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Are Massive Exoplanets More Likely to Have Magne6c Fields?
• Super-Earth and Super-Venus exoplanets are defined as planets with Earth (Venus)-like densi9es, but their masses 

scale from 1-10 Earth-masses.
• Convec9on in a metallic core can produce a magne9c field [e.g.,1-6].
• Detec9ng a magne9c field might help us constrain models of mantle dynamics.
• Any detec9on of a magne9c field could help us learn more about the habitability of the planet’s surface [2]. 

Yes! Massive Exoplanets are More 
Likely to Have Magne6c Fields. 
• The actual heat flow out of the metallic cores of 

exoplanets may increase faster with planetary mass 
than the values required for a dynamo.

• Super-Earth exoplanets may have ubiquitous 
magnetospheres—even without inner cores.

• Super-Venus exoplanets may also host dynamos in their 
cores if they are sufficiently massive—even without 
plate tectonics.

• Overall, magneCc fields may not provide a unique test 
for plate tectonics at massive exoplanets.

Scaling Law #1 – Required Heat Flow Low thermal conductivity (kC = 40 W/m/K) Thermal Conductivity kC = 100 W/m/K

Earth (1 ME): Super-adiabatic dynamo
Venus (1 ME): Inner core cannot exist
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What Do We Know About Earth and Venus?
• Earth has plate tectonics and a core-hosted dynamo. The heat flow out of 

the core may be super- or sub-adiaba9c.
• Venus has no plate tectonics, and no dynamo due to a low total heat flow 

rela9ve to Earth, or a different core composi9on/structure

• We calculated 3 possible threshold values of the total heat flow
required to drive convec9on depending on available sources [3,4].

QS = Secular cooling of the outer core
QR = Radiogenic hea9ng in the outer core
QP = Chemical precipita9on at the core-mantle boundary
QG = Gravita9onal energy driven from convec9on below
QI = Heat flux associated with cooling at inner core boundary
QL = Latent heat associated with freezing of inner core

QCMB is the heat flow across the core-mantle boundary.
• Dependent on the thermal conduc9vity of the mantle, not the 

thermal conduc9vity of the core! 

Future Work
• Determine if basal magma oceans can host dynamos in 

massive exoplanets and their effects on cores
• Test a wider range of assump9ons about mantle dynamics 

and the composi9on of the core
• Further out: Detect magne9c fields in exoplanets to 

constrain models
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Scaling Law #2 – Actual Heat Flow
• We es9mated the actual heat flow across the core-mantle 

boundary using a boundary layer model [e.g., 5, 6].

kM = thermal conducFvity of lower mantle
κM = thermal diffusivity 
αM = coefficient of thermal expansion 
ρM = density 
gC = gravitaFonal acceleraFon at CMB
RC = radius of the core

TLM = temperature of lower mantle
δBL = thickness of boundary layer
μBL = average viscosity
ΔTBL = thermal contrast across mantle base
TC = temperature at CMB

Results: Required vs. Actual Heat Flow Across the CMB

Earth has a 
magneFc field
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Venus does not 
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