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Key Points: 28 

• A solution is derived from transit time distribution theory to model the removal of 29 
stormwater pollutants in green stormwater infrastructure 30 

• The solution is calibrated and validated with data from 17 simulated storm events 31 
at a field-scale test facility in Southern California 32 

• The solution reproduces measured breakthrough concentrations, provided that 33 
lateral exchange with the surrounding soil is taken into account 34 

  35 
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Abstract  36 

In this paper, we explore the use of unsteady transit time distribution (TTD) theory to 37 

model pollutant removal in biofilters, a popular form of nature-based or “green” 38 

stormwater infrastructure (GSI). TTD theory elegantly addresses many unresolved 39 

challenges associated with predicting pollutant fate and transport in these systems, 40 

including unsteadiness in the water balance (time-varying inflows, outflows, and storage), 41 

unsteadiness in pollutant loading, time-dependent reactions and scale-up to GSI networks 42 

and urban catchments. From a solution to the unsteady age conservation equation under 43 

uniform sampling, we derive an explicit expression for solute breakthrough with or 44 

without first-order decay. The solution is calibrated and validated with breakthrough data 45 

from 17 simulated storm events (+/- bromide as a conservative tracer) at a field-scale 46 

biofilter test facility in Southern California. TTD theory closely reproduces bromide 47 

breakthrough concentrations, provided that lateral exchange with the surrounding soil is 48 

accounted for. At any given time, according to theory, more than half of water in storage is 49 

from the most recent storm, while the rest is a mixture of penultimate and earlier storms. 50 

Thus, key management endpoints, such as the treatment credit attributable to GSI, are 51 

inexorably linked to the age distribution of water stored and released by these systems.    52 
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Plain Language Summary 53 

Conventional drainage systems are designed to move stormwater as quickly as possible 54 

away from cities. By contrast, green stormwater infrastructure (GSI) captures and retains 55 

stormwater as close as possible to where the rain falls. As stormwater runoff is a leading 56 

cause of non-point source pollution, quantifying the pollutant removal services provided 57 

by GSI is a top priority. In this paper we propose and test a mathematical framework—58 

transit time distribution (TTD) theory—for modeling and predicting pollutant removal in 59 

biofilters, a popular form of GSI. From field data collected at a biofilter test facility in 60 

Southern California, we demonstrate that TTD theory properly accounts for the extreme 61 

temporal variability associated with pollutant loading during storms, and the transient 62 

unsaturated flow fields that control pollutant fate and transport through the porous media 63 

component of these systems. The theory’s parsimony and predictive power make it ideally 64 

suited to model pollutant removal at the scale of individual biofilters, as well as GSI 65 

networks and the urban catchments in which they are embedded. 66 

 67 

  68 
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1. Introduction  69 

Green stormwater infrastructure (GSI) provides many benefits beyond the retention and 70 

detention of urban stormwater flows (Walsh et al., 2005; Walsh et al., 2012), including 71 

improved water quality, urban heat mitigation, habitat creation resulting in enhanced 72 

urban biodiversity, carbon sequestration, recreational opportunities, and mental health 73 

(Keeler et al., 2019; Engemann et al., 2019; Raymond et al., 2017; BenDor et al., 2018; 74 

Walsh et al., 2016; Grebel et al., 2013; National Academy of Sciences, 2016). In this 75 

paper we focus on the water quality benefits of an increasingly popular form of GSI called 76 

biofilters, also known as bioretention systems or rain gardens. As illustrated in Figure 1a, 77 

these vertically oriented systems filter water through planted soil or sand-based media and 78 

are easily integrated into the urban landscape over a range of scales (Roy-Poirier et al., 79 

2010; Wong, 2006). Their possible elements include: (1) a ponding zone that retains water 80 

prior to infiltration; (2) biological components including upright vegetation and naturally 81 

colonizing soil invertebrates and microorganisms; (3) engineered filter media (sand, sandy 82 

loam, or loamy sand with or without media amendments (e.g., biochar; Boehm et al., 83 

2020; Mohanty & Boehm, 2014)); (4) a coarse sand transition layer; (5) a drainage layer 84 

consisting of coarse sand or fine gravel which can be lined or unlined and with or without 85 

an underdrain; (6) an overflow structure that releases excess stormwater; and (7) a raised 86 

outlet to facilitate the formation of a permanently wet “submerged zone” (Kim et al., 87 

2003; Payne et al., 2015; Clar et al., 2004; Rippy, 2015; Grant et al., 2013; Davis et al, 88 

2009).   89 

The water quality benefits attributable to GSI are often quantified based on the fraction 90 

of stormwater pollutants (measured on a concentration or mass basis) removed during 91 
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laboratory or field challenge experiments (Davis et al., 2009; Hatt et al., 2009; Li et al., 92 

2012; Feng et al., 2012; Ulrich et al., 2017; Li & Davis, 2014; Bedan & Clausen, 2009; 93 

Kranner et al. 2019). Much of this research has focused on the link between system design 94 

and pollutant removal, for example how the choice of plant species and the presence or 95 

absence of a submerged zone influences the removal of nutrients (e.g., Kim et al., 2003; 96 

Read et al., 2008; Read et al., 2009; Rycewicz-Borecki et al., 2017; Payne et al. 2018) and 97 

how media amendments influence the removal of microbial contaminants and heavy 98 

metals (e.g., Zhang et al., 2010; Mohanty & Boehm, 2014; Li et al., 2016). The effects of 99 

transient unsaturated flow, a defining feature of biofilters and GSI generally, are less often 100 

considered. Occasionally, transient unsaturated flow is indirectly acknowledged through 101 

experimental designs that incorporate an antecedent dry period between stormwater 102 

dosing (Payne et al. 2014; Chandrasena et al. 2014a). Similarly, biofilter design guidelines 103 

often recommend the inclusion of a submerged zone so that a portion of stormwater 104 

passing through the biofilter spends a longer time undergoing treatment (e.g., nitrogen 105 

removal by denitrification) between storms (Payne et al. 2015; LeFevre et al., 2015). Yet, 106 

a detailed understanding of how transient unsaturated flow influences contaminant 107 

removal remains elusive. 108 

Part of the problem is that transient unsaturated flow imposes severe challenges for 109 

predictive modeling. The Richards equation, which describes transient unsaturated flow 110 

through porous media, can be solved to estimate time varying flow and saturation through 111 

biofilters in one-, two-, or three-dimensions (e.g., using the numerical package Hydrus 112 

(Simunek et al., 2008)). These solutions can be coupled to the advection-dispersion 113 

equation (ADE) and one or more hypothesized pollutant removal mechanisms, to estimate 114 
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pollutant removal in biofilters and analogous vadose zone systems (Massoudieh et al., 115 

2017; Radcliffe & Simunek, 2010; Simunek et al., 2008). While this approach may work 116 

well as a theoretical exercise (Alikhani, et al., 2020; dos Santos et al., 2013) and under 117 

highly controlled conditions in the laboratory (Behroozi et al., 2020; Henrichs et al., 2009; 118 

Trenouth & Gharabaghi, 2015; Al-Mashaqbeh & McLaughlan, 2012; Horel et al., 2015) 119 

or field (Boivin et al., 2006; Jiang et al., 2010; Massoudieh et al., 2017), its general 120 

application is limited by the information required (boundary conditions, soil hydraulic 121 

properties, root profiles, and so on) and the fact that biofilters, like the catchments they are 122 

nested within, are “complex, heterogeneous, and poorly characterized by direct 123 

measurement” (Kirchner, 2009).  124 

Alternatively, mass balance over a control volume drawn around the biofilter media—125 

so-called “bucket models”—can be used to track the temporal evolution of soil moisture 126 

and solutes. Daly et al. (2012) used a bucket model to derive the probability density of 127 

water volume stored in a biofilter based on a stochastic description of rainfall together 128 

with biophysical models for gravitational drainage and evapotranspiration (ET). The 129 

power of bucket models lies in their simplicity; an enduring challenge has been how to 130 

leverage their output into estimates of pollutant removal. Daly et al. (2012) bridged this 131 

gap by relating the pore fluid total nitrogen concentration in a biofilter to soil saturation 132 

