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Abstract  23 

Space plasmas are composed of charged particles that play a key role in electromagnetic 24 

dynamics. However, to date, there has been no direct measurement of the distribution 25 

of such charges in space. In this study, three schemes for measuring charge densities in 26 

space are proposed. The first scheme is based on electric field measurements by 27 

multiple spacecraft. This method is applied to deduce the charge density distribution 28 

within Earth’s magnetopause boundary layer using Magnetospheric MultiScale 29 

constellation (MMS) 4-point measurements, and indicates the existence of a charge 30 

separation there. The second and third schemes proposed are both based on electric 31 

potential measurements from multiple electric probes. The second scheme, which 32 

requires 10 or more electric potential probes, can yield the net charge density to first-33 

order accuracy, while the third scheme, which makes use of seven to eight specifically 34 

distributed probes, can give the net charge density with second-order accuracy. The 35 

feasibility, reliability, and accuracy of these three schemes are successfully verified for 36 

a charged-ball model. These charge density measurement schemes could potentially be 37 

applied in both space exploration and ground-based laboratory experiments. 38 

 39 

 40 

 41 

 42 

 43 



 44 

1. Introduction 45 

 46 

Electromagnetic fields are omnipresent in space. They control the motion of 47 

plasmas, and the transportation, release, and transformation of energy in space, and 48 

thereby are the key driver of space weather hazards. Charges and electric currents 49 

(flows of charged particles) source the electromagnetic field, and therefore the 50 

distribution and motions of charges determine its form. Charge separations occur in 51 

electric double layers, which exist commonly in space plasmas (Block, 1975; Akasofu, 52 

1981; Raadu, 1989). Net charges can appear in plasma boundary layers (Parks, 1991), 53 

e.g., the magnetopause boundary layers and Alfvén layers (Hasegawa and Sato, 1989). 54 

Charge separations can also occur during ambipolar diffusion processes (Alfvén, 1963; 55 

Bittencourt, 2004), e.g., the Earth’s polar wind (Axford, 1968; Lemaire and Pierrard, 56 

2001; Yau et al., 2007). In macro-scale plasmas, flow shears or vorticities can 57 

accumulate these net charges, driving the field-aligned currents (Michael, 2014). 58 

Charge separations also play a key role in plasma instabilities, e.g., the Rayleigh-Taylor 59 

instability (Treumann and Baumjohann, 1997; Michael, 2014) and the tearing 60 

instability (Treumann and Baumjohann, 1997). 61 

The acquisition of a spatial distribution of electric charge density is of critical 62 

importance for recognizing and understanding the dynamics of electromagnetic fields 63 

and plasmas in space. However, there is still no equipment available for directly 64 

measuring the net charge density in space, although measurements of the charge density 65 



in the atmosphere near the ground have been achieved. The difficulty of such 66 

measurements in space arises because the plasmas there are extremely thin, with only 67 

a few charged particles per 𝑐𝑚3, and the net charge density is even lower by several 68 

orders. This article investigates how the charge density can be measured using 4-point 69 

electric field measurements from the Magnetospheric MultiScale (MMS) constellation 70 

(Burch et al., 2016) and also explores how the charge density can be deduced based on 71 

multiple-probe electric potential measurements on board a single spacecraft. 72 

In Section 2, we discuss a method for deducing the charge density from 4-point 73 

electric field measurements, which has been applied to analyze the charge density 74 

distribution in the dayside magnetopause boundary layer during an MMS 75 

magnetopause crossing event. In Section 3, a method for deducing the charge density 76 

from ≥ 10 -point electric potential measurements is studied. Section 4 explores 77 

measurements of the charge density based on seven or eight electric potential probes. 78 

Section 5 gives a summary and some discussion.  79 

 80 

2. Deducing the charge density from multi-spacecraft electric field measurements 81 

The direct approach to obtain the net charge density is to sum up the charge 82 

densities of positively and negatively charged particles with the formula 83 

     
e i i

i

en q n= − + ,                           (1) 84 

where en  and in  are the densities of the electrons and the i-th ion, respectively, and 85 

iq  is the charge of the i-th ion. However, the electric force is so strong that the plasmas 86 

are always quasi-neutral, and the separation between the two types of charges is very 87 



slight. Therefore, the charge densities in space plasmas are extremely small. It is almost 88 

impossible to determine the net charge density by measuring the densities of charged 89 

particles at the present stage of space exploration.  90 

The most feasible and practicable method at present is to deduce the net charge 91 

density by measuring the electric potentials or electric fields created by the net charges 92 

at high accuracies with well-developed technology (Mozer et al., 1967; Mozer, 1973; 93 

