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Abstract18

In the past two decades, surface wave imaging based on seismic ambient noise cross-correlation19
(CC) has been one of the most important technologies in the field of seismology. With the20
development of this technology, high-mode surface waves have received increasing attention,21
especially after the proposition of the frequency-Bessel transform (F-J) method, which can22
effectively extract multimode dispersion curves from ambient noise data. In the past few years,23
our research group has made many attempts to improve this method. We summarized these24
experiences and the corresponding algorithm for fast CC, and packaged them into a Python25
package called CC-FJpy. It is commonly understood that CC takes a good deal of time. However,26
we found that a simple reorganization of the CC logic can achieve computational acceleration by a27
multiple of tens or even hundreds in comparison with classical CC open-source programs for N28
stations. For the F-J method, we use Nvidia’s graphics processing unit (GPU) to speed up29
computation, and this approach achieves a hundreds-fold computational acceleration. We have30
encapsulated our experiences and technologies into CC-FJpy and submitted it to various types of31
data tests to ensure its speed and ease of use. We hope that providing the open source of CC-FJpy32
can benefit the development of surface wave studies and make it easier to start with high-mode33
surface waves. We look forward to your use and valuable suggestions.34

Introduction35

In the past two decades, significant understandings of underground structures of different36
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scales have been facilitated by the development of surface wave imaging with noise37
cross-correlation (CC) technology (e.g., Campillo & Paul, 2003; Shapiro et al. 2005; Sabra et al.,38
2005a, b; Yao et al. 2006; Bensen et al. 2009; Lin et al., 2009, 2011; Fang et al, 2015, 2016; Shen39
et al., 2016). For ambient noise surface wave imaging, especially for lithospheric imaging, most40
often the fundamental mode is0 obtained and inversed (e.g., Bensen 2007). Numerous studies41
have confirmed that high-mode surface wave dispersion curves can provide more constraints on42
underground structures (e.g., Nolet & Panza, 1976; Yokoi, 2010; Pan et al., 2018; Wu et al., 2020).43
Wang et al. (2019a) proposed the frequency-Bessel transform (F-J) method, which can efficiently44
extract Rayleigh wave multimode dispersion curves from ambient noise cross-correlation45
functions (CCFs). Hu et al. (2020) verified that this method can be easily applied to Love waves;46
Li & Chen (2020a; 2020b) extended this method to the application to seismic records, and47
confirmed that this method can also extract the dispersion of PL waves. Zhan et al. (2020) applied48
this method to imaging in Northeast China and updated the local 3-dimensional velocity model. To49
further promote studies on high-mode surface waves and to ensure that more scholars can easily50
use this method, we summarized our experiences in recent years and packaged our GPU F-J code51
with our recently developed fast CC programs into an open-source Python package CC-FJpy.52

Noise cross-correlation technology is one of the most important technologies in seismology.53
CCFs obtained by CC can be approximated as Green’s functions, which means that a large number54
of seismological methods no longer rely on local earthquakes (e.g., Weaver & Lobkis 2004;55
Sánchez-Sesma & Campillo 2006). CCFs have been widely used in surface wave imaging (e.g.,56
Yao et al., 2006; Bensen et al., 2009), body wave imaging (e.g., Poli et al., 2012; Feng et al., 2017),57
full wave inversion (Sager et al., 2017, 2020; Wang et al., 2019b), attenuation emulation (e.g.,58
Lawrence et al., 2013) and so on. It is commonly understood that the CC process is often59
time-consuming, especially when the overlap of time is needed (Seats et al., 2012). Ventosa et al.60
(2019) attempted to accelerate the CC though GPUs. Although they accelerated the process of a61
single CC for two stations, they could not accelerate the CC of N stations well. After we carefully62
studied the CC process and some widely used CC codes, we found that although CC technology63
has been widely used for more than ten years since the early application of CC technology, there is64
still a relatively large optimization space. For N stations, ��

� times CCs are required. In many65
classic programs, each CC between two stations comprises reading data, preprocessing and CC. In66
fact, only N reading data and preprocessing steps are required. Furthermore, the essence of CC67
between records A and B is multiplication in the frequency domain:68