(estimated from the bucket model) on the premise that low saturation levels are associated 133 

with “a reduction in nitrogen plant uptake and denitrification with a consequent 134 

accumulation of nitrogen in the filter media that is then washed out during the next inflow 135 

event.” While clever, this approach does not address the more general problem of 136 

predicting pollutant removal as stormwater passes through a biofilter or other GSI. 137 



 7 

Further, Daly et al.’s bucket model was implemented at a daily time step, and 138 

consequently within-storm processes (such as pollutant breakthrough curves) cannot be 139 

resolved. Randelovic et al. (2016) proposed a hybrid approach in which the unsteady 140 

water balance is solved with a bucket model while pollutant removal in the filter media 141 

and submerged zone is predicted with the one-dimensional ADE coupled with one or more 142 

Figure 1. (a) Schematic diagram of transport processes that may influence solute 
transport through the lined biofilter used in our field experiments, including lateral 
infiltration and exfiltration with the surrounding soil ((i), (ii) and (iii)); outflow by 
evapotranspiration, gravitational drainage through the filter media, and short-
circuiting ((iv), (v), (vi)); diffusive exchange of water and solutes between pore spaces 
and micro-porosity within individual grains or organic material (vii), and uptake of 
water and solutes by plant roots (viii). (b) Photographs of the experimental set-up at 
the OCPW Low Impact Development Demonstration Facility (left), and the 
programmable controller and valve (top and bottom right). (c) Detail of the storm 
simulation experiments, including the vertical and horizontal positions of inflow and 
outflow tanks, control valve, biofilter test cell, and sampling set-up in the outflow 
tank (not to scale). 
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pollutant removal mechanisms. Their framework accurately predicts micropollutant 143 

removal in field-scale stormwater biofilters (Randelovic et al., 2016) but at the cost of 144 

significant complexity—the model consists of 25 coupled equations and requires the 145 

specification of 32 variables. Refinements of this model continue to be published (Shen et 146 

al., 2018; Zhang et al., 2019) and incorporated into practice oriented GSI design software 147 

(e.g., MUSIC (eWater Ltd., 2020)) (reviewed in Jefferson et al., 2017 and Li et al., 2017).  148 

In this paper we propose and test an entirely new approach for predicting unsteady 149 

reactive solute transport through GSI: time-variable transit time distribution (TTD) theory. 150 

TTD theory combines the simplicity of bucket models with the temporal resolution and 151 

physical insights provided by process-based models of pollutant fate and transport in 152 

transient unsaturated flow systems. The theory was developed by hydrologists to 153 

characterize the myriad transport pathways and timescales associated with water and 154 

solute transport through catchments to streams (Rinaldo et al., 2015; Rinaldo et al. 2011) 155 

but has since been applied to a diverse array of environmental problems (e.g., Smith et al., 156 

2018; Metzler et al., 2018). In place of a mass conservation equation (such as the ADE), 157 

transient TTD theory is premised on a conservation equation for the age distribution of 158 

water entering, stored in, and leaving a system. The age distribution of water leaving a 159 

system, in turn, encodes all of the information needed to estimate pollutant breakthrough 160 

concentrations, including the time history of inflows (e.g., in the case of a biofilter, the 161 

magnitude and timing of storm events) and the transformation reactions that occur as 162 

water flows through the system along diverse flow paths. In short, TTD theory directly 163 

links hydrologic processes to water quality outcomes (Hrachowitz et al., 2016).  164 
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There are at least two reasons why TTD theory is a potentially important advance over 165 

current approaches for modeling pollutant removal in GSI: (1) parsimony; and (2) 166 

extensibility. The TTD model presented later requires the specification of just one 167 

unknown parameter, the effective size of the biofilter (taking lateral exchange of water 168 

and solutes with the surrounding soil into account). TTD models can be linked in series 169 

and parallel (Bertuzzo et al., 2013; Hrachowitz et al., 2016) to represent GSI networks and 170 

the hydrological response units (e.g., hillslopes, groundwater, wetlands, rivers) associated 171 

with the urban catchments in which they are embedded. Thus, TTD theory directly 172 

addresses a significant limitation with existing GSI modeling frameworks; namely, their 173 

“uncertainty in simulating the propagation of flows through pathways such as stormwater 174 

networks, pervious runoff and subsurface flows” (Li et al., 2017). 175 

The paper is organized as follows. We begin by developing the TTD modeling 176 

framework needed for GSI applications (Section 2). A field-scale test of the TTD theory is 177 

then described (Section 3) followed by experimental and modeling results (Section 4), a 178 

discussion of water quality implications (Section 5), and conclusions (Section 6).  179 

2. Modeling Framework 180 

The application of TTD theory to GSI entails three steps: (1) a control volume is drawn 181 

around the feature of interest, in our case the media of a biofilter; (2) an unsteady water 182 

balance is performed over the control volume, taking into account time-varying inflows, 183 

outflows, and change in water storage; and (3) the age distribution of water in the control 184 

volume, and in water flowing out of the control volume by gravitational drainage and ET, 185 

is estimated from TTD theory, along with any water quality metrics (e.g., solute 186 

breakthrough curves) of interest. In this section we describe two different approaches for 187 
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preparing the unsteady water balance, including a simple bucket model (Section 2.1) and 188 

the Richards Equation coupled with soil hydraulic functions (Section 2.2). We then solve 189 

the age conservation equation (Section 2.3.3) and derive a set of expressions for the age 190 

distribution’s central tendency and spread (Section 2.3.4) and the breakthrough 191 

concentration of a solute with or without first-order decay (Section 2.3.5).  192 

2.1 Bucket Model Water Balance 193 

Equation (1a) is an unsteady macroscopic water balance over the biofilter media, where 194 

the variable [T] is time and the functions  [L],  [L T-1],  [L T-1], and  195 

[L T-1] represent, respectively, the volume of water in storage, infiltration rate of water 196 

into the biofilter from the ponding zone, gravitational discharge of water out of the 197 

biofilter, and ET across the top boundary of the biofilter (Daly et al., 2012). All volumes 198 

and fluxes are normalized by the biofilter’s surface area. 199 

         (1a) 200 

           (1b) 201 

The initial condition (equation (1b)) stipulates that the area-normalized water in storage at 202 

time  is  [L]. To solve equation (1a) we must first specify the storage 203 

dependence of all terms on the righthand side. These are discussed in turn. 204 

2.1.1 Dependence of Infiltration on Storage 205 

For the field experiments described later, the biofilter is lined and outfitted with an 206 

underdrain open to the atmosphere. Under these conditions, a parsimonious description of 207 

the infiltration rate can be written as follows, where the variables represent the inflow of 208 

stormwater from the surrounding catchment into the ponding zone,  [L T-1], the 209 

t S t( ) J t( ) Q t( ) ET t( )

dS
dt

= J t( )−Q t( )−ET t( )

S t =0( )= S0

t =0 S = S0

I t( )
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biofilter media’s average saturated hydraulic conductivity,  [L T-1], and its maximum 210 

water storage volume,  [L] (equal to the biofilter’s area-normalized void volume): 211 

         (2) 212 

This simple expression approximates the three phases of infiltration (Williams et al., 1998) 213 

as follows. Infiltration equals inflow during the Filling Phase, which begins when 214 

stormwater first enters the ponding zone and infiltration is dominated by capillary forces: 215 

, . Infiltration equals the saturated hydraulic conductivity during the 216 

Transition Phase as the biofilter approaches full saturation: , . During 217 

this phase, water level in the ponding zone rises whenever inflow exceeds the media’s 218 

saturated hydraulic conductivity. Infiltration is zero during the Draining Phase, which 219 

commences once inflow has ceased and the ponding zone has drained: , 220 

. While process-based models of infiltration are available (e.g., Green & 221 

Ampt, 1911), equation (2) is consistent with the field observations described later (see 222 

Section 4) and its sole variables (  and ) are easily measured biofilter design 223 

parameters (Payne et al., 2015; Peng et al., 2016; Le Coustumer et al., 2012; Le 224 