Paschmann et al., 1997; Pedersen et al., 1998; Michael, 2014). The Spin-plane Double 94 

Probes (SDPs) and Axial Double Probes (ADPs) (Torbert et al., 2016; Lindqvist et al., 95 

2016; Ergun et al., 2016) onboard the four spacecraft of the MMS constellation (Burch 96 

et al., 2016) yield four electric field vectors at four different locations separated by tens 97 

of kilometers. With the Gaussian theorem, 0 = E
, we can get the charge density at 98 

the center of the constellation, as illustrated in Fig. 1. Suppose that the four spacecraft 99 

of the MMS constellation are located at four different positions ( 1,2, , 4)  = r . The 100 

barycenter of the MMS constellation is

4

c

1

1

4


=

 r r  . It is convenient to assume that 101 

c 0=r , so that the barycenter of the constellation is the origin of the frame of reference. 102 

The four spacecraft yield four electric fields, ( ), 1,2, , 4  = = E E r . The i-th component 103 

of the gradient of the electric field at the barycenter can be calculated as (Harvey, 1998; 104 

Chanteur, 1998)  105 

( )
4

1

i j jic
1

1
r R

4

−

 

=

 = E E ,                                  (2) 106 

where 

4

ij i j

1

1
R r r

4
 

=

=   is the volumetric tensor of the constellation (Harvey, 1998), and 107 

1

jiR−  its inverse. By using the Gaussian theorem, we can get the charge density with the 108 



divergence of the electric field vector, i.e., 109 

3

0 0

1

i i

i

E  
=

=  = E ,                                  (3) 110 

 111 

 112 

Figure 1. A schematic view of the measurements of the electric field by the MMS 113 

constellation and the calculation of the charge density. 114 

 115 

Here we will explore the net charge distribution within the magnetopause 116 

boundary layer based on MMS electric measurements. It is well known that a charge 117 

separation occurs in the magnetopause, brought about by the effects of inertia (because 118 

there is a large difference between the masses of the electrons and ions). As a result of 119 

that, the net positive charges accumulate at the magnetospheric side and the net negative 120 

charges accumulate at the magnetosheath side of the magnetopause boundary. Because 121 

the MMS constellation has a rather small size (with the spacecraft separations being 122 

several tens of kilometers) and can be well-embedded in the magnetopause boundary, 123 



the charge density can be deduced from the MMS electric observations using the above 124 

method. We investigate one MMS magnetopause crossing event at 1:20:50 on 9 January 125 

2017 by examining the electric field and calculating the charge density, whose values 126 

during the crossing event are shown in Fig. 2. It can be seen that the rotational 127 

discontinuity (RD) appear at UT01:20:55 with the maximum magnetic rotation rates 128 

(Panel (c)) (Shen et al., 2007), minimum value of the gradient of the magnetic strength 129 

(Panel (d)), and smallest radius of curvature of the magnetic field lines (Panel (e)). As 130 

shown in Panel (f), a charge separation is evident at the two sides of the rotational 131 

discontinuity (RD), with the positive charges at the magnetospheric side and negative 132 

charges at the magnetosheath side. The maximum value of the charge density in the 133 

magnetopause is about 10
3e / m . It is evident that the electric neutralily is kept in the 134 

magnetosphere near to the magnetopause. These results are in agreement with the 135 

conventional models of the magnetopause boundary layers (Parks, 1991; Kivelson and 136 

Russell, 1995). 137 



 138 

Figure 2. The structure of the magnetopause during an MMS crossing event on 9 139 

January 2017. From top to bottom: (a) the magnetic flux density at the center of the 140 

constellation, (b) the electron and ion number densities measured by MMS-1 (Pollock 141 

et al., 2016), (c) the rotation rates of the magnetic field (Shen et al., 2007), (d) |∇|𝑩||, 142 

