Moum, J. N., de Szoeke, S. P., Smyth, W. D., Edson, J. B., DeWitt, H. L., Moulin, A. J., … & Fairall, C. W. (2014). Air–sea interactions from westerly wind bursts during the November 2011 MJO in the Indian Ocean. Bull. Amer. Meteorol. Soc., 95(8), 1185-1199.
Roberts, C. D., Senan, R., Molteni, F., Boussetta, S., Mayer, M., and Keeley, S. P. E. (2018). Climate model configurations of the ECMWF Integrated Forecasting System (ECMWF-IFS cycle 43r1) for HighResMIP,Geosci. Model Dev. , 11, 3681-3712, https://doi.org/10.5194/gmd-11-3681-2018
NCEP (2020). List of GFS Implementations. Available at https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs/implementations.php . Last accessed 22 May 2020.
Pauluis, O., & Garner, S. (2006). Sensitivity of radiative–convective equilibrium simulations to horizontal resolution. Journal of the atmospheric sciences63 (7), 1910-1923.
Pollard, R. T., Rhines, P. B., & Thompson, R. (1973). The deepening of the mixed layer. Geophysical  Fluid Dynamics3 , 381-404.
Potvin, C.K., J.R. Carley, A.J. Clark, L.J. Wicker, P.S. Skinner, A.E. Reinhart, B.T. Gallo, J.S. Kain, G.S. Romine, E.A. Aligo, K.A. Brewster, D.C. Dowell, L.M. Harris, I.L. Jirak, F. Kong, T.A. Supinie, K.W. Thomas, X. Wang, Y. Wang, and M. Xue. (2019). Systematic Comparison of Convection-Allowing Models during the 2017 NOAA HWT Spring Forecasting Experiment. Wea. Forecasting, 34 , 1395–1416. https://doi.org/10.1175/WAF-D-19-0056.1
Putman, W M., and Shian-Jiann Lin (2007). Finite-volume transport on various cubed-sphere grids. Journal of Computational Physics , 227(1), 55-78.
Putman, W. M., & Suarez, M. (2011). Cloud‐system resolving simulations with the NASA Goddard Earth Observing System global atmospheric model (GEOS‐5). Geophysical Research Letters38 (16).
Putman, W. M., & Suárez, M. J. (2017). GEOS Atmospheric Model: Challenges at Exascale.
Roberts, N.M. and H.W. Lean. (2008). Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective Events. Mon. Wea. Rev., 136 , 78–97. https://doi.org/10.1175/2007MWR2123.1
Satoh, M. (2007). Global Cloud-Resolving Model Development and its seamless Applications to Weather & Climate Researches. In Abstract Collection of the Third China-Korea-Japan Joint Conference on Meteorology .
Satoh, M., Stevens, B., Judt, F., Khairoutdinov, M., Lin, S. J., Putman, W. M., & Düben, P. (2019). Global cloud-resolving models. Current Climate Change Reports, 5(3), 172-184.
Sela, J. G. (2010). The derivation of the sigma pressure hybrid coordinate Semi-Lagrangian model equations for the GFS.
Snook, N., Kong, F., Brewster, K. A., Xue, M., Thomas, K. W., Supinie, T. A., … & Albright, B. (2019). Evaluation of convection-permitting precipitation forecast products using WRF, NMMB, and FV3 for the 2016–17 NOAA Hydrometeorology Testbed Flash Flood and Intense Rainfall Experiments. Weather and Forecasting34 (3), 781-804.
Sobash, R.A., J.S. Kain, D.R. Bright, A.R. Dean, M.C. Coniglio, and S.J. Weiss. (2011). Probabilistic Forecast Guidance for Severe Thunderstorms Based on the Identification of Extreme Phenomena in Convection-Allowing Model Forecasts. Wea. Forecasting, 26 , 714–728. https://doi.org/10.1175/WAF-D-10-05046.1
Sobash, R.A., G.S. Romine, C.S. Schwartz, D.J. Gagne, and M.L. Weisman. (2016). Explicit Forecasts of Low-Level Rotation from Convection-Allowing Models for Next-Day Tornado Prediction. Wea. Forecasting, 31 , 1591–1614. https://doi.org/10.1175/WAF-D-16-0073.1
Sobash, R.A., C.S. Schwartz, G.S. Romine, and M.L. Weisman. (2019). Next-Day Prediction of Tornadoes Using Convection-Allowing Models with 1-km Horizontal Grid Spacing. Wea. Forecasting, 34 , 1117–1135. https://doi.org/10.1175/WAF-D-19-0044.1
Thiébaux, J., E. Rogers, W. Wang, and B. Katz. (2003). A New High-Resolution Blended Real-Time Global Sea Surface Temperature Analysis. Bull. Amer. Meteor. Soc.,  84 , 645–656. https://doi.org/10.1175/BAMS-84-5-645
Van Leer, B. (1974). Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of computational physics14 (4), 361-370.