�� � � � � �݋�ܿ � � � �t
where conj is the conjugation. All the classic programs pack this step as a function (for example,69
the MATLAB function xcorr), which means that every CC needs two fast Fourier transforms70
(FFTs), which causes many repetitive FFT calculations. The total number of FFTs called is ���

� ,71
which can also be reduced to N. Based on these two points, we adjusted the logic of CC, wrote the72
kernel in the C language and encapsulated it as a Python interface through Cython. Although this73
sounds like a simple change, the effect is surprisingly good: its efficiency is ten to hundreds of74
times higher than that of most classic CC programs. More importantly, our programs have very75
small requirements for computing resources. In many cases, simple parallelism on a laptop is76
enough to make it dozens of times faster than traditional programs on a server. In addition, our77
program is also very easy to modify to adopt different kinds of improvements (e.g., Shen et al.,78
2012; Xie et al., 2020) to the CC equation (equation 1).79
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For the F-J method, the core is to numerically realize the integral of equation 2.80

� ��t �
�

�
� ��� �� t� ����� ��

where t is the wavenumber, � is the epicenter distance, ����� is the 0th Bessel function of the first81
kind and � ��� can be CCFs or earthquake records. Generally, a trapezoidal integral is a good82
choice, but this ignores the known characteristics of the Bessel function. Wang et al. (2019a) gave83
a more accurate integration format, which will, however, increase the amount of calculation. To84
balance efficiency and accuracy, we use the GPU to accelerate the process. The GPU is very85
suitable for this type of calculation and can achieve hundreds of speedups, which can shorten the86
original FJ process from a range of tens of minutes to hours to one of tens of seconds to minutes.87
In addition, we encapsulated the integration of using the Hankel function instead of the Bessel88
function, which has proven to be effective in removing “crossed” artifacts (Forbriger, 2003).89
Different integration methods and GPU or non-GPU support are provided in CC-FJpy to facilitate90
the needs of different users.91

In recent decades, computer technology has brought revolutionary changes to many92
industries. One of the most important drivers of these changes is that programming language and93
complex algorithms have been efficiently encapsulated, so that numerous participants can quickly94
learn and master the developed technology. The most typical example is the development of95
machine learning. Now, even a middle school student can train his or her own model using96
TensorFlow, PyTorch or other Python machine learning packages. In the field of geophysics, there97
are also many informed scholars who have developed efficient open-source software programs,98
such as the Generic Mapping Tools (GMT, https://www.generic-mapping-tools.org/) and Obspy99
(https://docs.obspy.org/, Beyreuther et al. 2010). Encouraged by this, we decided to share our100
small contribution in the direction of CC and high-mode surface waves to serve all colleagues, and101
we have committed to maintaining the update for the foreseeable future. You can obtain CCFJpy102
from https://github.com/ColinLii/CC-FJpy. We hope that through our program package, CC and103
the extraction of high-order dispersion through the F-J method will become easier, especially for104
scholars who are beginning to study this area. In addition, we humbly hope for valuable105
suggestions.106

Implementation107

The imaging process through the F-J method can be simply summarized as the following four108
steps: ① read data & preprocess, ② cross-correlation, ③ F-J scan and ④ dispersion curve109
extraction & inversion (Figure 1). Among them, ① mainly depends on the storage format (e.g.,110
SAC or miniSeed) and storage order of the data, and ④ has a lot of personalized solutions (e.g.,111
Shen et al., 2012; Pan et al. 2018; Dereiling et al., 2019). We highly recommend Obspy for112
reading and preprocessing data (https://docs.obspy.org/, Beyreuther et al. 2010). The calculations113
of ② and ③ are relatively fixed. Thus, CC-FJpy mainly deals with ② and ③ and is divided114
into two sub-packages: CCpy and FJpy. The two sub-packages can be used together or completely115
independently. In addition, although ④ has a large number of personalized programs, we plan to116
add several inversion methods that we believe are efficient and robust as examples in future117
updates.118
CCPY: a Python sub-package for rapid cross-correlation119

First, let us briefly review the basic formula of cross-correlation:120
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�t�� � �
�

��
�t � �� � 쳌 � ��� ��ㄹ

where �t � and �� � are the continuous broadband records of stations 1 and 2 in the time121
window [0, ��]. Usually, �� is not the total continuous recording time, as the recording is divided122
into unit time lengths such as one hour, one day or one week. CCFs are obtained by superimposing123
a large number of �t�� � with different time windows. The realization of equation 3 in the time124
domain is time-consuming, so for most programs, it is implemented in the frequency domain.125

�t�� � � �����t�ܿ݋��������������
where ��� is the discontinuous Fourier transform and �݋�ܿ is the conjugation.126

From equation 3 and equation 4, the CC of the two stations is appears to be very simple and127
without much room for acceleration. However, the strategy for calculating the CC affects the128
calculation time. We first talk about the outputs as the frequency-domain CC functions ���t �129
for N stations. The classic strategy is what we called strategy 1, the completely independent130
strategy, which means that every time the two stations are cross-correlated, the data of the two131
stations are read and correlated (Figure 2a). For this strategy, for one CC time unit, N(N-1) times132
reading data and N(N-1)/2 times CC are required. Obviously, there are many duplications in the133
reading data step. An improvement in this strategy is to read the data of N stations in once and134
then N(N-1)/2 times CC can be performed (Figure 2b). We call this strategy 2, the shared memory135
strategy. Compared with the completely independent strategy, the number of readings drops from136
N(N-1) times to N times. Furthermore, according to equation 4, we can divide CC into two parts:137
the FFT and multiplication (Figure 2d). The FFT can be shared like the reading data. Thus, we138
have strategy 3: shared memory and the FFT strategy (Figure 2c). In addition to the reading time,139
the CC time can also be reduced. It is worth mentioning that we use the C language to call the140
fftw-3 package (https://www.fftw.org) for FFT, as it is approximately 3 times faster than Python141
numpy fft. All the C codes are encapsulated as a Python interface through Cython.142

For the outputs are the time-domain CC functions ���� � , the shared memory and FFT143
strategy have more significant time advantages for M CC time units. For the first two strategies,144
since each CC outputs the time-domain CC functions, �� � � ��� t�ͳ� inverse FFTs (IFFTs)145
are needed before the overlap. However, since the Fourier transform is linear, we can overlap in146
the frequency domain and then perform the IFFT, which means that only � � ��� t�ͳ� IFFTs147
are needed. According to our test, the multiplication takes much less time than reading and148
preprocessing data, the FFT and the IFFT. The efficiency of the acceleration through strategy 3 is149
positively related to the total number of stations N and the total number of stacking days M. The150
larger N and M are, the more obvious the improvement delivered by strategy 3. Different machines151
and different data will have a great impact on the time cost. After using strategy 3, the overall CC152
efficiency is improved by one to two orders over strategies 1 and 2. As the amount of calculation153
is greatly reduced, CCpy is suitable for both personal PCs and notebooks.154

In many cases, to improve the quality of the CC, overlaps of units are needed (Seats et al.,155
2012). In our program, we designed a larger reading unit �� for reading, and the overlap of �� is156
executed within to improve efficiency. You can select an overlap rating, whether to use spectral157
whitening, whether to use onebit and other options for different situations with the interface158
ccfj.cc. We will show you a specific example of data from USArray in the next section to show the159
acceleration efficiency. For details, please read the package manual.160
FJPY: a Python sub-package for the F-J method through GPU161
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The core of the F-J method is the numerical realization of equation 2. For N observed � ����162
arranged in order from station distance for CCFs or epicenter distance for earthquake records, the163
trapezoidal integral can be used to approximate equation 2:164

� ��t �
t
�
��t

��t

� ���� �� t�� 쳌 � ��쳌t�� �� t��쳌t ��쳌t � ��� � �t

Note that for trapezoidal integration, � ��� is only obtained at the observation points �� , but165
�� t� is known from 0 to �. Thus, Wang et al. (2019a) gave another numerical integral format166
of equation 4 through linear approximation of Green’s function:167

� ��t �
��t

��t
t
t
� ��� ��t t� 쳌

��
tㄹ

t��� t� � �� t�� ���
��쳌t � �t

where �� �
� ��쳌t �� ��������

��쳌t���
, and �� � � �

� �������� . In the early implementation of the F-J168

method, the calculation of �� � is by trapezoidal integration. Later, we find the primitive of169
�� � :170