(e) the radius of curvature of the magnetic field lines (Shen et al., 2003), and (f) the 143 

charge distribution. The yellow shading indicates the rotational discontinuity (RD) 144 

crossing. 145 

 146 



3. Charge density measurements from 10 probes on board a spacecraft – Stiff 147 

Booms Method 148 

 149 

It is known that the linear gradient of a quantity can be estimated based on 4-point 150 

measurements (Harvey, 1998; Chanteur, 1998; Shen et al., 2003), while the quadratic 151 

gradient of a quantity can be calculated based on 10-point measurements (Chanteur, 152 

1998). In a previous investigation (Shen et al., 2021), a new algorithm was put forward 153 

to calculate the linear and quadratic gradients jointly based on 10 or more measurements. 154 

It can be applied to obtain the quadratic gradients ( 2  ) from 10-point electric 155 

potential field ( ) measurements. Moreover, with the Poisson equation, 156 

2

0  = −  ,                                    (4) 157 

it yields the distribution of the electric charge density. 158 

 159 

 The electric field generated by a uniformly-charged ball will be used to test this 160 

approach. Supposing that the radius of the ball is 𝑟0 and its charge density is 𝜌, we 161 

get the electric potential field analytically as, 162 

 𝜑(𝐫) = {
−
1

6
𝜀−1𝜌𝑟2 +

1

2𝜀
𝑟0
2𝜌  𝑖𝑓  𝑟  ≤   𝑟0,

−
1

4𝜋𝜀

𝑄

𝑟
 𝑖𝑓  𝑟  ≥   𝑟0,

 , (5) 163 

where 𝑄 =
4

3
𝜋𝑟0

3𝜌 is the total charge and 𝑟 is the distance from the center of the ball 164 

to the measurement point. In the following modeling, constant values of 1 are assigned 165 

to 𝜌,  𝑟0,  and 𝜖 . The positions of the 10 probes in the barycenter coordinates are 166 

generated randomly and presented in Tab. 1 and Fig. 3. The three characteristic lengths 167 

of the distribution of the 10 probes (Harvey, 1998; Robert, et al., 1998) are 𝑎 = 0.10,   168 



𝑏 = 0.06, and 𝑐 = 0.03. The reconstructed characteristic matrix 
MN  is 169 

(ℜ𝑀𝑁) =

(

 
 
 

12.73 −11.09 −5.05 5.22 2.74 1.61
−11.09 20.90 5.47 −6.71 −4.97 −2.28
−5.05 5.47 6.44 −2.49 −4.56 −2.27
5.22 −6.71 −2.49 12.83 −1.91 2.27
2.74 −4.97 −4.56 −1.91 9.09 0.86
1.61 −2.28 −2.27 2.27 0.86 2.68 )

 
 
 
10−3,    (6) 170 

 and its eigenvalues are given in Tab. 2. 171 

 172 

Table 1. The distribution of the 10 spacecraft of the constellation. 173 

x y z 

-0.16474 0.520923 -0.07516 

-0.29774 -0.2433 -0.00151 

0.107263 -0.00029 0.243785 

-0.12458 -0.14707 0.116693 

-0.11324 0.080113 -0.22108 

0.505285 -0.29726 -0.0293 

0.055479 0.300437 -0.28976 

0.461577 -0.14647 -0.13865 

-0.2916 0.323618 0.339179 

-0.13771 -0.3907 0.055801 



 174 

Figure 3. The distribution of the 10 probes. 175 

 176 

Table 2. The eigenvalues of the characteristic matrix MN . 177 

0.03614 0.01326 0.00114 0.00235 0.00510 0.00668 

 178 

We first investigate the behavior of the resultants with the number of iterations. 179 

𝐷 is the local characteristic scale of the electric field structure and is set equal to 𝑟 in 180 

this model. It is assumed that the barycenter of the constellation is at [0.1,0,0], and the 181 

probe separations 𝐿 are reduced proportionally so that the relative measurement scale 182 

