Table 1. Information of the study cases, including the name of
mainstream rivers and the corresponding tributary rivers, the length of
the river reaches for modeling, the validation datasets and location,
and the values of the calibrated parameters organized with the order of
upstream low-flow depth (m), downstream low-flow depth (m), beta and
Strickler roughness coefficient (m1/3/s), calibration
and validation results.
References
Frias, M.C., Liu, S., Mo, X., Nielsen, K., Ranndal, H., Jiang, L., Ma,
J., Bauer-gottwein, P., 2022. River hydraulic modelling with ICEsat-2
land and water surface elevation 1–27.
Harrigan, S., Zsoter, E., Alfieri, L., Prudhomme, C., Salamon, P.,
Wetterhall, F., Barnard, C., Cloke, H., Pappenberger, F., 2020.
GloFAS-ERA5 operational global river discharge reanalysis 1979-present.
Earth Syst. Sci. Data 12, 2043–2060.
https://doi.org/10.5194/essd-12-2043-2020
Houska, T., Kraft, P., Chamorro-Chavez, A., Breuer, L., 2015. SPOTting
model parameters using a ready-made python package. PLoS One 10,
e0145180.
Kittel, C.M.M., Hatchard, S., Neal, J.C., Nielsen, K., Bates, P.D.,
Bauer‐Gottwein, P., 2021. Hydraulic model calibration using CryoSat‐2
observations in the Zambezi catchment. Water Resour. Res. 1–19.
https://doi.org/10.1029/2020wr029261
Lawrence, D.S., 2007. Analytical derivation of at-a-station
hydraulic-geometry relations. J. Hydrol. 334, 17–27.
https://doi.org/10.1016/j.jhydrol.2006.09.021
Lehner, B., Liermann, C.R., Revenga, C., Vörömsmarty, C., Fekete, B.,
Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson,
C., Robertson, J.C., Rödel, R., Sindorf, N., Wisser, D., 2011.
High-resolution mapping of the world’s reservoirs and dams for
sustainable river-flow management. Front. Ecol. Environ. 9, 494–502.
https://doi.org/10.1890/100125
Liu, J., Jiang, L., Bandini, F., Kittel, C.M.M., Balbarini, N., Hansted,
N.G., Grosen, H., Bauer-Gottwein, P., 2021. Spatio-temporally Varying
Manning Roughness in Rivers and Streams: A calibration approach using
in-situ water level and UAS altimetry.
Ma, Y., Xu, N., Liu, Z., Yang, B., Yang, F., Wang, X.H., Li, S., 2020.
Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2
imagery datasets. Remote Sens. Environ. 250, 112047.
https://doi.org/10.1016/j.rse.2020.112047
Neumann, T.A., Martino, A.J., Markus, T., Bae, S., Bock, M.R., Brenner,
A.C., Brunt, K.M., Cavanaugh, J., Fernandes, S.T., Hancock, D.W.,
Harbeck, K., Lee, J., Kurtz, N.T., Luers, P.J., Luthcke, S.B., Magruder,
L., Pennington, T.A., Ramos-Izquierdo, L., Rebold, T., Skoog, J.,
Thomas, T.C., 2019. The Ice, Cloud, and Land Elevation Satellite – 2
mission: A global geolocated photon product derived from the Aadvanced
Ttopographic Llaser Aaltimeter Ssystem. Remote Sens. Environ. 233,
111325. https://doi.org/10.1016/j.rse.2019.111325
Paris, A., Dias de Paiva, R., Santos da Silva, J., Medeiros Moreira, D.,
Calmant, S., Garambois, P., Collischonn, W., Bonnet, M., Seyler, F.,
2016. Stage‐discharge rating curves based on satellite altimetry and
modeled discharge in the Amazon basin. Water Resour. Res. 52,
3787–3814.
Pearson, R.K., Neuvo, Y., Astola, J., Gabbouj, M., 2016. Generalized
Hampel Filters. EURASIP J. Adv. Signal Process. 2016.
https://doi.org/10.1186/s13634-016-0383-6
Vatankhah, A.R., 2020. Optimum simple and complex power-law channels. SN
Appl. Sci. 2, 1–18. https://doi.org/10.1007/s42452-020-03197-w
Vreugdenhil, C.B., 1994. Numerical methods for shallow-water flow.
Springer Science & Business Media.
Xu, N., Ma, X., Ma, Y., Zhao, P., Yang, J., Wang, X.H., 2021. Deriving
Highly Accurate Shallow Water Bathymetry from Sentinel-2 and ICESat-2
Datasets by a Multitemporal Stacking Method. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 14, 6677–6685.
https://doi.org/10.1109/JSTARS.2021.3090792