�������� � ��� � 쳌
��
�

�t � �� � � �� � �t � � �鞸

where �� � is the ith Struve function, which can be calculated by the subroutine of Ruckdeschel171
(1981).172

For dispersion features, seismologists prefer to display in the frequency-phase-velocity (f-c)173
domain over the frequency-wavenumber (f-k) domain. The domain conversion can be performed174
by:175

ܿ �
���
t

� ��

Commonly, when calculating nc phase velocity points and nf frequency points, regardless of176
whether equation 5 or equation 6 is used, the size of the calculation of the F-J method is quite177
large, especially for noise data. However, the F-J method is naturally suitable for parallel178
acceleration through the Nvidia GPU. Each calculation of ܿ� and �� is not related to each other.179
Compute unified device architecture (CUDA) programming enables us to execute F-J integration180
on GPU devices. Equation 5 and 6 can be packaged into different ‘kernels’ which is the code run181
on the GPU device, and be scheduled by nf�nc GPU threads. Further, we encapsulate the CUDA182
program with Python; this makes it possible to quickly implement equations 5 and 6 by calling183
function ccfj.fj with different parameters. It is worth noting that changing the Bessel function in184
equations 5 and 6 into the first kind of Hankel function will help eliminate the “cross” artifact185
(Forbriger, 2003). We have also added parameters to control using the Bessel function or Hankel186
function.187

It is also worth noting that for noise data, we often only use the real part of the CCFs for188
calculation, while for seismic data, we calculate the real and imaginary parts of the recorded189
spectrum and take �� ��t |. This is mainly because an earthquake has a source time function,190
which will affect the results of the pure real or imaginary part. In addition, Li & Chen (2020)191
noted that the F-J method for seismic records often requires auxiliary time windows192
(multi-windows F-J method, MWFJ). Therefore, we specifically designed the ccfj.mwfj interface193
for earthquake events. For details, please refer to the manual and the Python examples.194
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Examples of USArray195

Two application examples are illustrated: one is an ambient noise example consistent with196
Wu et al. (2020) and the other is an earthquake example consistent with Li & Chen (2020).197
Ambient Noise198

The data we use are half a year (182) of continuous records from June 1st (day 152) to199
December 1st (day 334) in 2011 of 96 stations from the USArray (Figure 3a). The original data200
size is approximately 55GB. We cropped data by day (�� ), which is probably the most common201
split time. Then, we downsampled to 4 Hz, demeaned, detrended, removed the instrument202
response and saved it as SAC files. After decompression, the size of a single SAC file is 1.31 MB203
and the total file size is 20.9 GB. If the data are stored as a longer period (�� ), such as week or204
month, the reading efficiency and calculation efficiency will be higher. Hourly CC with 90% time205
overlaps and spectral whitening is adopted during CC. Figure 3b shows the CCFs in the206
frequency-domain recovered by CC-FJpy, while Figure 3c shows the time-domain CCFs obtained207
by the IFFT of the frequency CCFs. Both the frequency-domain and time-domain CCFs have208
good coherence.209

As mentioned in the last section, we care most about the computational efficiency. Please210
note that different machines and data will have a greater impact on the results. The CPU applied211
for the test was a 10-cores Intel(R) Core (TM) i9-10900K with 64 GB ddr4 2666 MHz RAM and212
Seagate Exos 7E8 ROM. For the accuracy of the test, we read 100 different SAC files of one day213
and performed demeaning and detrending. The average time of reading data, demeaning and214
detrending is approximately 0.05 seconds. Similarly, we calculated that the time required to215
calculate the FFT with numpy is 0.093 seconds while that with fftw-3 is 0.029 seconds for hourly216
CC with 90% overlap at one station. The multiplication time of the numpy array is 0.008 seconds217
while the of fftw-3 is 0.002 seconds (Figure 4a). Figure 4b shows that the different strategies need218
to calculate the number of times to read data & demean & detrend, conduct the FFT and219
multiplication. The number of reads and FFTs required by strategy3 has drops sharply compared220
to the other two strategies, which leads to the CC time for 96 stations in a day being much less221
than that of other two strategies. To calculate CC in the frequency-domain for 96 stations in one222
day, strategy 1 takes 815 seconds, strategy 2 takes 542 seconds, and strategy 3 takes 11.5 seconds.223
Figure 4c-e shows the percentage of the different strategies, where the area is proportional to the224
time used, and the read and FFT time saved by strategy 3 is easily seen. For CCpy, which uses225
strategy 3, it takes less than 1800 seconds to complete the CC of the 4 Hz data of 96 stations for226
half a year in series. Under parallelism, since a large part of the time in the cross-correlation is227
reading data, the efficiency of parallelism does not entirely depend on the number of cores, but228
also depends on the speed of the hard disk. It takes less than 10 minutes to use 20 threads in229
parallel. For the first two strategies, it takes more than 24 hours to use serial and at least 4 hours to230
use parallel. It is worth noting that the time is measured on the author’s personal computer, which231
may be quite unstable.232