L/D= 0.026. The relative truncation error, 𝑋𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚/𝑋𝑟𝑒𝑎𝑙 − 1, is shown in Fig. 4. 183 

With increasing numbers of iterations, the errors decrease and finally converge to 184 

certain fixed values. In this calculation, the solution converges after 100 iterations. By 185 

testing various fields, we found that the number of iterations required for convergence 186 

varies. 187 

 188 



 189 

Figure 4. The relative errors of the linear (a) and the quadratic (b) electric potential 190 

gradients, i.e., 𝜕𝑥𝜙  and 𝜕𝑥𝜕𝑥𝜙 , calculated for different numbers of iterations at 191 

[0.1,0,0] within the charged ball. 192 

 193 

Secondly, we investigate the dependence of the truncation errors on the relative 194 

measurement scale L/D. We have tested six situations, with the barycenter of the 10 195 

probes located at three representative points within the ball, [0.1,0,0], [0.4,0,0], and 196 

[0.7,0,0], and three points outside the ball, [3,0,0], [5,0,0], and [8,0,0]. We scale up 197 

and down the size of the original 10 probes to adjust the characteristic size 𝐿  and 198 

therefore 𝐿/𝐷. 199 

 200 

Figure 5 shows the truncation errors modeled in the ball. In general, the errors 201 

are less than 10−5% for the linear gradients and less than 0.02% for the quadratic 202 

gradients. With the same number of iterations, 1000, the errors at different positions 203 

vary by an order of 2.  204 

 205 



 206 

Figure 5. The left panels, (a), (b), and (c), show the truncation errors for the non-207 

vanishing component of the linear gradient by 𝐿/𝐷  calculated for three different 208 

locations of the barycenter of the 10 probes inside the ball, [0.1,0,0], [0.4,0,0], and 209 

[0.7,0,0]. The right panels, (b), (d), and (f), illustrate the relative errors of the non-210 

vanishing components of the quadratic gradient and charge density (dashed line) 211 

calculated for the same three locations of the barycenter. It is noted that 𝜙,1 ≡ 𝜕𝑥𝜙 212 

and  𝜙,2,2 ≡ 𝜕𝑦𝜕𝑦𝜙, where a comma denotes partial differentiation. 213 



 214 

Figure 6 shows the modeling results outside of the ball. As L/D<0.01, the 215 

relative errors of the non-vanishing quadratic gradient components are below 2%. The 216 

attained linear and quadratic gradients accurate to second order. 217 

 218 

 219 

Figure 6. The left panels, (a), (b), and (c), show the truncation error for the non-220 

vanishing component of the linear gradient as a function of 𝐿/𝐷 calculated for three 221 



different locations of the barycenter of the 10 probes outside of the ball, [3,0,0], 222 

[5,0,0], and [8,0,0]. The right panels, (b), (d), and (f), illustrate the relative errors of 223 

the non-vanishing components of the quadratic gradient and the absolute value of the 224 

charge density (dashed line) calculated for the same three locations of the barycenter. It 225 

is noted that the real charge density outside of the ball is zero. 226 

 227 

 228 

Figure 7. The relation between the absolute error of the charge density and the number 229 

of measurement points at [3,0,0]. The relative measurement scale is chosen as 𝐿/𝐷 =230 

0.05  (left) and 𝐿/𝐷 = 0.01  (right). The dashed lines are fitted from the modeled 231 

errors. 232 

 233 

We further investigate the relationship between the accuracy of the density 234 

estimated and the number of the probes used. Figure 7 indicates that the accuracy of the 235 

charge density is not improved significantly as the number of probes is increased. 236 

Therefore, 10 probes with a proper spatial configuration will be sufficient for robust 237 

measurements of the charge density. 238 

This scheme is possible to be used for the net charge measurements on the low 239 



