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1. Description of CSD-WDM

1.1. Demand data

Per-capita demands are decomposed into indoor and outdoor water uses. This is done

by calculating the average November through March demands for each year to determine

the mean per-capita indoor water demand (DI). Monthly outdoor water use (DOm) is

determined by subtracting the year’s (y) respective mean indoor use (DIy) from each

irrigation month’s (m) total per-capita demand (DTm), see equation S1.

DOm = DTm −DIy (1)

1.2. Model Inputs

Precipitation and temperature data leverage the North American Land Data Assim-

ilation System’s (NLDAS) one-hour temporal and one-eighth degree spatial resolution

climate forcing estimates (Xia et al., 2012). While local weather stations are within the

municipal service area, a single national source broadens this framework’s generalizability

to other western water systems. Monthly mean temperature (oC) and cumulative precip-

itation (mm) metrics are calculated from March through October, one month prior and

extending till the completion of the irrigation season. Monthly hydro-climate metrics are

not included as November to March model inputs, assuming demands remain independent

of weather as there is no irrigation.

Mountain streamflow functions as a hydro-climate supply metric, capturing the com-

plex interactions among mountainous topography (snowdrift, aspect, and microclimates),

variable winter precipitation patterns (global climate oscillations and Great Salt Lake

February 11, 2022, 3:17pm



: X - 3

influences), snowmelt (timing, duration, and quantity), and unique mountain hydrology

(groundwater and baseflow) that contribute to supply availability which precipitation and

air temperature alone do not (Bales et al., 2006, Ahl, Woods, & Zuuring, 2008). The four

supply streams’ daily discharge measurements are collected (1980-2017) from the United

States Geological Survey (USGS) and Salt Lake County at the canyon mouths prior to

extensive water diversion. The few missing values are spatially interpolated as a function

of up or downstream measurements (Hughes & Smakhtin, 1996). From this data mean

monthly streamflow metrics (Qcfs) are calculated for the supply creeks.

Supply watershed snowfall completes the hydro-climate metrics, where November to

April monthly and seasonal snowfall (Smm) is retrieved from the Alta Guard station at

the headwaters of Little Cottonwood Creek. This metric bridges the gap between climate

conditions and surface water supply, and also uses the 76 years of continuous observations

to define the frequency and magnitude of the climate scenarios.

To account for the evolving urbanization dynamics during the study period, population

and housing data is acquired from the U.S. Census (Census, 2012). Linear interpolation

between decadal census observations provides continuous population (p) and housing (H )

data, and combined with SLCDPU’s service area, population and housing densities are

determined (p/km2, H/km2).

Long-term conservation trends provide the final input metrics in the analysis. In the

year 2000, the Utah Division of Water Resources established statewide per-capita water-

use goals for public community water systems to be at least 25% by 2050, and then

in 2014 amended the target to 2025 after substantial progress had been achieved (Utah

Department of Natural Resources, 2014). To recognize these policy influences on demand,
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the variability in each month’s 1980-2000 mean per-capita water use forms the baseline to

project Utah’s 25% reduction in water use by 2025. This conservation metric (Cm) applies

each month’s unique conservation rate to each month spanning 2000 to 2025. Equation

2 details this function where m refers to the month of interest, Dm is that month’s mean

per-capita water use, and y is the number of years past the goals’ implementation.

Cm = Dm − Dm ∗ 25%
25yrs

∗ y (2)

Adopting a linear conservation goal is representative of western U.S. water conservation

policy (Utah Department of Natural Resources, 2019, Hertzbern, 2018, Friedman, 2018,

Colorado Water Conservation Board, 2015, Southern Nevada Water Authority, 2019) and

presents a predictor of anticipated long-term trends that could improve seasonal fore-

casting accuracy. Municipalities that do not use a constant rate typically use a constant

percent rate reduction, which would form this metric (U.S. EPA, 1998). Utah’s 2019 Re-

gional Municipal & Industrial Water Conservation Goals supports SLCDPU’s long-term

per-capita reduction, albeit with significant year-to-year variability. While a linear con-

servation goal exhibits characteristics of stationarity, at an annual resolution, demands

demonstrate non-stationarity by exiting their historical range of observations. No ad-

ditional policy changes occurred during the study period, however, this metric can be

updated if non-linear conservation is anticipated in the future.