Coustumer et al., 2009). 225 

2.1.2 Dependence of Gravitational Discharge on Storage  226 

 Kirchner (2009) posited that streamflow out of a catchment can be represented by a single 227 

non-linear function of the catchment’s water storage, . One such functional 228 

relationship derives from the power-law recessional model for streamflow where the 229 

prefactor, , and exponent, , are empirical constants: 230 

K sat

Smax

J t( )= I t( ) , 	0<S t( )< Smax
Ksat , 	S t( )= Smax

⎧
⎨
⎪

⎩⎪

S t( )< Smax J t( )= I t( )

S t( )= Smax J t( )= K sat

S t( )< Smax

J t( )= I t( )=0

K sat Smax

	
Q t( ) = f S t( )( )

a 	b
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           (3a) 231 

When coupled with an unsteady water balance over the catchment, Kirchner demonstrated 232 

that equation (3a) can be manipulated to yield an algebraic expression for streamflow as a 233 

function of storage (equation (14) in Kirchner (2009)). Here we adopt a rearranged form 234 

of Kirchner’s algebraic relationship to describe gravitational discharge from a biofilter 235 

(equation 3b), where the new variable,  [L], is the residual storage at which all 236 

discharge ceases: 237 

         (3b) 238 

The constants appearing in equations (3a) and (3b) are related as follows: 239 

          (3c) 240 

          (3d) 241 

The new variables,  and , are emergent properties of the transient unsaturated flow 242 

field; i.e., they must be determined empirically based on experimental observations or 243 

numerical solutions of the Richards equation.  244 

2.1.3 Dependence of Evapotranspiration (ET) on Storage  245 

ET also depends non-linearly on water storage, but only when storage falls below a critical 246 

value known as the incipient water stress (Allen et al., 1998; Daly et al., 2012). Above the 247 

incipient water stress, ET approaches a maximum rate (set by local environmental 248 

conditions, including wind speed, vapor pressure deficit, temperature, and plant-specific 249 

characteristics) called potential evapotranspiration. While biofilters often operate at or 250 

below the incipient water stress (Hess et al., 2019) this was not the case for the 251 

dQ
dt

= −aQb

Smin

Q = K sat
S − Smin
Smax

⎛

⎝⎜
⎞

⎠⎟

g

a= gK sat
1/g Smax

b=2−1 g

Smin g
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experiments described later, which involved simulating a sequence of back-to-back 252 

storms. Accordingly, for those experiments we approximated ET with an hourly time 253 

series of reference crop potential evapotranspiration (cPET) following FAO guidelines 254 

(Allen et al., 1998) and based on measurements at, or nearby, the field site together with 255 

plant-specific traits (details in Text S1, Supporting Information (SI)).  256 

2.1.4 Numerical Implementation  257 

The water balance bucket model was solved by substituting into equation (1a) the above 258 

expressions for infiltration (equation (2)) and gravitational discharge (equation (3b)), 259 

along with hourly estimates of cPET (Section 2.1.3). The model was then forced with 260 

timeseries (sampling frequency ~1 min-1) of measured stormwater inflow (Section 3) and 261 

numerically integrated following the procedure described in Text S2 (SI). These 262 

simulations yielded ~1 min-1 timeseries of infiltration, storage and gravitational discharge 263 

over the 17 simulated storm events described in Section 3.  264 

2.2 Numerical Solution of the Richards Equation 265 

To calibrate the gravitational discharge term (Section 2.1.2) and as a check on the bucket 266 

model predictions described above, ~1 h-1 time series of infiltration, storage and 267 

gravitational discharge were also simulated with the one-dimensional Richards equation 268 

(Hydrus 1D, Version 4.17.0140, PC-Progress, Prague, Czech Republic). The model was 269 

forced with measured inflow rates (Section 3) and hourly estimates of cPET (Section 270 

2.1.3). Gravitational discharge from the biofilter’s underdrain was represented by a free 271 

drainage bottom boundary condition (Jiang et al., 2019). The depth, porosity, and 272 

maximum storage of the biofilter were taken as, respectively,  m, , and 273 

 m (estimated from six cores of the biofilter media collected post-274 

db =0.6 θ s =0.41

Smax = dbθ s =0.246
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experiment with a 7.6 cm-diameter carbon steel corer). With one exception, we adopted 275 

Hydrus 1D’s default hydraulic soil parameters for loamy sand (van Genuchten shape 276 

parameters  12.4 m-1 and  2.28 [-], residual soil water content  0.057 [-], 277 

tortuosity parameter  [-]). The exception was saturated hydraulic conductivity, , 278 

which was estimated from measurements of peak discharge and in situ measurements with 279 

a modified Philip-Dunne Infiltrometer (Text S3, SI).  280 

2.3 Transit Time Distribution (TTD) Theory  281 

2.3.1 Solving the Age Conservation Equation 282 

The age distribution of water in the control volume surrounding the biofilter media is 283 

governed by the following age conservation equation (Botter et al., 2011; Harman, 2015): 284 

      (4a) 285 

          (4b) 286 

          (4c) 287 

         (4d) 288 

         (4e) 289 

The conservation equation’s dependent variable, age-ranked storage  [L], represents 290 

the area-normalized volume of water stored in the biofilter media control volume at any 291 

time  with ages  or younger. Age-ranked storage is defined mathematically as the 292 

product of the area-normalized volume of stored water, , and the cumulative 293 

distribution function (CDF) for the fraction of stored water with ages less than or equal to 294 

	α vg = 		nvg = 	θr =

l =0.5 K sat

∂ST
∂t

= J t( )−Q t( ) !PQ T ,t( )−ET t( ) !PET T ,t( )− ∂ST
∂T

ST T ,t( )= S t( )PRTD T ,t( )

ST T =0,t( )=0

ST T ,t =0( )= S0H T −T0( )

H x( )= 0,	x <0
1,	x >0

⎧
⎨
⎪

⎩⎪

ST T ,t( )

t T

S t( )
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; i.e., the stored water’s residence time distribution (RTD),  (equation (4b)). As 295 

the age variable, , becomes large, the RTD’s CDF tends to unity and the age-ranked 296 

storage function collapses to the area-normalized volume of water in storage: 297 

. The boundary condition (equation (4c)) ensures that no water stored in 298 

the control volume has an age less than . The initial condition (equation (4d)) implies 299 

that, at time , the volume of “original” water in storage, , has a single age, , 300 

where the Heaviside function is denoted by . As applied to biofilters, equation (4a) 301 

equates the change of age-ranked storage of water in the biofilter media (left hand side) to 302 

the infiltration of stormwater of age  (first term on right hand side); outflow of water 303 

by gravitational discharge (second term) and ET (third term) with age distributions  304 

and , respectively; and aging of water in storage (fourth term).  305 

The two CDFs appearing in the outflow terms,  and , represent the 306 

fraction of water leaving the biofilter as gravitational discharge and ET with ages or less 307 

at time . The backward arrows on these CDFs indicate they are “backward TTDs”; i.e., 308 

they represent the age distribution of water leaving the biofilter at time . A corresponding 309 

set of forward TTDs can be written for the “life expectancy” of water parcels entering the 310 

biofilter at time, . The relationship between forward and backward TTDs is given by 311 

Niemi’s Theorem (Niemi, 1977; Benettin et al., 2015a; Harman, 2015). Under unsteady 312 

hydrology, the backward TTDs for gravitational discharge and ET are not necessarily 313 

equal, nor are they necessarily equal to the RTD of water in storage (Botter et al., 2011). 314 

2.3.2 Ranked StorAgeSelection (rSAS) Function 315 

As written, equation (4a) is mathematically ill posed because it consists of a single 316 

T PRTD T ,t( )

T

ST T→∞,t( )= S t( )

T =0

t =0 S0 T =T0

H x( )

T =0

!
PQ T ,t( )

!
PET T ,t( )

!
PQ T ,t( ) !