Earth orbits at the altitudes of several hundred kms, for which the 10 probes are 240 

mounted at the ends of 10 booms with different lengths, and the spacrcraft can be either 241 

spinning or not. 242 

 243 

4. Measuring the charge density with seven or eight electric potential probes 244 

Only three diagonal components of the quadratic gradient of the electric potential 245 

are contained in the Poisson equation (
2 2 2

2
2 2 2x y z

    + + 
  

=  ). The 246 

three other cross-components of the quadratic gradient, 
x y   , 

y z   , and 
z x   , 247 

are of no use for computing the charge density, so three independent parameters can be 248 

neglected in this algorithm. Therefore, 10-3=7 probes are sufficient to acquire the data 249 

for the estimation of the Laplacian operator on the electric potential ( 2  ) as well as 250 

the charge density.  251 

  252 

4.1  Seven-probe scheme 253 

A seven-probe scheme, which is similar to the electric potential measurement of 254 

the MMS at high altitude orbits, is shown in Fig. 8. All probes are placed on three axes 255 

of the Cartesian coordinate system. The spatial parameters are 2 1 xx x L= − =  , 256 

2 1 yy y L= − =  , and 2 1 zz z L= − =  . By taking differences, the linear and quadratic 257 

gradients at second-order accuracy can be obtained to estimate the charge density at the 258 

center. 259 

 260 

 261 



  262 

Figure 8. A schematic view of the seven-probe measurement of the charge density. The 263 

probes are indicated by black dots. 264 

 265 

The linear and quadratic gradients along the x-axis are 266 

x2 x1

x2 0 0 x1

2 x2 x1 0

2

(7)
2

( ) 2
= (8)

x

x

x

x x

x x

L

L L

L L

 


   

  


−
 =


− −
− + −

 =
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Similarly, the linear and quadratic gradients along the y-axis are 268 



y2 y1

y

y2 y1 02

2

(9)
2

( ) 2
= (10)

y

y

y

L

L

 


  
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−
 =



+ −


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The linear and quadratic gradients along the z-axis are 270 

z2 z1
z

2 z2 z1 0

2

(11)
2

( ) 2
= (12)

z

z

z

L

L

 


  


−
 =



+ −
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The linear and quadratic gradients are both accurate to second order. 272 

However, in actual measurements, the central probe is inside the spacecraft and 273 

cannot determine the electric potential accurately. To improve this measurement, the 274 

central probe is replaced by another two additional probes located on the z-axis. The 275 

algorithm for this is shown in the following section. It is noted the seven-probe scheme 276 

can be still applied to the electric field and charge density measurements in ground-277 

based laboratory experiments. 278 

 279 

4.2  Eight-probe scheme 280 

The eight-probe scheme is shown in Fig. 9 with 2 1 xx x L= − = ， 2 1 yy y L= − = ，281 

3 2 zz z L= − = ， and 4 1 z zz z L l= − = + . The algorithm is constructed as follows. 282 

 283 



 284 

Figure 9. A schematic view of the eight-probe measurement of charge density. 285 

 286 

 287 

The four electric potentials observed by the probes on the z-axis can be expressed as a 288 

Taylor series. By keeping the first five terms we get 289 

 290 

2 2 3 3 4 4

z1 0 1 1 1 1

2 2 3 3 4 4

z2 0 2 2 2 2

2 2 3 3 4 4

z3 0 3 3 3 3

2 2 3 3 4 4

z4 0 4 4 4 4

1 1 1
(13)

2 3! 4!

1 1 1
(14)

2 3! 4!

1 1 1
(15)

2 3! 4!

1 1 1
(16)

2 3! 4!

z z z z

z z z z

z z z z

z z z z

z z z z

z z z z

z z z z

z z z z

     

     

     

     


= +  +  +  + 


 = +  +  +  + 


 = +  +  +  + 

= +  +  +  + 






  291 



Summing up the above four equations leads to 292 

2 2 2 2 2 4 4 4 4 4

z1 z2 z3 z4 0 1 2 3 4 1 2 3 4

1 1
( ) 4 ( ) ( )

2 4!
z zz z z z z z z z      + + + = + + + +  + + + +  . 293 

The electric potential at the center is therefore 294 

2 2 2 2 2 4 4 4 4 4

0 z1 z2 z3 z4 1 2 3 4 1 2 3 4

1 1 1
( ) ( ) ( ) (17)

4 8 96
z zz z z z z z z z      = + + + − + + +  − + + +    295 

Subtracting Eq. (13) from Eq. (16) and Eq. (14) from Eq. (15) gives 296 

3 3 3

z4 z1 4 1 4 1

3 3 3

z3 z2 3 2 3 2

1
= ( )

3!