The initial indoor demand features include conservation goals, population, and urban-

ization metrics. Climate and supply features are omitted as predictors because indoor

use has been shown to be influenced by the number of people per household, appli-

ance type, and associated water-use efficiencies rather than climate conditions (Jacobs

& Haarhoff, 2007). These residential water use drivers are not included as potential in-
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puts into CSD-WDM due to this study’s spatial scale and multi-sector composition of

municipal-produced water demands. Irrigation season months include these metrics, plus

current and antecedent monthly mean air temperature, precipitation, supply streamflows,

and snowfall metrics. Antecedent metrics begin in March, prior to the irrigation season

start, and incrementally increase per month until the season’s termination in October.

For example, October’s inputs include March through October hydro-climate and supply

metrics.

1.3. Variable Selection

The CSD-WDM is a Python-based (v3.8.5) demand forecasting model that automat-

ically selects key demand drivers and optimizes hyperparameters to accurately forecast

mean monthly per-capita water use. The model uses each month’s complete set of possi-

ble demand influencing metrics as inputs into a three-phase feature selection process: 1)

feature correlation to demand, 2) collinearity removal, and 3) driver selection. The term

driver is designed to inform that a feature/metric is selected to be a key demand predic-

tor. Phase one evaluates each feature’s Pearson correlation coefficient with each month’s

demands. This value doubles as a threshold parameter, permitting features meeting or

exceeding the threshold to pass to the next phase. Phase two evaluates for collinearity

between features and is also an adjustable parameter. This process eliminates the lesser

demand-correlated feature, should collinearity between two features be greater than the

threshold, resulting in demand-correlated features with acceptable levels of collinearity

(< 10) to the final phase of variable selection (Song & Kroll, 2011). Phase three uses

Scikit-learn 0.24.1 recursive feature elimination (RFE) to select the optimal monthly out-

door water demand drivers (Pedregosa et al., 2011). RFE is an efficient, effective, and
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model-specific feature selection algorithm that identifies drivers that are most relevant to

predicting monthly demands. Using the GridSearchCV function, the algorithm assigns

feature importance weights and recursively prunes the number of features over five-fold

cross-validation until the optimal drivers are selected. Figure SS1 illustrates CSD-WDM’s

automated workflow using July as an example.

Scikit-learn OLS regression serves as the CSD-WDM regression algorithm due to its

driver-target interaction interpretability. The algorithm is calibrated on each month’s

demand drivers, undergoes a final five-fold cross-validation, and is fitted without a y-

intercept. During calibration, an exhaustive grid search function evaluates root-mean-

squared-error (RMSE) over the correlation (0-0.7 in 0.05 increments) and collinearity

(0.65-0.90 in 0.05 increments) parameters. This process delivers each month’s optimal

demand drivers, coefficient weights, and modeling error. CSD-WDM’s regression base aids

in interpretability, see Equation 3 where m is the month of interest, β is the coefficient

weight, and x is the selected driver.

lpcdm = β1x1 + β2x2 + . . . + βnxn (3)

The CSD-WDM model calibration results are presented in several ways to improve

user interpretability. This includes driver coefficients, per-capita, and acre-feet prediction

units, data-frames for additional analysis, and figures to illustrate performance at monthly

to annual temporal resolutions. The variety of results allows the user to select the method

most appropriate for their respective needs and decision-making.

The CSD-WDM identified Utah’s conservation goal metric as the optimal indoor de-

mand driver. No urbanization metrics (population, housing, density, etc) were identified
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as statistically significant or improving indoor predictive performance. During the irriga-

tion season, a total of eighteen hydro-climate and supply metrics are identified as demand

drivers, emphasizing antecedent monthly air temperatures from June through October.

Table SS1 displays April to October predictors and their respective coefficient weights.

Preliminary feature development included the municipal fraction of irrigated, impervious,

developed, residential, and urban land uses.
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Phase 1:  Correlation with Demand

Model Calibration: 5-fold Cross
Validation

AA. B.