PET T ,t( )

T

t

t

ti
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equation with three unknown functions: , , and . This closure 317 

problem can be resolved by introducing a new CDF, the ranked StorAgeSelection (rSAS) 318 

function,  [-], which maps the fraction of outflow with ages less than or equal to  319 

(i.e., the CDF form of the backward TTD for discharge or ET) to the fraction of age-320 

ranked water in storage with that age or younger “selected” for outflow by either drainage 321 

or ET (Botter et al., 2011; Harman, 2015): 322 

          (5a) 323 

In principle, the functional form of the rSAS function can be calculated by averaging the 324 

ADE for solute transport over the control volume (Benettin et al., 2013; Rinaldo et al., 325 

2015). For the purposes of this study, we adopted a “uniform rSAS” function, under the 326 

assumption that water in storage has an equal probability of being selected for outflow 327 

regardless of its age (Harman, 2015): 328 

,         (5b) 329 

Uniform rSAS functions often apply to systems, such as ours, that are far from well-mixed 330 

(Bertuzzo et al., 2013; Benettin et al., 2013; Benettin et al., 2015b; Kim et al., 2016; 331 

Rodriguez et al., 2018; Danesh-Yazdi et al., 2018). 332 

2.3.3 Exact Solution for Age-Ranked Storage under Uniform Selection 333 

Under uniform sampling the age conservation equation (equation 4a) can be solved 334 

exactly for certain choices of initial and boundary conditions (Botter et al., 2011; Bertuzzo 335 

et al., 2013). Equation (6a) is one such solution that satisfies the initial and boundary 336 

conditions presented earlier (equations (4c) and (4d), see Text S4 (SI) for derivation); the 337 

superscript “U” denotes uniform storage selection.  338 

ST T ,t( ) !
PQ T ,t( ) !

PET T ,t( )

Ω ST ,t( ) T

!
P T ,t( )=Ω ST T ,t( ) ,t( )

ΩQ ST ,t( )=ΩET ST ,t( )= ST T ,t( ) S t( ) ST T ,t( )∈ 0,S t( )⎡
⎣

⎤
⎦
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     (6a) 339 

          (6b) 340 

         (6c) 341 

         (6d) 342 

According to equation (6a) age-ranked storage (left hand side) is influenced by the 343 

evolving age distribution of both “original” water in storage at time  (first term on 344 

right hand side) and “young water” that infiltrates during storm events (second term). This 345 

solution was numerically integrated (details in Text S4 (SI)) to yield ~1 min-1 timeseries of 346 

age-ranked storage in the biofilter, after substituting bucket model simulations for 347 

infiltration, , storage, , and gravitational discharge,  (Section 2.1). 348 

2.3.4 Age Structure of Stored Water in the Biofilter 349 

Under uniform selection the backward TTDs for gravitational discharge and ET are equal, 350 

and equal to the RTD of water in storage (compare with equation (4b)) (Harman, 2015): 351 

 (7a) 352 

The 5th, 50th, and 95th percentile ages of water in storage and outflow at any time, , can 353 

be obtained from equation (7a) by numerically solving the following implicit equations for 354 

water age: , , and . The age-355 

ranked storage’s probability density function (PDF) can be calculated from equation (7a) 356 

by differentiation where the symbol  denotes the Dirac delta function: 357 

ST
U T ,t( )= e− fQ t( )− fET t( ) S0H T −t −T0( )+ e fQ v( )+ fET v( ) J v( )dv

a

t

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

a= 0,	T −t ≥0
t −T , 	T −t <0

⎧
⎨
⎪

⎩⎪

fQ v( )= Q u( )
S u( )du0

v

∫

fET v( )= ET u( )
S u( ) du0

v

∫

t =0

J t( ) S t( ) Q t( )

PRTD T ,t( )= !PQ T ,t( )= !PET T ,t( )= ST T ,t( )
S t( ) = e

− fQ t( )− fET t( )

S t( ) S0H T −t −T0( )+ e fQ v( )+ fET v( ) J v( )dv
a

t

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

t

ST T0.05 ,t( ) S t( )=0.05 ST T0.5 ,t( ) S t( )=0.5 ST T0.95 ,t( ) S t( )=0.95

δ
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358 

 (7b) 359 

The mean age in storage and outflow immediately follows by taking the first moment of 360 

the PDF for age-ranked storage: 361 

362 

 (7c) 363 

Further details on the derivation and numerical implementation of equations (7b) and (7c) 364 

are described in Text S5 (SI). 365 

2.3.5 A TTD Theory for Solute Fate and Transport through a Biofilter 366 

The concentration of a reactive or non-reactive (i.e., conservative) solute in water leaving 367 

the biofilter by gravitational discharge, , can be calculated by convolving the PDF of 368 

the backward TTD (equation (7b)) with the concentration of solute, , that entered 369 

the biofilter at time, , and exited the biofilter as gravitational discharge at time  370 

and age  (Harman, 2015): 371 

         (8a) 372 

Despite its simplicity, this convolution integral incorporates a rich set of processes, 373 

including unsteadiness in the biofilter’s water balance (e.g., time-varying inflows, 374 

outflows, and storage, through the time-evolution of the backward TTD), unsteadiness in 375 

the solute concentration entering the biofilter from the ponding zone (through the 376 

dependence of  on the inflow time, ) and any time-dependent reactions that 377 

pRTD
U T ,t( )= !pQU T ,t( )= !pETU T ,t( )= ∂PRTD

U

∂T
=δ t +T0 −T( ) S0

S t( )e
− fQ t( )− fET t( ) +H t −T( ) J t −T( )

S t( ) e− fET t( )+ fET t−T( )− fQ t( )+ fQ t−T( )

µRTD
U t( )= µQ

U t( )= µET
U t( )= vpRTD

U v ,t( )dv
0

∞

∫ = 1
S t( ) S0e

− fQ t( )− fET t( ) t +T0( )+ t −u( ) J u( )e− fET t( )+ fET u( )e− fQ t( )+ fQ u( )du
0

t

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

CQ t( )

C J ti ,T( )

ti = t −T t

T

CQ t( )= C J
0

t

∫ t −T ,T( ) !pQ T ,t( )dT

C J ti ,T( ) t = ti
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occur as a solute passes through the biofilter. For example, if the solute undergoes first-378 

order reaction, the function takes on the following form where the new variable  379 

[T-1] is a first-order rate constant (Harman, 2015): 380 

          (8b) 381 

Combining equations (7b), (8a), and (8b) we arrive at the following solution for the 382 

concentration of a reactive solute in water discharged from the biofilter, where  is the 383 

concentration of solute present in the original water stored in the biofilter at time, : 384 

   (8c) 385 

For the experiments described later, a subset of 17 simulated storms were tagged 386 

with bromide, which we assumed behaved conservatively. The inflow concentration for 387 

these storms can be expressed as follows, where , , and  are the -th storm’s 388 

bromide concentration, start time and end time, respectively, and the sum is taken over all 389 

 storms:  390 

        (9a) 391 

Substituting equation (9a) into equation (8c), setting  (because, in our experiments, 392 

no bromide was present in the biofilter’s original water), setting  (because bromide is 393 

assumed to be conservative) and using the distributive property of integration, we arrive at 394 

the following expression for bromide concentration in water leaving the biofilter by 395 

gravitational discharge (details of derivation in Text S6 (SI)): 396 

     (9b) 397 

C J ti ,T( ) k

C J ti ,T( )=C J ti( )e−kT

C0

t =0

CQ t( )=C0 S0e
−k t+T0( )− fQ t( )− fET t( )

S t( ) + 1
S t( ) C J u( ) J u( )e−k t−u( )− fET t( )+ fET u( )− fQ t( )+ fQ u( )du

0

t

∫

C J ,m tm,s tm,e m

N

C J ti( )= C J ,mH ti −tm,s( )
m=1

N

∑ H tm,e −ti( )

C0 =0

k =0

CQ t( )= 1
S t( ) C J ,mH t −tm,s( ) J u( )e− fET t( )+ fET u( )− fQ t( )+ fQ u( )du

tm ,s

b

∫
m=1

N

∑
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          (9c) 398 

In deriving equation (9b) we have assumed that plants in the biofilter take up bromide and 399 

water in the same proportion, which may not be the case in practice (e.g., if a solute is 400 

excluded from plant uptake its pore fluid concentration will increase over time by in situ 401 

evaporative concentration (Bertuzzo et al., 2013; Harman, 2015)). However, ET represents 402 

a very small portion of the the overall water balance for the field experiments described 403 

later (Section 4) and hence in situ evaporative concentration can be neglected in our case. 404 