1
= ( )

3!

z z

z z

z z z

z z z

   

   


− −  + − 


 − −  + − 


（z ）

（z ）

                  (18) 297 

or 298 

3 3

z4 z1 4 4

3 3

z3 z2 3 3

1
=2

3

1
=2

3

z z

z z

z

z

   

   


−  + 


 −  + 


z

z

                               (18’) 299 

Then, we get the linear gradient along the z-axis at the center as 300 

3 3

3 z4 z1 4 z3 z2

3 3

4 3 3 4

( ) ( )
=

2 2
z

z z

z z z z
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

− − −


−
                        (19) 301 

The expression above is of fourth-order accuracy. On the other hand, from Equation 302 

(18), the third-order derivative of electric potential along the z-axis is 303 

3 3 z4 z1 4 z3 z2

3 3

3 4 4 3

3 ( ) 3 ( )
=z

z z

z z z z

   


− − −


−
                     (20) 304 

The expression above is of second-order accuracy. 305 

Subtracting the sum of Eq. (14) and Eq. (15) from the sum of Eq. (13) and Eq. (16), we 306 

get 307 



2 2 2 2 2 4 4 4 4 4

z4 z1 z3 z2 1 4 2 3 1 4 2 3

1 1
( + ) ( + ) ( ) ( )

2 4!
z zz z z z z z z z     − = + − −  + + − − 

 308 

The second-order derivative is, therefore, 309 

4 4 4 4
2 4z4 z1 z3 z2 1 4 2 3

2 2 2 2 2 2 2 2

1 4 2 3 1 4 2 3

2( + ) ( )1

( ) 12
z z

z z z z

z z z z z z z z

   
 

− − + − −
 = − 

+ − − + − −                (21) 310 

The expression above is of second-order accuracy. 311 

Substituting Eq. (21) into Eq. (17), we get the corrected potential 0  at the center 312 

as 313 

2 2
2 2 41 2

0 z1 z2 z3 z4 z4 z1 z3 z2 1 22 2

1 2

1 1 1
( ) ( + )

4 4 24
z

z z
z z

z z
         

+
= + + + − − − + 

−
     (17’) 314 

The above expression is of fourth-order accuracy because the expression is 315 

truncated at the fourth-order term.  316 

Furthermore, by neglecting high order terms, we get the estimators for the 317 

potential and its linear and quadratic gradients at the center as 318 

2 z4 z1 z3 z2
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 319 

As stated above, the second-order derivative along the z-axis is of second-order 320 

accuracy. The potential and its first-order derivative along the z-axis are of fourth-order 321 

accuracy.  322 

Similar to the seven-probe scheme, the first-order and second-order derivatives of 323 

the potential along the x- and y-axis are subjected to Eqs. (7)-(10). The central potential 324 



0  is calculated with Eq. (17’’). The first-order and second-order derivatives along the 325 

x- and y-axis are of second order accuracy. 326 

The electric field at the center is 327 

 y
ˆ ˆ ˆ

x x y z z  = −  −  − E e e e                                         (22) 328 

Using the Poisson equation (4), the charge density is obtained as 329 
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 330 

where 0  is given by Eq. (17’’). 331 

 332 

The eight-probe scheme will now be examined for the electric field produced by a 333 

uniformly-charged ball. 334 

The relationship between the relative truncation errors and the relative 335 

measurement scale, 𝐿/𝐷, is studied when we set 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 𝑙𝑧 and scale up and 336 

down the distances between the spacecraft to adjust 𝐿/𝐷. Due to the broken spherical 337 

symmetry, two points inside the ball, [0.5,0,0]  and [0.5,0.4,0.3] , and two points 338 

outside of the ball, [8,0,0] and [2,2,6], are chosen as the representative points. The 339 

modeled results are shown in Fig. 10. The quadratic gradient in the ball is close to a 340 

constant and the charge density here is a constant. The truncation errors given by the 341 

algorithm, as shown in Fig. 10 (a,b), are negligible in this case. The charge density 342 

outside the ball is zero, and the calculated density, amounting to 10−4 as shown by the 343 