C.

Phase 3: Recursive Feature Elimination

Phase 2: Collinearity Reduction

D.

Figure S1. CSD-WDM’s feature selection process
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1.4. CSD-WDM Calibration

Figure S2. The CSD-WDM captures water use dynamics in response to drought, average,

and surplus supply scenarios.
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Figure S3. An iterative process down scales monthly demand values to a daily time step to

provide a continuous demand time series (A). A key aspect of the iterative process is maintaining

the mean monthly demands, performed by increasing or decreasing the spline value for each

month (B).
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Figure S4. Seasonal demand forecasting methods relying on stationarity can significantly

over-predict water demands (A), leading to high forecasting error (B).
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Figure S5. Daily RRV for observed (OBSD), stationary traditional (TD), and non-stationary

dynamic (CSD-WDM) water demand simulations. The non-stationary dynamic demand simula-

tions mirror the observed results while stationary traditional methods indicate reduced reliability

and greater vulnerability relative to the observed. The error bars in the CSD-WDM predictions

communicate the forecast’s uncertainty to a 95% confidence interval, a missing component of the

traditional demand forecast.
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Figure S6. Water System Performance during wet supply conditions and CSD-WDM fore-

casted demands
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Figure S7. Water System Performance during wet supply conditions and traditional forecasted

demands
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Figure S8. Water System Performance during average supply conditions and CSD-WDM

forecasted demands
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Figure S9. Water System Performance during average supply conditions and traditional

forecasted demands
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Table S1. Water demand drivers and CSD-WDM coefficient weights.

Predictor Apr May Jun Jul Aug Sep Oct

Population Density1 -0.30 -.11

Mar LCC Streamflow2 1 57.0

Apr LCC Streamflow2 1 1

May LCC Streamflow2 1

May BCC Streamflow2 43.9

Season Snowfall3 0.45

Apr Mean
Temperature4

21.3 33.9 -14.8 11.4 16.0

Apr Precipitation5 -1.17 -0.04

May Mean
Temperature4

54.1 56.4 36.1 -1.10 12.5 -2.02

May Precipitation5 -3.97

Jun Mean
Temperature4

5.45 -14.4

Jun Precipitation5 -14.4 4.62

Jul Mean
Temperature4

118 43.5 -27.6

Aug Mean
Temperature4

23.9 45.2

Aug Precipitation5 -6.90

Sep Mean
Temperature4

30.7

Sep Precipitation5 -3.63

Oct Mean
Temperature5

21.7

1 change in demand per persons/km2

2 change in demand per cms of streamflow (x10−3)

3 change in demand per mm of snow

4 change in demand per ◦C

5 change in demand per mm of liquid precipitation
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Table S2. Modeled daily RRV. The stationary traditional demand forecasting methods

exhibit greater error (value in parenthesis) from the observed compared to the non-stationary

dynamic demand (CSD-WDM) simulations. Furthermore, the stationary demand simulations

are deterministic and do not communicate prediction uncertainties. In comparison, the novel

approach leveraging the CSD-WDM’s internal demand prediction error characterizes the range

of uncertainty (Uncertainty Low/High) to a 95% confidence interval, providing a foundation to

enhance operational decision making.

Metric
Climate
Scenario

(snowpack)

Observed
Demands

Stationary
Demands

Non-
Stationary
Demands

Non-
Stationary
Uncertainty
(Lo/Hi)

Dry 0.48
0.41

(-15%)
0.48 (2%) 0.43-0.76

Reliability Average 0.78
0.61

(-22%)
0.80 (1%) 0.57-0.87

Wet 1.0 1.0 (0%) 1.0 (0%) 1.0

Dry 56 32 (42%) 28 (50%) 17-62

Resilience* Average 25 17(32%) 14 (44%) 14-31

Wet 1 1 (0%) 1 (0%) 1

Vulnerability
Dry 0.44 0.61 (39%) 0.44 (0%) 0.33-0.57

Average 0.38 0.48 (26%) 0.39 (3%) 0.22-0.48

Wet 0.01
0.05

(400%)
0.04 (300%) 0-0.12

Peak Severity
Dry 0.52

1.19
(129%)