Time series (~1 min-1) of bromide breakthrough concentration were simulated with 405 

equation (9b) following the numerical procedures described in Text S6 (SI). 406 

3. Field Methods 407 

3.1 Orange County Public Works (OCPW) Biofilter Test Facility 408 

Field-scale biofilter challenge experiments were carried out at the Orange County Public 409 

Works (OCPW) low impact development demonstration facility located in the City of 410 

Orange, Orange County, California. Experiments were conducted in a biofilter test cell 411 

(approximately 2.4 m x 1.5 m x 0.6 m deep) built by a local contractor with previous GSI 412 

construction experience (Tobo Construction, Figure 1b). The test cell, which was lined 413 

and outfitted with an underdrain, consisted of a concrete slab floor and four cinderblock 414 

walls extending approximately 0.5 m above the filter media surface to create a ponding 415 

zone (Figures 1b, 1c). The filter media consisted of sand (65%), sandy loam (20%), and 416 

compost (15%) (v/v basis). In January 2017, the media was planted with a European grey 417 

sedge, Carex divulsa tumulicola. When we conducted our first set of experiments in the 418 

b=
t , 	 t < tm,e
tm,e , 	 t ≥ tm,e

⎧
⎨
⎪

⎩⎪
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summer of 2018 the plant community also included opportunist ruderal weed species (e.g., 419 

the common dandelion).  420 

The research team retrofitted the biofilter with an upstream 1890 L “inflow” tank 421 

(Custom Roto-Molding, Inc., Caldwell, ID) which drained by gravity through a 422 

programmable control valve (Sigma Controls, Inc., Perkasie, PA) to the biofilter’s 423 

ponding zone (Figure 1b). The weight of the inflow tank was monitored continuously at 424 

~10 Hz (WinWedge, TAL Technologies Inc., Philadelphia, PA) with a calibrated 425 

industrial scale (PCE-SW 3000N Pallet Scale, PCE Americas Inc., Jupiter, FL). The 426 

weight measurements were lowpass filtered (Davis, 2002), differentiated, and divided by 427 

the density of water to yield ~1 min-1 estimates for the volumetric discharge of water 428 

entering the ponding zone, . Following the experiments conducted in the summer of 429 

2018 we discovered that, during construction, a ca., 5 cm diameter hole had been drilled 430 

through the base of the cinderblock wall separating our test cell from the adjacent test cell 431 

(and through the wall separating the adjacent test cell from the next test cell and so on) to 432 

accommodate a buried irrigation pipe. A substantial fraction of stormwater added to our 433 

test cell (approximately 50%) laterally exfiltrated to the adjacent cell through this hole. 434 

While not part of our original design, this feature made for a more realistic field 435 

experiment, as most operational biofilters undergo at least some degree of subsurface 436 

exfiltration (e.g., Brown & Hunt, 2011). Indeed, our exfiltration rate of ~50% is close to 437 

the stormwater volume reduction design goal for GSI of 67% (Davis, 2008). To model 438 

lateral exfiltration, gravitational discharge from the biofilter was routed as follows. A 439 

fixed fraction, , was assigned to the underdrain and the rest, , to lateral exfiltration 440 

I t( )

α 1−α
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to the adjacent test cell (Figure 1c). The fraction  was estimated using several 441 

independent experimental methods (Text S7 and Figure S1, SI).  442 

Water exiting the biofilter through the underdrain flowed by gravity through a 443 

buried manifold to an underground sump and from there was periodically pumped (Model 444 

98 Sump Pump, Zoeller Pump Company, Louisville, KY) up to an “outflow” tank sitting 445 

on a calibrated industrial scale at ground level (identical to the inflow tank set up, Figure 446 

1c). A timeseries (~1 min-1) of volumetric discharge entering the outflow tank was 447 

estimated from high frequency (10 Hz) measurements of the tank’s weight following the 448 

same procedure described above for the inflow tank. Time series of volumetric discharge 449 

and bromide concentration measured at the outflow tank were time-shifted backwards by 450 

30 minutes to account for the transit of water from the biofilter’s underdrain to the outflow 451 

tank and the overly fast response of the bucket model to storm events (Text S8, SI). 452 

3.2 Experimental Storm Hydrograph 453 

Municipal separate storm sewer system (MS4) permit requirements for the Santa Ana 454 

Region (where our experiments were carried out) stipulate that new development and 455 

significant re-development projects include stormwater control measures sufficient to 456 

capture runoff volume generated by the 85th percentile storm, which at this field site 457 

corresponds to 0.84 inches of stormwater depth (volume per unit catchment area) over a 458 

24-hour period (OCPW, 2017). With this regulatory requirement in mind, we designed our 459 

experimental storm hydrograph as follows: (1) seven 24-hour rainfall events were selected 460 

from measurements at an onsite rain gauge over the time period 2011 to 2016; (2) an 461 

average hyetograph was constructed from these seven events after aligning peaks and 462 

standardizing the total 24-hour rainfall depth to 0.84 inches; and (3) a design storm 463 

α
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hydrograph was calculated from the average hyetograph by the Rational Method (Brooks 464 

et al., 2013) assuming a unit runoff coefficient (corresponding to 100% imperviousness) 465 

and a catchment area of 82.3 m2. The corresponding biofilter-to-catchment area ratio 466 

(4.5%) is typical for urban landscapes in Southern California (Ambrose & Winfrey, 2015). 467 

See Text S9 and Figure S2 (SI) for a comparison of measured and design storm 468 

hydrographs. 469 

3.3 Bromide Tracer Experiments  470 

A sequence of storms (each of which conformed to the storm hydrograph described in 471 

Section 3.2) were discharged to our experimental biofilter over a five-day period in the 472 

summer of 2018 (June 25-29) and again over a five-day period in the summer of 2019 473 

(June 1-5). Ten storms were simulated in 2018, one in the morning and another in the 474 

afternoon on each day. The afternoon storms were spiked with bromide (final 475 

concentration ~50 Br- mg/L) while the morning storms were bromide free. The storm 476 

sequence in 2019 consisted of: (1) two bromide-free storms on the first day, one in the 477 

morning and one in the afternoon; (2) two days later a single bromide-spiked storm in the 478 

morning (final concentration of 124 Br- mg L-1); and (3) over the following two days two 479 

bromide-free storms per day, one in the morning and one in the afternoon. Three replicate 480 

40 mL samples were collected from the inflow tank before each simulated storm. Outflow 481 

samples were collected as follows. Water entering the outflow tank from the sump was 482 

directed into a continuously overflowing 5 L bucket affixed to the top of the tank (the 483 

bucket overflowed into the tank, see Figure 1c). Water in the bucket was continuously 484 

sub-sampled (40 mL min-1) by means of a peristaltic pump (BioLogic LP, Bio-Rad, 485 

Hercules, CA) and fractionated into 50 mL conical tubes (Falcon, Corning Life Sciences, 486 
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Tewksbury, MA) according to a pre-defined sampling schedule (2018: every 2, 5, or 10 487 

minutes, with more rapid sampling during the first hour of biofilter outflow; 2019: every 5 488 

minutes) (inset, Figure 1c). During each storm, outflow samples were collected in this 489 

manner until the on/off cycling of the sump pump fell below 1/30 min-1. The bromide 490 

concentration in each sample was measured by ion chromatography (2018: 940 491 

Professional IC Vario, Metrohm AG, Herisau, Switzerland; 2019: Dionex DX-120, 492 

Thermo Fisher Scientific, Waltham, MA). A total of N=30 (15) and 435 (147) inflow and 493 

outflow samples, respectively, were analyzed during the 2018 (2019) experiments. 494 

In addition to the timing of storm events and the periodic (2018) and non-periodic 495 

