 

−𝑅 is reached. This defines a critical resistance 𝑅�, and a further decrease in 𝑝p brings 401 

the line below the minimum.  This has no solution and freeze-up must occur.  If by some 402 



accident, a steady flow is started with 𝑝p along with a flux rate 𝑞4 intersecting the curve 403 

to the left of 𝑅�, a positive perturbation (making total flux rate larger than the intersection 404 

point value) has a radius that grows and approaches the stable flow lying at the 405 

intersection on the right. Conversely, a negative perturbation has a negative perturbation 406 

to the radius that leads toward freeze up.         407 

 408 
Figure 4. Results for two problems: for the faucet and two tubes. (a) A linear plot of three results with 409 

decreasing upstream pressure the for the faucet with R=2.  The critical upstream pressure 410 
(tangential line) has a value of 14.11. (b) Some values of 𝑅� for the faucet problem on a log-log 411 
plot. (c) Steady flows for two tubes with 4 values of C. The thin straight lines satisfy (5.6). The 412 
dashed curves are at the margins of (5.20) and instability growth is positive for any driving 413 
pressure greater than, or driving value of q less than those curves for each value of C.  The short 414 
tangential lines show slope at minimum q0. (d-f) Trajectories for numerical calculation with two 415 
tubes over time of 𝑎`(thick red line), 𝑎P (thin red line), 𝑞′` (thick green line), and 𝑞′P (thin green 416 
line), for (d) 𝑞p=2, C=1 with initial flux rate values close together progressing to seepage flow in 417 
one and full flow in the other. Inset, the three branch curve. (e) 𝑞p=4, C=1, with very different 418 
initial flux rates, the two flux rates and both radii progress to equal values.  (f) 𝑞p=0.01, C=1 with 419 
initial flux rates close together progressing to seepage flow in one and full flow occupying the 420 
other.  421 

 422 

Summarizing, stability is very sensitive to faucet radius and initial conditions. 423 

Freezing is readily prevented with a dripping faucet as long as R is small enough and 424 

flow is established. For example, a constriction with half the radius of the active tube has 425 

R=16.  A freezing faucet might have an equivalent ratio of radii of tube/faucet much less 426 

than 10-2 resulting in R>O(108). Hence flow freezes up when the flow rate is reduced to a 427 
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large negative slope on the left-hand branch. Freeze-up also occurs if the initial steady 428 

flow is small enough to lie to the left of (3.5)  429 

 430 

5. Multiple tubes 431 

Holmes (2007), numerically calculated flow in branching tubes where the source 432 

is comprised of a tube-manifold connected to a large number of tubes. The tube-manifold 433 

received uniform inflow along its entire length. The mathematical solutions were 434 

numerically stepped ahead in time to see the evolution of flows.  Fifty identical tubes 435 

responded with influx values that should result in 6 or 7 active tubes with the rest 436 

freezing up. The calculations verified the expectation. It was necessary to set to zero the 437 

flux of any tubes that were freezing up and letting the pressure distribution along the 438 

manifold be determined by active tubes alone. Helfrich (1995) calculated planer flow 439 

with fluid having viscosity variation. This achieved flow focusing into discrete channels. 440 

Both results motivated the study of multiple tubes connected by a manifold.  441 

5.1 Two Tubes—analytical results  442 

Consider tubes each fed by a source with flux rate qu with their upstream ends 443 

connected by a “manifold tube” that allows flow back and forth (Figure 2i). An upstream  444 

pressure condition is not imposed because it requires a different design. Starting with two 445 

tubes, the relations corresponding to primed (2.2.1) for tubes 1 and 2 are  446 

𝑝′` = 𝑞`n/𝑎`1,   (5.1)   𝑝′P = 𝑞Pn/𝑎P1.  (5.2) 447 

The equations corresponding to (2.2.3) are  448 

𝑑𝑎`
𝑑𝑡n**** = − 1

1 − 𝑎`******** +
𝑞n`
𝑎`***

, (5.3)  𝑑𝑎P
𝑑𝑡n**** = − 1

1 − 𝑎P******** +
𝑞nP
𝑎P***

, (5.4) 449 

The manifold tube is kept at the upstream temperature and has different length and radius 450 

than the cooled tubes. Manifold flow resistance is inversely proportional to a resistance 451 

coefficient defined as C=𝐿𝛼j1 𝐿j𝑟41⁄  with 𝛼j the dimensional radius of the manifold tube 452 

and Lm the physical length of the manifold tube.  The two upstream conditions are 453 