0.63 (21%) 0.36-0.94

Average 0.65 0.75 (15%) 0.69 (6%) 0.40-1.0

Wet 0.0 0.0 (0%) 0.0 (0%) 0.0

Vulnerability
Class

Dry High Extreme High
High - Very

High

Average High Very High High Medium-High

Wet Low Low Low Low-Medium

Peak Severity
Class

Dry High Extreme High Medium-High

Average High Very High High
Medium -
Very High

Wet Low Low Low Low

*units
in days
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Table S3. Daily water system RRV percentage (%) difference from each the historical mean.

Metric
Climate
Scenario

(snowpack)

Observed
Demands

Traditional
Demands

CSD-WDM
Demands

Below Average -25 -35 -23

Reliability Average 23 -3 28

Above Average 59 59 59

Below Average -1750 -960 -830

Resilience Average -710 -460 -370

Above Average 67 67 67

Average
Vulnerability

Below Average 54 117 54

Average 32 68 38

Above Average -97 -82 -87

Peak Severity

Below Average 79 307 116

Average 123 158 138

Above Average -100 -100 -100
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Table S4. Monthly water system RRV percentage (%) difference from the historical mean.

Metric
Climate
Scenario

(snowpack)

Observed
Demands

Traditional
Demands

CSD-WDM
Demands

Below Average -55 -100 -55

Reliability Average -9 -32 -9

Above Average 59 36 59

Below Average -98 -164 -98

Resilience Average 34 -45 -34

Above Average 67 67 67

Average
Vulnerability

Below Average 71 140 69

Average 20 83 24

Above Average -87 -52 -79

Below Average 88 338 125

Peak Severity

Average 100 165 113

Above Average -100 -97 -100
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Table S5. The range of daily water system RRV differences by climate conditions.

Varying Climate
Observed
Demands

Traditional
Demands

CSD-
WDM

Demands
Range

Reliability 0.52 0.44 0.52 0.52

Resilience* 55 31 27 55

Average Vulnerability 0.43 0.60 0.40 0.60

Peak Severity 0.65 1.19 0.69 1.19

Supply Range** 157% 157% 157% 157%

Varying Demand
Below-
Average

Average
Above-
Average

Range

Reliability 0.07 0.12 0.0 0.12

Resilience* 28 11 0 28

Average Vulnerability 0.17 0.1 0.04 0.17

Peak Severity 0.67 0.1 0.0 0.67

Demand Range** 28% 28% 28% 28%

*units in days.

**function of the seasonal percent of historically observed.
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Table S6. The range of monthly water system RRV differences by climate conditions and

demand forecast.

Varying Climate
Observed
Demands

Traditional
Demands

CSD-
WDM

Demands
Range

Reliability 0.71 0.86 0.71 0.86

Resilience* 5 7 5 7

Average Vulnerability 0.45 0.54 0.42 0.54

Peak Severity 0.58 1.27 0.66 1.27

Supply Range** 157% 157% 157% 157%

Varying Demand
Below-
Average

Average
Above-
Average

Range

Reliability 0.29 0.14 0.14 0.29

Resilience* 2 2 0 2

Average Vulnerability 0.19 0.18 0.1 0.19

Peak Severity 0.73 0.19 0.01 0.73

Demand Range** 28% 28% 28 28%

∗units in months.

**function of the seasonal percent of historically observed.

Table S7. Seasonal SLCDPU supply and demand as a ratio of average historical values. For

this UWS, there is greater variability in supply (158%) than demand (28%).

Hydroclimate
Scenario

Observed
Demands

Stationary
(Tradi-
tional)

Demands

Non-Stationary
(CSD-WDM)
Demands

Range in
Demand Per
Hydroclimate

Scenario

Streamflow

Dry 1.03 1.31 1.03 0.28 0.53

Average 1.06 1.31 1.09 0.25 0.62

Wet 1.12 1.31 1.18 0.19 2.11

Range by
Climate.

0.09 0 0.15 1.58
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