
GEOPHYSICAL RESEARCH LETTERS

Supporting Information for ”Exploring Bayesian

deep learning for weather forecasting with the Lorenz

84 system”

Yang Liu1,2, Jisk Attema1, Wilco Hazeleger3

1Netherlands eScience Center, Amsterdam, the Netherlands

2Meteorology and Air Quality Group, Wageningen University, Wageningen, the Netherlands

3Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands

Contents of this file

1. Text S1 to S5

2. Figures S1 to S2

Introduction This supplementary material includes additional information regarding

BDL and the variational inference method for training the Bayesian neural networks,

namely the Bayes by Backprop. It also includes a brief introduction of the local re-

parameterization trick and the evaluation metrics. A detailed explanation of the lead

time dependent forecasts and numerical configurations of training and forecasting with

BayesLSTM is provided.
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S1. BDL and Bayes by Backprop In this section, we elaborate on BDL and Bayes

by Backprop in detail. Deep neural networks are equipped with multiple layers of fixed

weights to extract the multiple levels of abstraction in the training data (LeCun et al.,

2015). These neural networks are deterministic and prone to overfitting and forecasts with

over-confidence (Blundell et al., 2015). In order to incorporate uncertainty estimation

during training and forecasting, we need to transform the deterministic neural network

into a probabilistic structure and therefore we seek help from the Bayes’ theorem.

To begin with, we have a training set D = (xi, yi)i which consists of input data x ∈ Rd

and output data y ∈ Rd. We aim for a probabilistic neural network p(y|x,w) with a

distributed weight w. To obtain the weight distribution, we apply the Bayesian inference

and we will get the expression:

p(w|x, y) =
p(y|x,w)p(w)

p(x, y)
(1)

By substituting p(x, y) according to the law of total probability, we can obtain:

p(w|x, y) =
p(y|x,w)p(w)∫
p(y|x,w)p(w)dw

(2)

The integral in the denominator requires coverage of all possible values of w, which is com-

putationally prohibitive. This makes the true posterior probability distribution intractable

(Blundell et al., 2015; Shridhar et al., 2018, 2019). To solve this, various approximation

methods (e.g. maximum-a-posteriori scheme, variational inference schemes) were studied

in the past (Graves, 2011; Shridhar et al., 2018). Among all of them, variational inference

schemes are widely embraced and they work well for a wide range of BDL applications.
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So far, three popular variational inference schemes are always used to approximate the

intractable posterior: Monte Carlo Markov Chain (MCMC), Monte Carlo dropout (MCD)

and Bayes by Backprop (BBB).

MCMC is a family of methods that combines stochastic variational inference and Monte

Carlo approaches (Salimans et al., 2015). Unlike variational inference in general which

takes a random draw from a simple variational distribution and keeps optimizing the

distribution, MCMC methods subsequently apply a stochastic transition operator to the

random draw, so as to cover the exact posterior distribution. As long as the iterations are

sufficient, MCMC can approximate the exact posterior well. However, we do not know if

the iterations are sufficient and this procedure is always very costly.

An alternative is MCD, which uses dropout to perform variational inference where the

variational distribution comes from a Bernoulli distribution. Hence it is also known as

Variational inference with Bernoulli Distribution (Gal & Ghahramani, 2015, 2016). This

method makes use of dropout in each layer of neural network during training as well as

testing and thus the process is equivalent to sampling from a Bernoulli distribution and

provides a measure of uncertainty. Nevertheless, it provides a rough approximation of the

target posterior and the control of uncertainty is limited by the complexity of the neural

network.

Given the drawback of MCMC and MCD, in this study, we choose a more functional

and affordable approach, BBB, to approximate the posterior. This method is a back-

propagation (BP) compatible variational inference approach that estimates a density

function with a known distribution and progressively update it with BP (Blundell et

January 29, 2021, 3:06pm



X - 4 :

al., 2015; Shridhar et al., 2018). More details about BBB can be found in the section

Methodology in the main body of the paper.

S2. Local re-parameterization method With the implementation of BBB and op-

timization function, it seems our BayesLSTM is ready for training. However, the whole

procedure is not ready for back-propagation (BP) due to the stochastic node including

N (θ|µ, σ2) in our chosen variational distribution. In order to enable the optimization of

the parameters of Gaussian posterior with BP, we introduce the local reparameterization

method, which translates the global uncertainty in the weights into a form of local un-

certainty (Kingma et al., 2015; Shridhar et al., 2019). In this case, we replace N (θ|µ, σ2)

with w = µ+ σ ∗ ε where ε ∼ N (0, 1). More information about the local reparameteriza-

tion method can be found in the related literature (Kingma & Welling, 2013; Kingma et

al., 2015; Shridhar et al., 2018, 2019).

S3. Evaluation metrics In order to evaluate these ensemble forecasts, we include con-

tinuous ranked probability score (CRPS), root mean square error (RMSE) and Euclidean

distance.

CRPS is a popular verification tool for the assessment of probabilistic forecast systems.

It is used to evaluate an ensemble forecast against a single deterministic observation and

it has the following form (Gneiting et al., 2005):

CRPS(F, v) =

∫ inf

− inf

[F (r)−H(r − v)]2dr (3)
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with F the predictive cumulative density function (CDF), v the verifying observation, r

the threshold value, and H(r − v) the Heaviside function which takes the value 0 when

r < v and otherwise 1.

RMSE score is also included in this study and it is defined in the following way so as

to work with the probabilistic forecast results:

RMSE =
1

N
ΣN
n=1

1

T
ΣT
t=1

√
(xpred − xobs) (4)

with N the number of ensemble members, T the number of time steps, xpred and xobs the

predicted and observed value.