𝑞′` + 𝑞′P = 2𝑞p,  (5.5)  and  𝑞′` − 𝑞′P = 𝐶(𝑝′P − 𝑝′`). (5.6) 454 

Expanding as before, the equivalent equations to (3.2-4) are 455 

𝑝4Q = (𝑞4Q + 1)1/𝑞4Q{ ,      with i=1,2 (5.7) 456 



and  𝑞4Q =
𝑎4Q

1 − 𝑎4¢*********,        (5.8) 457 

so  𝑎4Q =
𝑞4Q

𝑞4¢ + 1********* ,        (5.9) 458 

and (5.3) and (5.4) require 459 

𝑞4` + 𝑞4P = 2𝑞p,        (5.10)   460 

and  𝑞4` − 𝑞4P = 𝐶(𝑝4P − 𝑝4`).       (5.11) 461 

Obviously, two equal flows are possible so that 𝑞4` = 𝑞4P = 𝑞p and 𝑝4` = 𝑝4P. 462 

Another pair with steady flow rates exist with the intersections of (5.7) and the straight 463 

line (5.11). Four examples are shown Figure 4c. Intersections lie above the minimum 464 
𝑑𝑝

𝑑𝑞q = −𝐶�` , 465 

𝐶 = 𝑞p1 (𝑞p + 1){(3 − 𝑞p)⁄  ,       (5.12) 466 

which is equal to the inverse of (4.6). The limit of large C is a horizontal straight line 467 

with two steady solutions. This is obviously only valid for 𝑞p > 3, since otherwise (5.10) 468 

is not satisfied. For finite C, the solution of (5.12) involves a fourth order polynomial 469 

with unknown analytical solutions. To supplement the analytical results, numerical 470 

results of (5.12) are easy to find and for C=1, for example, the minimum upstream flux 471 

rate allowing the solution is 𝑞p=2.25208. (One can also expand the polynomial about the 472 

value 9/4 to find a close approximation to this). Therefore, for C=1 and 𝑞p<2.25208, 473 

there is no intersection so that the only possibilities are either 𝑞4` = 𝑞4P or unsteady 474 

flows. Although one might expect that a flow with small 𝑞p would have a steady pair of 475 

rates with 𝑞4` = 2𝑞p with virtually all of the flow exiting through one tube and with the 476 

other tube almost frozen up, this is impossible because flow rate for small flow produces 477 

an extremely large pressure drop that is too large to satisfy both (5.5) and (5.6) for fixed 478 

𝑞p. This problem is removed by adding another physical process, for example adding a 479 

minimum radius to allow seepage flow.  This is done in all of the rest of our numerical 480 

calculations.  481 

So far, the range of possible steady flows has been found , but are they stable? Let 482 

us denote the perturbation quantities by a curly overbar £ . With steady flows, (equal or 483 

not) the equations governing small time dependent perturbations are first, the equivalents 484 

of (3.6) for each tube (i=1,2) 485 



𝑞¤Q = 4𝑎4Q{ 𝑝4Q𝑎¤Q + 𝑎4Q1 𝑝¤Q       (5.13)  486 

 and second the equivalent to (3.7) 487 

𝑑𝑎¤Q
𝑑𝑡n**** = ¥− 1

(1 − 𝑎4¢)P************* −
𝑞4Q
𝑎4¢P****
¦ 𝑎¤Q +

𝑞¤Q
𝑎4¢****  .     (5.14)   488 

The conditions in the upstream tube connecting them are  489 

𝑞¤` + 𝑞¤P = 0 ,        (5.15) 490 

𝑞¤` − 𝑞¤P = 𝐶(𝑝¤P − 𝑝¤`).       (5.16) 491 

It is convenient to modify (5.13) using the equivalent of (2.5) to eliminate 𝑎4Q  492 