(2019) nature of the bromide dosing, the 2018 and 2019 experiments differed in several 496 

other respects (details in Text S9, SI), including: (1) the nature of the water used (tap 497 

water in 2018 and stormwater +/- sewage in 2019); (2) the partial sealing of the hole in the 498 

test cell wall after 2018; (3) the method used to reproduce the design storm; and (4) 499 

change in plant community from a European grey sedge and ruderal weeds in 2018 to a 500 

native southern California sedge in 2019.  501 

4. Results and Discussion 502 

4.1 Lateral Exfiltration and the Effective Volume of the Biofilter 503 

During each experimental storm we discharged roughly the same volume of water (~1400 504 

L) to the biofilter’s ponding zone over one to two hours. The volume of water captured in 505 

the outflow tank varied by storm, from 378 to 751 L (25 to 49% of the inflow volume) for 506 

the ten experiments conducted in 2018, and from 266 to 654 L (21 to 46% of the inflow 507 

volume) for the seven experiments conducted in 2019 (Table S1, SI). Across all 17 storms, 508 

ET was a minor component of the water budget (< 0.3% of the ~1400 L added per storm, 509 
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Table S1, SI). Thus, the difference between these inflow and outflow volumes either went 510 

to increasing storage or lateral exfiltration to the adjacent test cell (see Text S7, SI).  511 

 The fraction of inflow volume recovered at the outflow tank is inversely correlated 512 

with each storm’s antecedent dry period (R2=0.82, Figure S1, SI), consistent with the 513 

hypothesis that at least some of the unrecovered water goes to storage. Extrapolating the 514 

fractional water recovery back to an antecedent dry period of zero hours (under the 515 

premise that the change in storage should be zero in this case) we estimate that, in both 516 

2018 and 2019, approximately % of the water added to the biofilter is routed to the 517 

outflow tank while % is lost to lateral exfiltration (Text S7, SI). These results are 518 

consistent with loss rates measured under steady-state flow conditions (Text S7, SI) and 519 

the observed wetting of biofilter media in the adjacent test cell (data not shown), along 520 

with previously published modeling studies (Browne et al., 2008; Lee et al., 2015) and 521 

field measurements (Winston et al., 2016) that indicate exfiltration is a dominant 522 

mechanism for volume reduction in GSI. At our site, some of the exfiltrated water and 523 

solute may eventually find its way back to the outflow tank, for example by circulating 524 

back through our biofilter test cell (mechanism (iii), Figure 1a) or transiting along another 525 

subsurface route to the buried collection manifold (indeed, the test cell adjacent to our 526 

biofilter also had an underdrain that could have contributed flow and solute to the 527 

manifold and, ultimately, to the outflow tank). Thus, exfiltration can potentially increase 528 

the effective volume of our biofilter during solute transport (we return to this idea in 529 

Section 4.4).  530 

4.2 Power-Law Model for Gravitational Discharge 531 

α = 46

	1−α =54
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Kirchner’s power-law model for gravitational discharge (equation 3b) could not be 532 

evaluated using our inflow and outflow measurements, because lateral exfiltration from 533 

the test cell precluded accurate estimates for the gravitational discharge and water storage 534 

terms (Section 4.1). Instead, hourly time series for these two quantities were numerically 535 

simulated, with Hydrus 1D, over the seventeen experimental storms in 2018 and 2019 536 

(Section 2.2). Consistent with Kirchner’s power-law relationship, when normalized and 537 

plotted on a log-log basis, the Hydrus-generated time series of discharge and storage 538 

collapse to a single line for  (Figure 2). Inferred values of the power-law 539 

exponent and minimum storage value are the same, within error, across both years (2018: 540 

and ; 2019:  and 541 

). Thus, these two parameters are robust to changes in the sequence 542 

and length of antecedent dry periods as well as changes in saturated hydraulic conductivity 543 

(within each simulated storm sequence, the saturated hydraulic conductivity declined over 544 

time, see Text S3, SI). Our power-law exponent is also concordant with values inferred by 545 

Q t( )>0.05K sat

		g= 4.99±0.01 Smin = 	−3.6×10−20 ±1.9×10−4
		g=5.00±0.01 Smin =

	−3.4×10−21 ±2.2×10−4

Figure 2. Power-law dependence of gravitational discharge on water storage 
simulated with Hydrus 1D for storm sequences in (a) 2018 and (b) 2019. Solid and 
dashed black curves indicate model fit and 95% prediction intervals, respectively.   
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Bertuzzo et al. (2013) for gravitational drainage from the vadose zone of a 46 km2 546 

catchment in Switzerland (compare  with the posterior distribution for the exponent  547 

in their Figure 4). Substituting  into equation (3d) yields a recessional exponent of 548 

1.8, which is toward the flashy end of the allowable range,  (Kirchner, 2009), in 549 

keeping with the small storage volume of our biofilter (e.g., compared to the volume of 550 

water stored in a catchment). In summary, these results support the hypothesis that 551 

Kirchner’s power-law relationship (equation (3b)) applies at the scale of a single biofilter.  552 

4.3 Unsteady Water Balance: Bucket Model and Hydrus 1D Predictions 553 

Over the 17 experimental storms conducted during 2018 and 2019, numerical solutions of 554 

the bucket model (equation (1a)) closely follow Hydrus 1D simulations of ponding depth, 555 

biofilter saturation, and gravitational discharge (Figure 3). The predicted range of ponding 556 

depths (from 0 to 0.2 m above the surface of the biofilter media) is consistent with field 557 

observations and the predicted gravitational discharge rates closely match measurements 558 

at the outflow tank (light blue curves, bottom panels of Figures 3a and 3b).  559 

4.4 TTD Theory Predictions for Bromide Transport  560 

To characterize the transport of solute through the experimental biofilter, we spiked a 561 

subset of experimental storms with bromide as a conservative tracer. In 2018, we adopted 562 

a semi-periodic study design involving, on each day, a bromide-free “flushing” storm in 563 

the morning (orange arrows in Figure 4a) and a bromide-spiked “tracer” storm in the 564 

afternoon (black arrows in Figure 4a). By the second day of the storm sequence, the 565 

normalized bromide breakthrough curves (BTCs) settled into a periodic pattern, oscillating 566 

between  0.3 and 0.6 during the morning and afternoon storms, respectively 567 

(black dots in lower graph, Figure 4a). Here, the variable  represents the measured 568 

g=5 c

		g=5 b=

b∈ 1,2⎡⎣ ⎤⎦

CQ C J ,1 ≈

CQ t( )
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bromide concentration at the outlet tank and the variable  48.7 mg L-1 represents the 569 

initial bromide concentration measured in the first afternoon tracer storm (across all five 570 

tracer storms the initial bromide concentrations were 48.7, 48.8, 49.3, 48.3, and 44.4 571 

mg L-1). The bromide BTC predicted by TTD theory also follows a periodic pattern (solid 572 

curve, bottom graph, Figure 4a), but the model consistently under- and over-predicts 573 

measured bromide concentrations in the morning and afternoon storms, respectively. 574 

These model predictions were calculated from equation (9b) after specifying the timing 575 

and initial bromide concentrations associated with each bromide-spiked storm, and 576 

running bucket model simulations for , , and  after setting the maximum 577 

volume equal to the actual void volume of the biofilter,  m. The TTD model’s 578 

C J ,1 =

C J ,m =

J t( ) S t( ) Q t( )

Smax =0.246

 
Figure 3. Two approaches for simulating the unsteady water balance in our 
biofilter: numerical solutions to the Richards equation (Hydrus 1D, solid black 
curves) and a bucket model (dashed black curves). Colored lines represent 
measured inflow (dark blue), measured outflow (light blue) and calculated cPET 
(green) for the set of experiments conducted during the summers of (a) 2018 and 
(b) 2019. To compare simulated and measured discharge, the former was 
multiplied by  and the latter was backward time shifted by 30 min. 
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tendency to overshoot bromide measurements implies it is oversampling young water; i.e., 579 

the predicted bromide BTC contains too much bromide-free water during the bromide-free 580 

morning storm, and too much bromide-spiked water during the bromide-spiked afternoon 581 

storm.  582 

One possible explanation is that the uniform storage selection function, which 583 

underpins our model (see equation (9b) and discussion thereof), oversamples young water 584 

for gravitational discharge. Alternatively, the storage selection function is fine but there is 585 

not enough old water in storage to select from. While the former explanation cannot be 586 

ruled out (indeed, the science of selecting rSAS functions is an active area of current 587 

research (Harman, 2019)), the latter explanation is compelling for several reasons. First, 588 

