Moum, J. N., de Szoeke, S. P., Smyth, W. D., Edson, J. B., DeWitt,
H. L., Moulin, A. J., … & Fairall, C. W. (2014). Air–sea
interactions from westerly wind bursts during the November 2011 MJO in
the Indian Ocean. Bull. Amer. Meteorol. Soc., 95(8),
1185-1199.
Roberts, C. D., Senan, R., Molteni, F., Boussetta, S., Mayer, M., and
Keeley, S. P. E. (2018). Climate model configurations of the ECMWF
Integrated Forecasting System (ECMWF-IFS cycle 43r1) for HighResMIP,Geosci. Model Dev. , 11, 3681-3712,
https://doi.org/10.5194/gmd-11-3681-2018
NCEP (2020). List of GFS Implementations. Available at
https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs/implementations.php
. Last accessed 22 May 2020.
Pauluis, O., & Garner, S. (2006). Sensitivity of radiative–convective
equilibrium simulations to horizontal resolution. Journal of the
atmospheric sciences , 63 (7), 1910-1923.
Pollard, R. T., Rhines, P. B., & Thompson, R. (1973). The deepening of
the mixed layer. Geophysical Fluid Dynamics , 3 ,
381-404.
Potvin, C.K., J.R. Carley, A.J. Clark, L.J. Wicker, P.S. Skinner, A.E.
Reinhart, B.T. Gallo, J.S. Kain, G.S. Romine, E.A. Aligo, K.A. Brewster,
D.C. Dowell, L.M. Harris, I.L. Jirak, F. Kong, T.A. Supinie, K.W.
Thomas, X. Wang, Y. Wang, and M. Xue. (2019). Systematic Comparison of
Convection-Allowing Models during the 2017 NOAA HWT Spring Forecasting
Experiment. Wea. Forecasting, 34 , 1395–1416.
https://doi.org/10.1175/WAF-D-19-0056.1
Putman, W M., and Shian-Jiann Lin (2007). Finite-volume transport on
various cubed-sphere grids. Journal of Computational
Physics , 227(1), 55-78.
Putman, W. M., & Suarez, M. (2011). Cloud‐system resolving simulations
with the NASA Goddard Earth Observing System global atmospheric model
(GEOS‐5). Geophysical Research Letters , 38 (16).
Putman, W. M., & Suárez, M. J. (2017). GEOS Atmospheric Model:
Challenges at Exascale.
Roberts, N.M. and H.W. Lean. (2008). Scale-Selective Verification of
Rainfall Accumulations from High-Resolution Forecasts of Convective
Events. Mon. Wea. Rev., 136 , 78–97.
https://doi.org/10.1175/2007MWR2123.1
Satoh, M. (2007). Global Cloud-Resolving Model Development and its
seamless Applications to Weather & Climate Researches.
In Abstract Collection of the Third China-Korea-Japan Joint
Conference on Meteorology .
Satoh, M., Stevens, B., Judt, F., Khairoutdinov, M., Lin, S. J., Putman,
W. M., & Düben, P. (2019). Global cloud-resolving models. Current
Climate Change Reports, 5(3), 172-184.
Sela, J. G. (2010). The derivation of the sigma pressure hybrid
coordinate Semi-Lagrangian model equations for the GFS.
Snook, N., Kong, F., Brewster, K. A., Xue, M., Thomas, K. W., Supinie,
T. A., … & Albright, B. (2019). Evaluation of convection-permitting
precipitation forecast products using WRF, NMMB, and FV3 for the
2016–17 NOAA Hydrometeorology Testbed Flash Flood and Intense Rainfall
Experiments. Weather and Forecasting , 34 (3), 781-804.
Sobash, R.A., J.S. Kain, D.R. Bright, A.R. Dean, M.C. Coniglio, and S.J.
Weiss. (2011). Probabilistic Forecast Guidance for Severe Thunderstorms
Based on the Identification of Extreme Phenomena in Convection-Allowing
Model Forecasts. Wea. Forecasting, 26 , 714–728.
https://doi.org/10.1175/WAF-D-10-05046.1
Sobash, R.A., G.S. Romine, C.S. Schwartz, D.J. Gagne, and M.L. Weisman.
(2016). Explicit Forecasts of Low-Level Rotation from
Convection-Allowing Models for Next-Day Tornado Prediction. Wea.