𝑝¤Q =
𝑝4Q
𝑞4Q

𝑞¤Q −
4𝑝4Q(𝑞4Q + 1)	

𝑞4Q
𝑎Q 493 

(5.17)  494 

For two equal flows, 𝑝4` = 𝑝4P and using (5.16) to eliminate 𝑝¤Q (5.17) becomes  495 

(𝑞¤` − 𝑞¤P) =
4	𝑝4`(𝑞4` + 1)	
𝐶�`𝑞4` + 𝑝4`

(𝑎¤` − 𝑎¤P) 496 

      (5.18) 497 

Using this with i=1,2 in (5.14) subtracted reduces to 498 

𝑑(𝑎¤` − 𝑎¤P)
𝑑𝑡n**** + �

(𝑞4` + 1){

𝑞n4`***** −	
4𝑝4`(𝑞4` + 1)P

(𝐶�`𝑞4`P + 𝑞4¢𝑝4`)		************************  (𝑎¤` − 𝑎¤P) = 0. 499 

           (5.19) 500 

The growth in radius difference is positive if the value within the square bracket is 501 

negative, which becomes, after some manipulation and setting 𝑞4` = 𝑞p 502 

𝑝4` >
𝑞p(𝑞p + 1)
𝐶(3 − 𝑞p)*************         (5.20)  503 

Rewriting this using (5.7a), positive growth for instability requires 504 

𝐶 >
𝑞p1

(𝑞p + 1){(3 − 𝑞p)*********************** ,      (5.21)  505 

which is identical to (5.12). The margins of both 5.12 and 5.21 for selected values of C 506 

are shown as dashed curves in Figure 4c and their intersection with the steady flow curve 507 

(bold) gives values of the critical flow rate that occurs exactly at the tangent to the curve. 508 

Therefore, for both two identical flows and the dripping faucet, the steady flow persists in 509 

the entire range where the upstream volume flux rate is large enough to satisfy the steady 510 

flow equations. For smaller flux rate, instability occurs.  511 



5.2 Two tubes, numerical results  512 

The numerical calculation advances the two values of a by one time step using 513 

(5.3) and (5.4) and then calculates q using these formulas derived from (5.1), (5.2) (5.5) 514 

and (5.6)  515 

𝑞` =
2𝑞p𝑎`1

𝑎`1+𝑎P1 +
2
𝐶 𝑎`

1𝑎P1
�1 +

𝑎P1

𝐶
 , 516 

         (5.22) 517 

𝑞P =
2𝑞p𝑎P1

𝑎`1+𝑎P1 +
2
𝐶 𝑎`

1𝑎P1
�1 +

𝑎`1

𝐶
 . 518 

         (5.23) 519 

Then, the new values determine both pressures at the new time. In practice, one tube 520 

might begin to freeze and end up with radius shrinking rapidly toward zero when seepage 521 

flow occurs. All calculations continue indefinitely as in section 3 by supplying an 522 

additional branch to the pressure-flux rate curve (See inset in Figure 4d) so that the curve 523 

bends down to zero for vanishing pressure and allows a small seepage flow. Comparison 524 

of runs with a minimum value of radius of 10-3, 10-5 and even 10-13 gave the same results 525 

as the usual value that was used (10-4). Therefore, the value of minimum radius does not 526 

determine stability. Three examples are shown in Figure 4d-f. 527 

Numerical results over a wide number of parameters verify the analytic formulas 528 

in section 5.1. A run with 𝑞p=2 is shown as an example. The criterion in (5.21) is 529 