 

Figure 4. Comparison of measured (points) and predicted (solid and dashed curves) 
bromide breakthrough curves (BTCs) for the 2018 ((a) and (b)) and 2019 ((c) and (d)) 
experiments. Model predictions assume Smax equals the physical volume of the biofilter 
((a) and (c)) or a volume obtained by fitting the model to the second storm of 2018 (b) 
or the fourth, fifth, sixth, and seventh storms of 2019 (d). Dashed curves correspond to 
times when no samples were collected. Vertical arrows mark the bromide-spiked 
(black) and bromide-free (orange) storms. Each panel also includes bucket model 
predictions for gravitational discharge given the value of Smax shown. 
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the void volume of our biofilter (~900 L) is less than the volume of water flowing into the 589 

biofilter with each experimental storm (~1400 L). Therefore, as far as the model is 590 

concerned, the biofilter has very limited capacity to store older water from penultimate 591 

and older storms. Second, a substantial fraction (>50%) of the inflow volume leaves our 592 

biofilter by lateral exfiltration. As noted in Section 4.1, some of this exfiltrated water may 593 

eventually return to the outflow tank and thereby increase the effective volume that solutes 594 

experience as they transit through the system.  595 

To test the last hypothesis—that the effective volume for solute transport is larger 596 

than the biofilter’s physical volume—we split the measured bromide data from 2018 into a 597 

calibration period (the first bromide-spiked storm, storm #2) and a validation period (all 598 

other storms). We then inferred a value of the biofilter’s void volume by minimizing the 599 

root-mean square error (RMSE) over the calibration period (Figure S3, SI). The optimal 600 

volume thus obtained (  m) is about two times larger than the physical volume of 601 

the biofilter (  m) consistent with the hypothesis that a substantial fraction of 602 

the exfiltrated water eventually returns to the outflow tank. When the inferred value of 603 

 m is substituted back into the bucket model and the hydrologic water balance is 604 

recomputed, equation (9b) closely tracks the bromide BTC over the validation period 605 

(storms #3 through #10, bottom graph in Figure 4b).  606 

Application of TTD theory to the 2019 storm sequence yields similar results. If the 607 

maximum volume of the biofilter is set equal to its physical volume (  m), 608 

equation (9b) consistently under-predicts bromide breakthrough during the four bromide-609 

free flushing storms (storms #4, 5, 6, and 7, bottom graph in Figure 4c). However, when 610 

the effective volume is raised to  m (obtained by minimizing the RMSE for 611 

Smax =0.73

Smax =0.246

Smax =0.73

Smax =0.246

Smax =0.42
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storms #4 through 7, see Figure S3, SI) the model’s performance improves markedly 612 

(Figure 4d). The void volume inferred from the 2018 experiments (  m) is about 613 

74% larger than the void volume inferred from the 2019 experiments (  m). This 614 

difference could reflect biophysical changes in the biofilter test cell over the two years 615 

(e.g., after the 2018 experiments the hole at the base of the test cell was partially sealed 616 

and the media was replanted, see Text S9, SI), the different study designs (alternating 617 

bromide-free and bromide-spiked storms in 2018 versus a single bromide-spiked storm 618 

followed by multiple bromide-free storms in 2019), or differences in how the model was 619 

calibrated (minimizing the RMSE based on outflow concentrations from a single bromide-620 

spiked storm in 2018 versus outflow concentrations from four bromide-free storms 621 

following the bromide-spiked storm in 2019).  622 

Smax =0.73

Smax =0.42

 
Figure 5. The evolution of mean and median water ages in the biofilter during the 
sequence of storms in (a) 2018 and (b) 2019. Also shown are the 5th to 95th percentile 
range (grey band). Top panels indicate the infiltration (red curve) and gravitational 
discharge (black curve) rate for each storm sequence. For these simulations, we 
adopted inferred values of maximum storage:  0.73 and 0.42 m for 2018 and 
2019, respectively.  The age of water of original water was arbitrarily set to  h 
and its volume was taken as the product of initial saturation ( , corresponding 
to field capacity) and maximum storage: . 
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Implications for Age Structure and Pollutant Removal  623 

5.1 Age Distribution of Water Leaving the Biofilter by Gravitational Discharge 624 

What can TTD theory tell us about the age structure of water leaving the biofilter by 625 

gravitational discharge? By selecting a uniform rSAS function for our model (Section 626 

2.3.2), the backward TTDs for gravitational discharge and ET are equal to the RTD of 627 

water stored in the biofilter. Thus, under uniform storage sampling, the age distribution of 628 

water in storage is equal to the age distribution of water leaving the biofilter as 629 

gravitational discharge.  630 

 During the 2018 experiments, predictions for the median age of water stored in the 631 

biofilter (equation (7a) and discussion thereof) follows a semi-periodic pattern, increasing 632 

linearly with time between storms (as water stored in the biofilter ages) and rapidly 633 

declining to near zero during storm events (as incoming stormwater, of age h, fills the 634 

biofilter, Figure 5a). The 5th and 50th (median) age percentiles overlap but the 95th age 635 

percentile is much older, indicating that the age distribution is positively skewed (Ang & 636 

Tang, 2007). The 5th and 50th percentiles overlap because, at any time , more than 50% 637 

of water stored in the biofilter is from the most recent storm with an age roughly equal to 638 

the antecedent dry period. The 95th percentile age is much older because the rest of water 639 

in storage (i.e., water not from the last storm) is from penultimate and earlier storms.  640 

For the simulations presented in Figure 5a we arbitrarily set the initial age of 641 

“original” water (i.e., water that was initially present in the biofilter at time, ) at 642 

50 h. Until the fourth storm, this original water constituted more than 5% of water stored 643 

in the biofilter, as evidenced by the upward slope of the grey band in Figure 5a (the 644 

upward slope reflects the fact that that original water in storage is aging linearly with 645 

T =0

t

t =0 T0 =
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time). After the fourth storm, the original water’s contribution to storage drops below 5%, 646 

as evidenced by a steep drop in the 95th percentile around 28 h (Figure 5a). Thus, four 647 

storms were required to flush out 95% of the original water, even though more than 50% 648 

of water in the biofilter, at any given time, is from the last storm. A similar pattern is 649 

evident for the set of experiments conducted in 2019 (Figure 5b). Across both years the 650 

mean age is 5 to 20 hours older than the median age, consistent with a positively skewed 651 

age distribution (Ang & Tang, 2007). 652 

5.2 Mapping out the Contribution of Past Storms to Present Storage 653 

TTD theory also allows us to determine the relative contribution of all past storms to water 654 

stored in a biofilter at any time, . If the -th storm begins at time, , then the 655 

fraction,  [-], of water in storage with that age or younger can be estimated from the 656 

RTD’s CDF (see Section 2.3.4) (Kirchner, 2016; Benettin et al., 2017; Lutz et al., 2018):  657 

,         (10) 658 

We applied equation (10) to all seven storms simulated in 2019, along with the original 659 

water present in the biofilter at time,  (Figure 6). The upper bound of each color band 660 

represents the fraction of water in storage that is younger than the oldest water from the 661 

storm indicated. The lower bound of the same color band represents the fraction of water 662 

in storage that is younger than the oldest water from the next storm, and so on.  663 

The influence of biofilter hydrology on the age structure of stored water (and by 664 

implication the age structure of water leaving the biofilter by gravitational drainage under 665 

uniform sampling) is striking. During the Filling Phase of each storm (e.g., Storm #3 in 666 