It should be noted that the above comparison does not consider the time taken by the IFFT. If233
the time of the IFFT is considered, as Figure 2d shows, for strategies 1 and 2, every CC needs a234
1-time IFFT, which means that for one-day data with 90% overlap, �ㄹt � ��

� IFFTs are needed,235
and for 182-day data, t�� � �ㄹt � ��

� IFFTs are needed. However, for strategy 3, only ��
�236

IFFTs are required, which will further highlight the acceleration ratio of strategy 3 compared to237
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those of strategies 1and 2.238
We use the trapezoidal integral (equation 5) based on the Bessel function, the linear239

approximate integral (equation 6) based on the Bessel function, the trapezoidal integral (equation240
5) based on the Hankel function and the linear approximate integral (equation 6) based on the241
Hankel function to extract the dispersion spectrum from the CCFs (Figure 5). Compared with242
trapezoidal integration, linear approximate integration can improve the quality of the dispersion243
spectrum. The Hankel function can effectively remove "cross" artifacts. Since GPU acceleration is244
used, the calculation time is approximately tens of seconds, and the specific values of the time cost245
are marked in the subfigures in Figure 5. The GPU applied in the test is the Nvidia RTX 2070246
super, which is commonly used and at a suitable price. Both the Linux platform and the Windows247
platform are supported. We also provide the corresponding calculation program without GPU248
acceleration in the program package, but the calculation without a GPU is relatively slow. If it is249
completely serialized, it will take close to 3 hours of calculation for the linear approximate integral250
of the Bessel function (Figure 5b), while the calculation with GPU acceleration is approximately251
11 seconds. Therefore, we strongly recommend using an Nvidia GPU to accelerate; even a very252
ordinary GPU will achieve a high acceleration.253
Earthquake254

Here, we repeat the example of the Mw 5.7 Oklahoma earthquake in Li & Chen (2020) with255
the FJPY. In this case, MWFJ with three time windows, NoWin, which means no time window,256
Win1 [3.2, 3.7] km/s and Win2 [3.7, 4.3] km/s, are applied. Here, we only show the results257
calculated according to the Bessel function and Hankel function corresponding to equation 6.258
Figures a, b and c show the dispersion spectrum extracted with three time windows by equation 6259
with the Bessel function, while Figures d, e and f show the dispersion spectrum extracted with260
three time windows by equation 6 with the Hankel function. The specific code calls have been261
shown in “earthquake.ipynb”. We prefer users try both instead of comparing the results, as, the262
calculation of seismic records is generally approximately a few seconds.263

Discussion and Conclusions264

The F-J method is an effective method for extracting high-mode surface wave dispersion265
from various types of seismic records, and has recently received increasing attention. We266
summarized the application of our group’s research in recent years on the F-J method, and267
encapsulated our codes and experiences into a Python package. We hope that through open source,268
we have made it more convenient for more seismologists to use the F-J method.269