C<16/27 for instability.  With C=15/27, numerous calculations with a wide range of 530 

unequal starting amplitudes (ratios from 10-4 up to 104) had flows evolve to equal flow 531 

rates in both tubes like Figure 4d. Results not only confirm the linear stability prediction 532 

but the wide range of trial amplitudes indicates that the stability criterion is valid for all 533 

perturbation amplitudes (frequently described as globally stable). Figure 4e,f has 534 

examples for 2 other parameter pairs that approach balanced flows in one case and 535 

freeze-up in the other. Finally, in no case have two unequal flows like the straight line 536 

intersections in Figure 4c remained steady, but they always evolve to either two equal 537 

flows or one flow with freeze-up in the other. The only exception is if qu is set to a value 538 



smaller than the value of seepage flow where both tubes acquire equal values of seepage 539 

flow. 540 

5.3 Many Tubes- numerical results 541 

Numerical calculations are easily formulated for more than 2 tubes.  Each tube 542 

radius is advanced in time based on the radius and flux rate within each tube using 543 

equivalents of equations (5.3, and 5.4).  Then, to calculate flux rate at the new radius, we 544 

consider first the pressure drop between for tubes i and j 545 

 𝑞′Q − 𝑞′§ = 𝐶e𝑝′§ − 𝑝′Qf       (5.24) 546 

and this, along with the equivalent of (5.1) for every pair of tubes along the manifold, 547 

which are spaced |𝑖 − 𝑗| apart becomes  548 

𝑞′§ = 𝑞′Q
�1 + 𝐶

𝑎Q1|𝑖 − 𝑗|
�

F1 + 𝐶
𝑎§1|𝑖 − 𝑗|

O
= 𝑞′Q

𝑎§1(|𝑖 − 𝑗|𝑎Q1 + 𝐶)
𝑎Q1|𝑖 − 𝑗|e𝑎§1 + 𝐶f

 549 

(5.25) 550 

 551 

Then, one can use ∑ 𝑞′§¬
§I` = 𝑁𝑞p to express flux for the i-th tube 552 

𝑞′Q = �®
𝑎§1(|𝑖 − 𝑗|𝑎Q1 + 𝐶)
𝑎Q1e|𝑖 − 𝑗|𝑎§1 + 𝐶f

¬

§I`

�

�`

𝑁𝑞p 553 

         . (5.26) 554 

This resets flux rate for each tube after which the cycle is repeated.  555 

To begin a numerical calculation, a fixed value of qu and C is specified and the 556 

initial radius for tube number i has flux rate qu(0.9995+0.0001var(i)) where var(i) is a 557 

random integer between zero and 10 from a numerical random number generator. Radii 558 

and flux rates in each tube thereafter advance in time until steady state is reached. When 559 

instability develops with some tubes having larger flows and others smaller ones, (5.26) 560 

proceeds without interruption even after seepage flow develops. When earlier attempts 561 

had no minimum radius equation, 5.26 developed shrinking denominators and instability 562 

occurred.  563 

Figure (4a,b) shows a typical evolution of flux rate and radius for 101 tubes. 564 

Although the time step is small enough for different wavelengths of a perturbation to 565 



show different growth rates, as in the case of numerous stability problems as well as with 566 

temperature-dependent viscosity (Helfrich 1995, Wylie and Lister 1995). These 567 

calculations exhibited no selective wavelength. Instead, the random perturbation profile 568 

of both the flux rates and radii remains almost perfectly preserved during growth 569 

throughout an “early stage”. This stage terminates at different times depending on 570 

perturbation size, qu and C. In this case it persisted up to t=0.3. Then, suddenly, from 571 

t=0.35 to 0.4 there is an “intermediate stage” where the profiles and radii have order one 572 

variation and they begin to dramatically change with some radii and flow rates plunging 573 

toward zero and others increasing. The evolution of some individual tubes is not easily 574 

understood. For example, a tube radius might first decrease and then increase or vice 575 

versa as the upstream manifold pressure distribution readjusts. Last, a late stage follows 576 

this until t=2, with some tubes approaching seepage and others fully flowing. Finally, all 577 

flux rates and radii in the active tubes become almost exactly equal and all seepage flux 578 

rates do too. A cross-manifold flow remains that distributes material from the uniform 579 