dashed lines in Fig 10 (c,d), is fairly close to zero. Note that the scale is one in the 344 

modeled system. As 𝐿/𝐷 < 0.1, the truncation errors of the quadratic gradient are less 345 



than 2%. It can be seen that the relative errors of the quadratic gradient and hence the 346 

charge density are at second order in L/D. 347 

 348 

 349 

Figure 10. Panel (a) and (b) show the relative truncation errors of the quadratic gradient 350 

of the electric potential (solid lines) and the charge density (dashed lines) at [0.5,0,0] 351 

and [0.5,0.4,0.3]  in the ball, respectively. Panel (c) and (d) show the relative 352 

truncation errors of the quadratic gradient of the electric potential (solid lines and left 353 

vertical axis) and the absolute errors of the charge density (dashed lines and right 354 

vertical axis). 355 

 356 

For real measurements in space, the distances between the probes along the z-axis, 357 

𝐿𝑧 and 𝑙𝑧, are much smaller than those along the other axes, 𝐿𝑥 and 𝐿𝑦. 358 



This 8 probe scheme is potentially applied for the net charge measurements on the 359 

high altitude orbits, for which the spacrcraft is spinning thus that the four porbes can 360 

strentch out at the ends of the four wire booms on the spin plane as shown in Fig. 9. 361 

 362 

5. Summary and Discussions 363 

Preliminary explorations for measuring the net charge density in space have been 364 

presented in this paper. Three schemes for the charge density measurements have been 365 

developed. 366 

The first scheme deduces the charge density based on four spacecraft electric field 367 

measurements. Based on the electric fields (𝑬𝛼 , 𝛼 = 1,2,3,4) observed at the four 368 

spacecraft, we can obtain the gradient of the electric field at the barycenter of the 369 

constellation, (∇𝑬)𝑐, and furthermore, the divergence of the electric field, (∇ ⋅ 𝑬)𝑐. 370 

The Gaussian theorem yields the charge density as 𝜌 = 𝜖∇ ⋅ 𝑬. This algorithm requires 371 

the constellation not to be distributed in a plane or linearly. In other words, the three 372 

eigenvalues of the volumetric tensor of the constellation should be non-vanishing. 373 

Based on this algorithm, an analysis on the electric field data acquired during a dayside 374 

magnetopause crossing event by the MMS constellation shows a charge separation in 375 

the magnetopause boundary layer and that the positive charges are accumulated on the 376 

magnetospheric side while the negative charges are accumulated on the magnetosheath 377 

side. A normal electric field pointing at the magnetosheath is also discovered. This 378 

confirms a previous theoretical prediction (Parks, 1991; Kivelson and Russell, 1995). 379 

 380 



Another charge density measurement scheme is based on 10 or more electric 381 

potential probes. By using a newly-developed algorithm [Shen et al., 2021], the linear 382 

gradient, (∇𝜙)𝑐, and the quadratic gradient, (∇∇𝜙)𝑐, of the electric potential at the 383 

center of the probes can be calculated from the 𝑁 ≥ 10  electric potentials, 384 

𝜙𝛼(𝛼 = 1,2,⋯ , 𝑁), as measured at the N probes. Furthermore, the electric field and 385 

the net charge density at the center of the probes can be calculated using ( )c= − E  386 

and the Poisson equation, 𝜌 = −𝜖∇2𝜙, respectively. 387 

This scheme requires the probes to be distributed uniformly. In other words, the 388 

eigenvalues of the 6 × 6  matrix ℜ  should be non-vanishing. The accuracy of the 389 

charge density estimated by the algorithm is of first order and that of the electric field 390 

is of second order. Modeling also shows that more probes lead to higher accuracy. 391 

 392 

Finally, two other schemes are presented to measure the electric charge density, 393 

which improve on the existing schemes for electric field observations onboard 394 

spacecraft. If one more electric potential probe is added in addition to the six electric 395 

potential probes of the electric field equipment on board the MMS spacecraft (that are 396 

distributed symmetrically on the three axes of the Cartesian coordinate system), the 397 

charge density can be derived along with the electric field vectors. The seventh probe 398 

is placed at the origin of the coordinate system. Due to the shielding potential of the 399 

spacecraft, this seven-probe scheme cannot be applied to measurements in space. 400 