Figure 6) new water entering the biofilter from the ponding zone rapidly dominates the 667 

age distribution of water in storage for two reasons: (1) the new water fills up portions of 668 

t =

t n t = tb ,n

fn t( )

fn t( )= PRTDU T = t −tb ,n ,t( ) t > tb ,n

t =0
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storage that were previously dry; and (2) the new water displaces older water, driving it  669 

out of the biofilter as gravitational drainage. The first mechanism explains why different 670 

storms initially dominate storage to different degrees. For example, the volume of original 671 

water in storage at time  was relatively small in these simulations (  m, 672 

corresponding to the biofilter’s field capacity) which explains why Storm #1 very quickly 673 

constituted more than 80% of the biofilter’s storage (orange band in Figure 6). Under a 674 

uniform rSAS, all water parcels (regardless of their age) have an equal probability of being 675 

selected for outflow by gravitational discharge or ET. This explains why, during the 676 

t =0 		S0 =0.092

 
Figure 6. The contribution of original water (Storm #0) and seven experimental 
storms in 2019 (Storms #1-7) to water storage in the OCPW biofilter over time. 
Each new storm rapidly occupies at least 50% of storage volume during the Filling 
Phase. These simulations were carried out using the inferred value for maximum 
storage of Smax = 0.42 m. Top panel indicates infiltration (red curve) and discharge 
(black curve) for the 2019 storm sequence. 
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Draining Phase, the age structure of water in storage does not change (i.e., during this 677 

phase all boundaries in Figure 6 are horizontal lines). Figure 6 also vividly illustrates the 678 

two key attributes of biofilter storage discussed previously: at any time about >50% of 679 

water in storage is from the most recent storm while the rest is a mixture of penultimate 680 

and earlier storms.  681 

5.3 Age Structure and Water Quality 682 

The age structure of water in storage has significant implications for the treatment credit 683 

attributable to, and the pollution exported by, GSI. For example, during the 2019 storm 684 

sequence we included a “worst case” scenario (from a water quality perspective) by using 685 

a 50:50 mixture of stormwater and raw sewage for one of the storm events, Storm #3. 686 

What does TTD theory tell us about how long sewage from Storm #3 lingers in the 687 

biofilter during subsequent flushing events? From the thickness of the green band in 688 

Figure 6 we can infer that the percent of storage attributable to raw sewage during the 689 

drainage phase of each storm declined over time as follows: 35% (Storm #3), 11% (Storm 690 

#4), 4% (Storm #5), 1.2% (Storm #6), and 0.5% (Storm #7). Raw sewage harbors very 691 

high concentrations of human fecal bacteria (e.g., in the range of 106 E. coli mL-1 (Garcia-692 

Aljaro et al., 2018)). Therefore, even after the biofilter has been flushed with four sewage-693 

free storms, the E. coli concentration in gravitational drainage could still be as high as 694 

5000 mL-1—more than enough bacteria to close beaches if the biofilter drained to a 695 

recreational lake or river (US EPA, 2018)). This example assumes that bacteria behave 696 

conservatively which is rarely the case (Lee et al., 2006; Chandrasena et al., 2014b).  697 

Indeed, the retention of older water in the biofilter could impact the quality of 698 

water leaving a biofilter by gravitational drainage either positively or negatively, 699 
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depending on inter-storm pollutant transformation mechanisms. For example, between 700 

storms the biofilter media’s organic material can be respired by resident bacteria, 701 

potentially leading to the liberation of ammonium (by ammonification) and nitrate (by 702 

nitrification) (Canfield et al., 2010). Thus, water retained in the biofilter from penultimate 703 

and older storms could serve as a perpetual source of nitrate that is exported during storm 704 

events—a pattern often observed in practice (e.g., Hatt et al., 2009; McPhillips et al., 705 

2018). On the other hand, if anaerobic conditions develop between storms (as is likely to 706 

occur if the biofilter contains a submerged zone (Kim et al., 2003)) nitrate may be further 707 

transformed to harmless N2 gas and, potentially, the potent greenhouse gas N2O 708 

(McPhillips et al., 2018) by denitrification. Studies are underway to extend the TTD 709 

results presented here to include the fate and transport of human pathogens, microbial 710 

communities, nutrients, and heavy metals during and the 2019 storm sequence.  711 

6. Conclusions 712 

TTD theory directly links the hydrology and treatment performance of GSI. Its practical 713 

application therefore requires, as a first step, delineation of the unsteady water balance 714 

over the GSI element of interest. In this paper we demonstrate that this first step can be 715 

accomplished with a simple bucket model that tracks time varying infiltration, storage, ET 716 

and gravitational discharge over a control volume drawn around the biofilter media, which 717 

in our case was lined with an underdrain open to the atmosphere. To operationalize the 718 

water balance bucket model, a parsimonious set of expressions were developed and tested 719 

for the storage-dependence of water moving in and out of the control volume, including: 720 

(1) an empirical relationship for infiltration that toggles between the inflow rate of 721 

stormwater (when the biofilter media is partially unsaturated) and the saturated hydraulic 722 
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conductivity (when the biofilter media approaches full saturation); (2) cPET for ET; and 723 

(3) Kirchner’s power-law model for gravitational discharge (Kirchner, 2009).  724 

Generalizing the water balance bucket model beyond the experimental system 725 

described here may require modifying (1) and (2), for example by adopting a process-726 

based model (such as the Green-Ampt equation (Green & Ampt, 1911)) for infiltration 727 

and accounting for the reduction of ET that occurs when saturation falls below the 728 

incipient water stress (Hess et al., 2019; Zhao et al., 2013). On the other hand, three lines 729 

of evidence suggest that Kirchner’s model for gravitational drainage may be more 730 

generally applicable. First, the power-law model’s two empirical parameters (  and ) 731 

appear robust to antecedent dry period and changes in saturated hydraulic conductivity. 732 

Second, values inferred for these two parameters are concordant with what we know about 733 

our biofilter, namely that it does not have a submerged zone ( ) and, compared to a 734 

catchment, has relatively little storage volume (  translates to a recessional exponent 735 

of , indicating that drainage from the biofilter is flashy). Indeed, we hypothesize 736 

that, in general,  can be equated to the area-normalized volume of the submerged zone 737 

(Kim et al., 2003; Brown & Hunt, 2011). Finally, our inferred exponent value ( ) is 738 

consistent with a previously published estimate for the power-law dependence of 739 

gravitational drainage on storage in the vadose zone of a 46 km2 catchment (Bertuzzo et 740 

al., 2013) (the area-normalized volume of this catchment’s vadose zone is similar to the 741 

area-normalized volume of our biofilter, ca. 0.1 to 0.2 m). That leaves the area normalized 742 

volume ( ) of the biofilter, which may exceed the biofilter’s physical void volume due 743 

to exfiltration.  744 

Smin g

Smin =0

g=5

b=1.8

Smin

g=5

Smax
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With the unsteady water balance in hand, we next solved the age conservation 745 

equation under the assumption that stored water is randomly selected for outflow 746 

regardless of its age (i.e., we adopted the uniform rSAS function). From this solution 747 

explicit expressions were derived for the mean age of water in storage (and leaving the 748 

biofilter as ET and gravitational discharge), various age percentiles, as well as the 749 

breakthrough concentration of a solute with or without first-order reaction (equations (8c) 750 

and (9b)). When compared to bromide breakthrough measured during our field 751 

experiments, we find the model over samples young water, either because the uniform 752 

rSAS function oversamples young water in storage, or because there is simply not enough 753 

old water in storage to sample from (Benettin et al., 2013; Harman, 2015).  754 

Given the magnitude of lateral exfiltration in our system, it is unlikely that water 755 

entering the outflow tank was selected exclusively from water stored within the physical 756 

boundaries of the biofilter test cell. Indeed, when we allow the volume of the biofilter to 757 

be a free variable, the inferred volumes are 70% to 196% larger than the the biofilter’s 758 

void volume, consistent with the hypothesis that exfiltration increases the effective storage 759 

experienced by solutes as they transit through the system. The concordance between 760 

predicted and measured bromide breakthrough concentrations improves dramatically after 761 

taking this extra storage into account (Figures 4b and 4d). Remarkably, the final model—762 

which includes both the unsteady water balance over the biofilter media (equation (1a)) 763 

and the convolution integral for solute breakthrough (equation (9b))—has only one fitting 764 

parameter: the effective volume of the biofilter, . The parsimony and predictive power 765 

of TTD theory make it ideally suited to model pollutant removal at the scale of individual 766 

biofilters, as well as GSI networks and the urban catchments in which they are embedded.  767 

Smax
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