source to the active tubes. In this model, the ends of a manifold have zero lateral flux rate 580 

and this exerts some influence not yet documented or understood. In spite of this, results 581 

are clear. For example, the steady final distribution at t=2 for qu=0.1, C=1 results in flow 582 

in 6 tubes (Figure 5a). A sequence with an unchanging distribution in the early stages of a 583 

numerical model with viscosity variation of cylindrical-slab flow seems to be similar to 584 

this ( Figure 14 of Helfrich 1995). That run ends up with one flowing region and 585 

everything else decaying away just like our results for the limit of small flux rate.  586 

Our small minimum radius value of 0.0001 used for these figures makes 587 

reproducible results (subject of course to the limits of random initial conditions). The 588 

seepage flux rate is completely negligible in the volume flux budget at the end of all 589 

calculations. For example, even for the extreme case with 104 tubes where only one tube 590 

remains active at the end of the freezing up sequence, less than 1% of the imposed flux 591 

goes through the 999 seeping tubes. 592 

This evolution of small perturbations that grow and results in flow that becomes 593 

equal in selected tubes occurs in every case of our 1183 numerical runs with results 594 

spanning wide ranges of qu (10-5 – 100), C (10-4 – 108) and N (2 to 10000) (listed in 595 

Supplementary Tables). Each realization follows the nonlinear evolution ending in a few 596 



actively flowing tubes with equal flux rates (Figure 5a) and radii (Figure 5b). A variation 597 

of the spacing away from the center exists, but such an effect only becomes large (more 598 

than tens of percent) for N>1000. The number of final tubes, #, has a statistical spread in 599 

1000 realizations (Figure 5c). The distribution is insufficient to determine whether it is 600 

bell shaped, which might not happen because of the nonlinear evolution.  601 

 602 
Figure 5 (a) Flux rate and (b) radius at various times starting from random initial conditions (qu=0.1, C=1, 603 

N=101). The first two times are during “early evolution” when the distribution profile is amplified 604 
without change of shape.  The next two times are during “middle evolution” when the profiles 605 
change because some of the radii become much smaller and each flux rate either grows or decays. 606 
The bottom two times are during “final evolution” when flowing and seepage tubes become fixed. 607 
The 6 flowing tubes end with equal rates and radii with all other flux rates and radii shrunk to 608 
negligible size. (c) The number of actively flowing tubes for 1000 different runs (qu=0.05, C=1, 609 
N=1000). (d) The spacing of tubes N/# versus qu/C1/4 (logarithmic) with a legend of symbols for 610 
values of C. (e (linear) and f (logarithmic) number  # of flowing tubes. 611 

 612 
   After flow is steady, all the flowing tubes have almost exactly the same flux rates 613 

and radii so they arrive at one point on the p-q curve. No known rule exists for the final 614 

rate location. For example, the rate in Figure 5a is about q=1.7 which is less than the 615 

minimum q=3 (Figure 3) and lies on the unstable branch. Therefore, the concept of “some 616 

flows are in the stable branch and others decay on the unstable branch” does not hold. 617 

Perhaps others will think, as I did, that this is surprising, but Helfrich (1995) also reports 618 

that numerical results of flows with fingering due to temperature-dependent viscosity do 619 

not cluster to the stable branch.  620 

After some searching, a systematic dependence between tube number # 621 

(consequently spacing N/#), and the parameter group qu/C1/4 was found for wide ranges 622 
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of C (108) and qu (1.5x104). All tubes support flowing for qu/C1/4>0.55 and flow fills 623 

fewer tubes for the remaining 154 runs. The trends in log-log space are remarkably linear, 624 

parallel and logarithmically close to linearly proportional to qu/C1/4 (Figure 5b,d) in spite 625 

of no averaging as in Figure 5c for randomness.  626 

Since C is proportional to the fourth power of the radius of the manifold tube 𝑎j, 627 