Euclidean distance (EuD) is used to evaluate the similarity between trajectories, which

is expressed as:

EuD =
1

N
ΣN
N=1

1

T
ΣT
T=1

√
(xpred − xobs)2 + (ypred − yobs)2 + (zpred − zobs)2 (5)

S4. Estimate uncertainty with BDL Typically, three types of uncertainties are con-

sidered: (1) Uncertainties in the initial conditions (2) Necessary approximations and cor-

responding uncertainties in the construction of a numerical model of the real atmosphere

(3) Uncertainties posed by external forcing and boundaries. The last one is often ignored

in an operational weather forecast system, but relevant for climate studies and local fore-

casts. Kendall and Gal (2017) explained how the model uncertainty and initial condition

uncertainty are addressed by BDL respectively. Given the nature of the forward process

of BDL, model uncertainty is addressed by the BDL via placing a prior distribution over a
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model’s weight, which is already explained by the prior dependent part KL[q(w|θ)||p(w)]

during the training of BDL when minimizing the KL divergence (Kendall & Gal, 2017).

The representation of initial condition uncertainty with BDL is less straightforward.

During training, the BayesLSTMs approach output yj ∈ Rd with an input xj ∈ Rd and

weight distribution wj, as P (yj|xj, wj). However, there is always noise εj in the input

fields (initial conditions) and this propagates through the network and affects the output,

thus P (yj|xj, wj, εj). With the help of Bayes rule, we bring in the pre-knowledge of model

weight distribution as prior and search for the best weight distribution as posterior that

is able to achieve the testing set x̂j and ŷj following P (ŷj|x̂j) = EP (wj |D)[P (ŷj|x̂j, wj)].

To simplify the problem, we assume a Gaussian distribution for the prior and the weight

distribution then can be solved via maximum a posteriori (MAP). Due to the use of the

BBB approach, we need to solve the KL divergence and the knowledge of observation is

brought in via the data-dependent term Eq(w|θ)[log p(D|w)] in equation 3 in the paper,

and finally the −log p(D|w(j)) in equation 4. It then can be reformulated as:

L(θ,D) = − 1

N

N∑
j=1

log p(yj|f ŵj(xj, εj)) (6)

If we assume the error in the output is Gaussian, then −logp(yj|f ŵj(xj, εj)) ∝ 1
2σ2 ||yj −

f ŵj(xj)||2 + 1
2
logσ2. The shape of this Gaussian probability is determined by the variance

σ, which is in this case the deviation between the ground truth in reality and the uncer-

tainty corresponding to the noise in the input fields εj. As a result, the data dependent

loss evolves as:
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LNN(θ,D) =
1

N

N∑
j=1

1

2σ(εj)2
||yj − f ŵj(xj)||2 +

1

2
log σ(εj)

2 (7)

with σ(εi) indicating the variance as a function of noise in the input fields, which represents

the uncertainty in the initial conditions. In other words, uncertainty in the initial condition

is modeled through the neural networks by generating a distribution over the output of

the model. Note that this is recognized as heteroscedastic and aleatoric uncertainty in

machine learning and it does not exist in a non-Bayesian (deterministic) neural network

since this observation noise parameter ε is fixed as part of the model’s weight decay and

therefore neglected after training (Kendall & Gal, 2017). So far, our analysis is based

on the hypothesis of linear propagation of expectation with variational inference in the

LSTM (Fortunato et al., 2017). However, it should be noted that this becomes different

when forecasting more than one step ahead since there is also uncertainty coming from

the forecasts of previous time steps.

S5. Lead time dependent forecast and numerical configurations The whole

numerical processes of training the BayesLSTM and making lead time dependent forecasts

with BayesLSTM are described in details in this section. We generate time sequences of

variable X, Y and Z with modified Lorenz 84 model, which including 1500 time steps

in total. We perform sequence-to-one forecast with BayesLSTM and the first 1300 time

steps are used for training. During training, in each epoch we pass 3 x 1300 points to

the BayesLSTM model. The model samples its weight distribution at each time step

(with 3 points X, Y and Z passed to the model) and after 1300 iterations we perform

back-propagation to update the BayesLSTM model. The procedure will be repeated until
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the maximum epochs are reached (or the early stop module is called, depending on the

setup).

The validation set consists of 200 time steps. The forecasting procedure is the same

as the training process, except that there is no back-propagation and we perform lead

time dependent forecasts (Liu et al., 2020). At each forecast time step tn, we use the

Lorenz model output (observation) to initialize the model and make forecasts, which can

be described by the equation below:

(X, Y, Z)pred[tn] = BayesLSTM((X, Y, Z)obs[t0,t1,t2,...,tn−1]) (8)

with (X, Y, Z)pred[tn] denotes the forecast X, Y and Z at time step tn, and (X, Y, Z)obs[tm]

represents the Lorenz model output of X, Y and Z at time step tm with m < n. It is

still sequence-to-one prediction, which means data at time step t0 to tn−1 will be passed

to the BayesLSTM model to make the forecast for the time step tn.

For one more lead time step tn+1, the forecast is based on both the model output from

t0 to tn−1 and the forecast of time step tn, and therefore it can be expressed as:

(X, Y, Z)pred[tn+1] = BayesLSTM((X, Y, Z)obs[t0,t1,t2,...,tn−1] + (X, Y, Z)pred[tn]) (9)

It can be noticed that starting from the time step tn+1 (the second lead time step),

the forecast quality also depends on the forecasts of previous time steps. This helps us

explore how far the BayesLSTM can predict the Lorenz system, which corresponds to the

actual predictability of a weather and climate system.
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Figure S1. Training loss in the logarithmic form. The likelihood loss and complexity loss are

included separately.
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Figure S2. Autocorrelation of each variable of the Lorenz 84 model output. The blue shades

indicate the p-value in null hypothesis significance testing.
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