At present, this package contains two parts: CCpy, which performs fast noise270
cross-correlation, and FJpy, which is accelerated by Nvidia’s GPU. Although we only made minor271
modifications to the existing cross-correlation logic, CCpy still delivers several times more speed272
up, so that CC that used to take days or weeks will now only take tens of minutes to a few hours.273
We believe this is helpful not only for the F-J method with ambient noise but also for many other274
seismological studies. The GPU acceleration drops the time taken by the F-J method, especially275
the application of ambient noise, from tens of minutes to approximately 1 minute, which greatly276
improves the efficiency of F-J imaging. The GPU can also be used to accelerate the CC process277
(Ventosa et al., 2019), and we are considering adding it in a future update. However, we are278
concerned about that GPUs cannot bring qualitative acceleration, such as CCpy, because reading279
data is required. As shown in the example in Figure 4, even if the FFT time and the multiplication280
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time are both 0, the reading still needs more than 1/3 of the time. However, with the increasing281
popularity of dense arrays, especially the application of distributed acoustic sensing (DAS,282
Mateeva et al., 2014; Hartog, 2017) technology, any attempts to improve efficiency should be283
encouraged.284

We believe that with the popularity of computers today, the ease of use of codes is very285
important for industry development. We chose to encapsulate our code in the form of a Python286
package, which is very suitable for embedding existing codes and applications. However, we287
believe that we are still inexperienced in developing and maintaining open-source code, so we will288
continue to humbly seek valuable advice.289

Data and Resources290

All the seismic records used in the examples were requested from the Data Management Center291
(DMC) of Incorporated Research Institutions for Seismology (IRIS) at292
https://ds.iris.edu/ds/nodes/dmc. Additionally, USArray information can be obtained from293
https://www.usarray.org and https://doi.org/10.7914/SN/TA. Detailed information about fftw-3 can294
be obtained at https://www.fftw.org. The CC-FJpy, manual and examples are available from295
https://github.com/ColinLii/CC-FJpy. We have also uploaded the Jupyter notebook files of296
examples in the supplemental materials. All the links mentioned are last accessed on February 4,297
2021.298
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450

Figure 1. The imaging process through the F-J method. At present, CC-FJpy mainly contains451
parts ② and ③. We will add ④ to this package in future updates452

453
Figure 2. Comparison of the three CC strategies for the continuous records of M days and N454
stations (sta1, sta2, …, staN) in units of days. The blue squares are the data in the time domain, the455
yellow squares are the data in the frequency domain, and the red squares are the final outputs. (a)456
Completely independent cross-correlation: in this approach, each CC reads data and correlates457
independently. (b) Shared memory strategy: in this approach, N records of each day are read,458
shared and then cross-correlated. (c) Shared reading and FFT strategy: not only are the memories459
of N records shared the FFTs and IFFTs are also shared. (d) How a single CC is implemented.460
There is a huge gap in the required calculation between the three strategies. We have marked the461
number of core calculations for CC below the flowchart of each strategy.462

463
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464
Figure 3. The CCFs recovered from USArray ambient noise data. (a) Stations used. (b) CCFs in465
the frequency domain recovered by CC-FJpy. (c) Time domain CCFs obtained by the IFFT of the466
frequency-domain CCFs.467

468

469
Figure 4. Cross-correlation performance comparison. It should be noted that all the470

comparisons here are in the case of a serial approach. (a) The time taken to read and preprocess471
data, FFT by numpy, multiplication by Python, FFT by fftw-3 and multiplication by C language472
for one station per day data. It should be noted that the FFT times and multiple times refer to the473
sum time of FFT and multiple in the overlap. (b) Comparison of the calculation amounts of474
different CC strategies. (c), (d), and (e) Proportion of time consumed by the main operations for475
the different strategies. The area of the pie chart is proportional to the total time.476
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478
Figure 5. Dispersion spectra extracted from CCFs by FJpy. (a) Dispersion spectrum479

calculated through the trapezoidal integral of the Bessel function. (b) Dispersion spectrum480
calculated through equation 6. (c) Dispersion spectrum calculated through the trapezoidal integral481
of the Hankel function. (d) Dispersion spectrum calculated though equation 6 with the Hankel482
function. The times in the lower left corner of each subfigure are the calculation times after483
acceleration by the GPU.484
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486
Figure 6. Dispersion spectra extracted from seismic records by FJpy. (a), (b), and (c) Dispersion487
spectra extracted by equation 6 with NoWin, Win1 and Win2. (d), (e), and (f) Dispersion spectra488
extracted by equation 6 with the Hankel function.489
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