C1/4	will be called the “scaled manifold radius”. The linear trends in Figure 5d,f have a 628 

slope proportional to ?𝑞p 𝐶
X
�⁄ @
�`

 so active tube spacing N/# is linearly proportional to 629 

scaled manifold radius. To quantify the results further it is useful to note that the flux 630 

rates in each active tube are equal (e. g. Figure 5a,b at t=2) so each rate is simply 631 

q=Nqu/#. All radii are also equal so that the radius 𝑎 for steady flow in each active tube is 632 

readily calculated using equation (3.3). The ratios of this radius compared to the scaled 633 

manifold radius 𝑎/𝐶`/1 for the points shown in Figure 5 are shown in Figure 6a. The 634 

ratios are not constant, but they all are clearly of order one. For 𝐶 ≤ 1 the ratio 𝑎/𝐶`/1 635 

has considerable variation of a little over 2 with a total range from 0.3 to 0.68.  For 636 

C=100, the mean ratio is 0.225 with a standard deviation of 0.003. For C=104, the mean 637 

ratio is 0.082 with standard deviation 0.0088. Therefore, to a first approximation the 638 

radius within a flowing tube is linearly proportional to the scaled manifold radius C1/4 639 

with a proportionality constant (Figure 6a) that is order one.  640 

 641 
Figure 6. (a) Radius within each flowing tube after a reasonably steady flow is achieved divided by the 642 

scaled manifold radius. The numbered runs occupy a wide range of qu (Figure 5). (b) Evolution of 643 
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the contours of tube radius for a 200 tube manifold with sequentially decreased flow rates for 644 
C=0.0001.  The sequential values of  # are 97, 67, 5 and 1. 645 

 646 
Figure 6b shows contours of radius for all active tubes with 4 progressively lower 647 

values of qu, and is a good illustration of the spacing of active tubes. When this run is 648 

continued with the opposite sequential increases in qu there is hysteresis with no increase 649 

in the number of active tubes. This is explained by considering that for flow in a single 650 

tube, the total flux rate is 0.04x200=8 making an upstream pressure of about 12 (see 651 

Figure 4a). This pressure makes only a tiny seepage flux rate of 1.2x10-15 but the seepage 652 

flux rate needed for the straight line of seepage flow to intersect equation (3.5) is over 1.  653 

What might these results imply for the spacing of outflows in nature? Let us try 654 

first to look at the formation of vents along a volcanic fissure. The number of tubes for 655 

N=1000 in Figure 5 is roughly fit by the relation  656 

#=800quC-1/4      (5.27) 657 

Make a model of a fissure composed of 103 tubes spaced Lm=10 m apart feeding melt up 658 

from a shallow reservoir at a depth L=1000 m below the surface. A total flux of Q=1 m3s-659 
1 is evenly distributed at 1000 m depth and therefore the flux per tube is Q=0.001 m3s-1. 660 

Using 𝑞p = 𝑄 𝜋P𝜅𝐿𝑇g⁄  along with magma thermal diffusivity 𝜅=5x10-7 m2 s-1, and 661 

Tn=10, gives 𝑞p=0.020.  As a first guess equating the radius of the manifold tube to the 662 

tube to the surface so that ro=rm and C=L/Lm then (5.27) gives that #=16/101/2=5 tubes 663 

that are active over the 10 km extent so there is a vent every 2 km. With greater depth of 664 

the fissure and everything else the same, then qu is smaller and there are fewer active 665 

tubes with wider vent spacing. These distances are plausible and given the great 666 

differences between this simple model and complex reality, the test seems to be 667 

promising.  668 

Let us try a second example-- the general problem of magma focusing at mid-669 

ocean spreading centers. Pretend that there is a manifold consisting of a continuous 670 

mushy zone along a 1000 km long ridge with vertical tubes each spaced 1 km apart that 671 

might bring melt up to the surface. To pick flux rate, we need to produce a flux that 672 

generates an oceanic crust thickness of 7 km with a ridge with a moderate spreading rate 673 

of 0.1 m y-1 (=3.2x10-9 m s-1).  This gives a flux rate per tube spaced over the 1 km width 674 

covered by each tube of approximately 0.022 m3s-1. Using a value of L=30 km, (a 675 



minimum value for the depth), the same values of thermal diffusivity and Tn as above, 676 

then the dimensionless value of flux rate is qu=0.0149. There is little knowledge of what 677 

the equivalent for rm would be for either mushy zones or magma chambers under the 678 

ocean floor, so for a crude start use C=1. (Note that a new model with a porous manifold 679 

is quite feasible.) This gives 12 active tubes for the ridge, equivalent to spacing of 83 km. 680 