Vecchi, G. A., Murakami, H., Delworth, T. L., Underwood, S., Wittenberg, A. T., Zeng, F. J., … & Kapnick, S. B. (2019). Tropical cyclone sensitivity to global forcing: seeds and probability. AGUFM2019 , A32F-06.
Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C., … & Hendon, H. (2017). The subseasonal to seasonal (S2S) prediction project database. Bulletin of the American Meteorological Society98 (1), 163-173.
Wei, H., Zheng, W., Meng, J., Gayno, G., Hou, Y., & Ek, M. (2017). Planned land surface changes for the next NEMS implementation. In 28th Conf. on Weather Analysis and Forecasting/ 24th Conf. on Numerical Weather Prediction, American Meteorological Society, Seattle, WA , pp. 600.
Wheeler, M. C., & Hendon, H. H. (2004). An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Monthly weather review132 (8), 1917-1932.
Wilson, T. H, and R. G. Fovell. (2018). Modeling the evolution and life cycle of radiative cold pools and fog. Weather and Forecasting, 33 , 2031–220.
Xiang, B., Zhao, M., Jiang, X., Lin, S. J., Li, T., Fu, X., & Vecchi, G. (2015). The 3–4-week MJO prediction skill in a GFDL coupled model. Journal of Climate28 (13), 5351-5364.
Xu, K.‐M., & Randall, D. A. (1996). A semiempirical cloudiness parameterization for use in climate models. Journal of the atmospheric sciences53 (21), 3084–3102.
Yoneyama, K., C. Zhang, and C.N. Long. (2013). Tracking Pulses of the Madden–Julian Oscillation. Bull. Amer. Meteor. Soc., 94 , 1871–1891. https://doi.org/10.1175/BAMS-D-12-00157.1
Zhang, C., Xue, M., Supinie, T. A., Kong, F., Snook, N., Thomas, K. W., et al. (2019). How well does an FV3‐based model predict precipitation at a convection‐allowing resolution? Results from CAPS forecasts for the 2018 NOAA hazardous weather test bed with different physics combinations. Geophysical Research Letters , 46, 3523– 3531. https://doi.org/10.1029/2018GL081702
Zhang, J.A., D.S. Nolan, R.F. Rogers, and V. Tallapragada. (2015). Evaluating the Impact of Improvements in the Boundary Layer Parameterization on Hurricane Intensity and Structure Forecasts in HWRF. Mon. Wea. Rev.,  143 , 3136–3155. https://doi.org/10.1175/MWR-D-14-00339.1
Zhao, M., Golaz, J. C., Held, I. M., Ramaswamy, V., Lin, S. J., Ming, Y., … & Guo, H. (2016). Uncertainty in model climate sensitivity traced to representations of cumulus precipitation microphysics. Journal of Climate29 (2), 543-560.
Zhao, M., Golaz, J.‐C., Held, I. M., Guo, H., Balaji, V., Benson, R., et al. (2018). The GFDL global atmosphere and land model AM4.0/LM4.0: 1. Simulation characteristics with prescribed SSTs. Journal of Advances in Modeling Earth Systems , 10, 691–734. https://doi.org/10.1002/2017MS001208
Zhao, M., Held, I. M., Lin, S. J., & Vecchi, G. A. (2009). Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. Journal of Climate22 (24), 6653-6678.
Zhao, Q., & Carr, F. H. (1997). A prognostic cloud scheme for operational NWP models. Monthly Weather Review125 (8), 1931–1953.
Zhou, L., Lin, S.‐J., Chen, J.‐H., Harris, L. M., Chen, X., & Rees, S. L. (2019). Toward convective‐scale prediction within the next generation global prediction system. Bulletin of the American Meteorological Society .  https://doi.org/10.1175/BAMS-D-17-0246.1