However, it can be utilized in charge density measurements in ground-based laboratory 401 

experiments. Alternatively, by placing two more probes symmetrically on the two stiff 402 



booms in the six-point scheme of the MMS constellation, the eight-probe scheme will 403 

work for charge density measurements in space. The simulation test shows that the 404 

estimated electric field is of fourth-order accuracy and the charge density is of second-405 

order accuracy. The truncation errors contained in this scheme are much less than those 406 

in the 10 -probe scheme. The implementation of this scheme requires further 407 

development in the future. 408 

 409 
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 535 

Figure Captions 536 

 537 

Figure 1. A schematic view of the measurements of the electric field by the MMS 538 

constellation and the calculation of the charge density. 539 

 540 

Figure 2. The structure of the magnetopause during an MMS crossing event on 9 541 

January 2017. From top to bottom: (a) the magnetic flux density at the center of the 542 

constellation, (b) the electron and ion number densities measured by MMS-1 (Pollock 543 

et al., 2016), (c) the rotation rates of the magnetic field (Shen et al., 2007), (d) |∇|𝑩||, 544 

(e) the radius of curvature of the magnetic field lines (Shen et al., 2003), and (f) the 545 

charge distribution. The yellow shading indicates the rotational discontinuity (RD)  546 

crossing. 547 

 548 

Figure 3. The distribution of the 10 probes. 549 

 550 

Figure 4. The relative errors of the linear (a) and the quadratic (b) electric potential 551 

gradients, i.e., 𝜕𝑥𝜙  and 𝜕𝑥𝜕𝑥𝜙 , calculated for different numbers of iterations at 552 

[0.1,0,0] within the charged ball. 553 

 554 

Figure 5. The left panels, (a), (b), and (c), show the truncation errors for the non-555 

vanishing component of the linear gradient by 𝐿/𝐷  calculated for three different 556 



locations of the barycenter of the 10 probes inside the ball, [0.1,0,0], [0.4,0,0], and 557 

[0.7,0,0]. The right panels, (b), (d), and (f), illustrate the relative errors of the non-558 

vanishing components of the quadratic gradient and charge density (dashed line) 559 

calculated for the same three locations of the barycenter. It is noted that 𝜙,1 ≡ 𝜕𝑥𝜙 560 

and  𝜙,2,2 ≡ 𝜕𝑦𝜕𝑦𝜙, where a comma denotes partial differentiation. 561 

 562 

Figure 6. The left panels, (a), (b), and (c), show the truncation error for the non-563 

vanishing component of the linear gradient as a function of 𝐿/𝐷 calculated for three 564 

different locations of the barycenter of the 10 probes outside of the ball, [3,0,0], 565 

[5,0,0], and [8,0,0]. The right panels, (b), (d), and (f), illustrate the relative errors of 566 

the non-vanishing components of the quadratic gradient and the absolute value of the 567 

charge density (dashed line) calculated for the same three locations of the barycenter. It 568 

is noted that the real charge density outside of the ball is zero. 569 

 570 

Figure 7. The relation between the absolute error of the charge density and the number 571 

of measurement points at [3,0,0]. The relative measurement scale is chosen as 𝐿/𝐷 =572 

0.05  (left) and 𝐿/𝐷 = 0.01  (right). The dashed lines are fitted from the modeled 573 

errors. 574 

 575 

Figure 8. A schematic view of the seven-probe measurement of the charge density. The 576 

probes are indicated by black dots. 577 

 578 



Figure 9. A schematic view of the eight-probe measurement of charge density. 579 

 580 

Figure 10. Panel (a) and (b) show the relative truncation errors of the quadratic gradient 581 

of the electric potential (solid lines) and the charge density (dashed lines) at [0.5,0,0] 582 

and [0.5,0.4,0.3]  in the ball, respectively. Panel (c) and (d) show the relative 583 

truncation errors of the quadratic gradient of the electric potential (solid lines and left 584 

vertical axis) and the absolute errors of the charge density (dashed lines and right 585 

vertical axis). 586 
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