This exceeds the spacing that is more typically 20-40 km for moderate rate mid-ocean 681 

spreading centers.  Note also that this calculation implies that spacing is inversely 682 

proportional to flux rate so that with the present parameters ultra-slow spreading centers 683 

might have spacings over 100 km and the fastest might have spacing less than 50 km. 684 

Therefore, the results show that magma cannot rise up everywhere in fissures and 685 

spreading centers and there are presumably ranges of parameters where volcanic 686 

intrusions might even freeze shut. Note that the volume flux rate used here is equal to 0.7 687 

km3/y for the 1000 km ridge, which reduces to a volume flux rate for each of the 12 tubes 688 

of 0.058 km3/y which is in the middle of the range of active volcanos in White et al. 689 

(2006).  They present other considerations that ours for the thermal cooling of the 690 

chambers as suggested constraints on the size of the volcanos. There are many other 691 

suggested dynamical factors governing the spacing of volcanos. To name a very few, 692 

there is Rayleigh-Taylor buoyancy that involves viscosity of the mushy zone (Schouten et 693 

al. 1985), there are combined buoyant, tectonic and mantle-forced flows (Magde and 694 

Sparks 1997), and there is even deeper mantle flow (Vanderbrock et al, 2016 and 695 

references therein).  Results of this simple model suggest that lateral migration in the 696 

mushy zone with rising modulated by localized freezing dynamics might also be 697 

important and these dynamics can be added to the existing list.  698 

In summary, the model curve in Figure 3a is incomplete for many models because 699 

freezing builds up impossible pressure in the manifold. The imposition of a minimum 700 

radius (Figure 3a inset) removes this inadequacy. With it, both a limit cycle for 701 

compressible upstream and multiple tubes up to 𝑁 ≤ 1000 work well at documenting 702 

evolution of flow. For qu/C1/4<0.55 both the spacing between active tubes and the value 703 

of the active tube radius depends primarily on the scaled manifold radius C1/4. For growth 704 

from random noise, the relation between qu and # is not unique. Statistical results end up 705 



clustering around a central peak to give # and the spacing. Finally, the results seem to be 706 

in crude accord with the spacing of magmatic centers in mid-ocean ridges.  707 

6. Discussion 708 

This simple model is used to analyze a number of flows with different upstream 709 

conditions. Explicit formulas lead to insight into freezing dynamics for each upstream 710 

condition with formulas for stability and other aspects of each flow. For a compressible 711 

upstream chamber, the two limits of constant pressure and constant flux rate are 712 

recovered and results are similar to those by Holmes 2007 and HCW.  For the frozen 713 

water faucet configuration, freeze-up occurs when the pressure change of the flow equals 714 

slope of the curve in Figure 4. For branching tubes, (5.21) indicates that freeze-up of one 715 

of a pair of tubes occurs if the inverse of the resistance coefficient between the two tubes 716 

upstream is greater than the tangential slope for that coefficient in Figure 4. For all three 717 

configurations, numerical calculation with finite time steps cannot extend all the way to 718 

perfect freezing unless one develops a special numerical method to remove high 719 

pressures for very small flow with very small radius for long times. We resort to a 720 

minimum radius that allows numerical integration to proceed to final flows.  721 

The compressible model is intended to be the simplest possible model of a time-722 

dependent magma delivery system. It omits variations in volatiles and viscosity, but it has 723 

the three important elements listed below. 724 

1. There is a single reservoir driven by a steady influx of material.  The reservoir 725 

accumulates pressure to drive the melt upward through the colder surface of the earth. 726 

The reservoir in this model is linearly compressible, but that compressibility is meant to 727 

replace all the effects of buoyancy force driven by the density difference between magma 728 

and rock as well as the excess pressure from the elastic surroundings as magma 729 

accumulates under the region.  730 

2. There is a permanent pathway to the surface, represented here by a simple cold 731 

tube with the added feature that it allows seepage flow. The pathway in our model 732 

represents both cracks from stress in the elastic plate that are abundantly observed 733 

seismically, brittle and weak material in the pathway and preheated aseismic pathways 734 

that guide magma ascent. There is a minimum of different structures along the flow and 735 

storage paths and no mechanical opening of a crack.  736 



3.  The melt can solidify along the tube . There are no volatiles, flow is one-737 

dimensional with composition and viscosity constant, and most important the model 738 

eruption cannot happen unless the outflow is rapid enough to melt back the solid sheath 739 

of the tube. (like the melt-back of a fissure as in Bruce and Huppert 1989).  740 

The dynamics of the spacing of active tubes and the relation between spacing and 741 

the scaled manifold radius C-1/4 is obviously caused by the relatively close correlation 742 

between active flowing tube radius and scaled manifold radius although there is also a 743 

weak influence by C.  744 

Although flow and freeze-up with true solidification differs from flow with 745 

viscosity variation, we found that invoking a minimum radius makes solidifying flows 746 

very similar to flow of fluids with large temperature-dependent viscosity. For example, 747 

when our minimum radius is inserted, there is a branch of the pressure curve that bends 748 

down to zero as flow approaches zero (Figure 3a inset), just like flows with temperature-749 

dependent viscosity (Whitehead and Helfrich 1991, Helfrich 1995, Wylie and Lister 750 

1995, and Wylie et al. 1999a).  Possibly the model of Wylie and Lister (1995) with a step 751 

change in viscosity is the closest equivalent to our solidification model, although that 752 

does not include a latent heat of fusion. In any case, the flow with variable viscosity 753 

inherently has seepage flow so that our new results seem to apply to such problems. 754 

Although a systematic investigation of hysteresis in this problem might be interesting, it 755 

can be more usefully conducted for the problem of viscosity variation rather than freezing 756 

since the minimum radius is added to this model.  757 

The minimum radius allows a tube to recover from seepage when upstream 758 

pressure becomes large enough. The reason why a minimum radius is required for all 759 

time in both sections 3 and 5 is fundamental if one wants to avoid the discontinuity of 760 

freeze-up. For section 3, the flow rate-pressure curve must have two extrema so that 3 761 

possible intersections with a straight line exist rather than the 2 intersections in Figures 3 762 

and 4. In that way, two intersections are stable and the third middle one is not, so 763 

oscillations can come to equilibrium. In section 5, the minimum radius prevents 764 

excessively large pressures that are associated with very small flow rates and radii.  765 

Perhaps other physical processes instead of a minimum radius can be invoked 766 

numerically for solidifying flows. In any event, the need to invoke a minimum radius 767 



makes the results with large viscosity variation and with solidification very similar so 768 

future projects might simply use one or the other, depending on which is most 769 

convenient. In addition, some numerical results in section 3 clearly apply to flow with 770 

viscosity variation and this should also be true for section 5.  771 

There are innumerable interesting extensions. One can combine these upstream 772 

conditions to flows with both viscosity variation and solidification, or have a slightly 773 

porous solid, or incorporate non-Newtonian flows like those reviewed by Kavanagh et al. 774 

(2018), or make a model of sedimentation problems or extend this approach to more 775 

complex flow geometry. It is not difficult to imagine the occurrence of very complicated 776 

or even truly chaotic flows.  With enough complications, even realistic random-appearing 777 

patterns (Klein 1982) could probably be generated. It is hoped, however, that the 778 

interesting behavior of these models with relatively simple flow situations can start to 779 

explain some of the elaborate piles of material that are encountered in igneous, frozen 780 

and depositional structures in the earth. 781 
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