Forecasting, 31 , 1591–1614. https://doi.org/10.1175/WAF-D-16-0073.1
Sobash, R.A., C.S. Schwartz, G.S. Romine, and M.L. Weisman. (2019).
Next-Day Prediction of Tornadoes Using Convection-Allowing Models with
1-km Horizontal Grid Spacing. Wea. Forecasting, 34 , 1117–1135.
https://doi.org/10.1175/WAF-D-19-0044.1
Thiébaux, J., E. Rogers, W. Wang, and B. Katz.
(2003). A
New High-Resolution Blended Real-Time Global Sea Surface Temperature
Analysis. Bull. Amer. Meteor.
Soc., 84 , 645–656. https://doi.org/10.1175/BAMS-84-5-645
Van Leer, B. (1974). Towards the ultimate conservative difference
scheme. II. Monotonicity and conservation combined in a second-order
scheme. Journal of computational physics , 14 (4), 361-370.
Vecchi, G. A., Murakami, H., Delworth, T. L., Underwood, S., Wittenberg,
A. T., Zeng, F. J., … & Kapnick, S. B. (2019). Tropical cyclone
sensitivity to global forcing: seeds and
probability. AGUFM , 2019 , A32F-06.
Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean,
C., … & Hendon, H. (2017). The subseasonal to seasonal (S2S)
prediction project database. Bulletin of the American
Meteorological Society , 98 (1), 163-173.
Wei, H., Zheng, W., Meng, J., Gayno, G., Hou, Y., & Ek,
M. (2017). Planned land surface changes for the next NEMS
implementation. In 28th Conf. on Weather Analysis and Forecasting/
24th Conf. on Numerical Weather Prediction, American Meteorological
Society, Seattle, WA , pp. 600.
Wheeler, M. C., & Hendon, H. H. (2004). An all-season real-time
multivariate MJO index: Development of an index for monitoring and
prediction. Monthly weather review , 132 (8), 1917-1932.
Wilson, T. H, and R. G. Fovell. (2018). Modeling the evolution and life
cycle of radiative cold pools and fog. Weather and
Forecasting, 33 , 2031–220.
Xiang, B., Zhao, M., Jiang, X., Lin, S. J., Li, T., Fu, X., & Vecchi,
G. (2015). The 3–4-week MJO prediction skill in a GFDL coupled
model. Journal of Climate , 28 (13), 5351-5364.
Xu, K.‐M., & Randall, D. A. (1996). A semiempirical cloudiness
parameterization for use in climate models. Journal of the
atmospheric sciences , 53 (21), 3084–3102.
Yoneyama, K., C. Zhang, and C.N. Long. (2013). Tracking Pulses of the
Madden–Julian Oscillation. Bull. Amer. Meteor. Soc., 94 ,
1871–1891. https://doi.org/10.1175/BAMS-D-12-00157.1
Zhang, C., Xue, M., Supinie, T. A., Kong, F., Snook, N., Thomas, K. W.,
et al. (2019). How well does an FV3‐based model predict precipitation at
a convection‐allowing resolution? Results from CAPS forecasts for the
2018 NOAA hazardous weather test bed with different physics
combinations. Geophysical Research
Letters , 46, 3523– 3531. https://doi.org/10.1029/2018GL081702
Zhang, J.A., D.S. Nolan, R.F. Rogers, and V. Tallapragada.
(2015). Evaluating
the Impact of Improvements in the Boundary Layer Parameterization on
Hurricane Intensity and Structure Forecasts in HWRF. Mon. Wea.
Rev., 143 , 3136–3155. https://doi.org/10.1175/MWR-D-14-00339.1
Zhao, M., Golaz, J. C., Held, I. M., Ramaswamy, V., Lin, S. J., Ming,
Y., … & Guo, H. (2016). Uncertainty in model climate sensitivity
traced to representations of cumulus precipitation
microphysics. Journal of Climate , 29 (2), 543-560.
Zhao, M., Golaz, J.‐C., Held, I. M., Guo, H., Balaji, V., Benson, R., et
al. (2018). The GFDL global atmosphere and land model AM4.0/LM4.0: 1.
Simulation characteristics with prescribed SSTs. Journal of
Advances in Modeling Earth Systems , 10, 691–734.
https://doi.org/10.1002/2017MS001208
Zhao, M., Held, I. M., Lin, S. J., & Vecchi, G. A. (2009). Simulations
of global hurricane climatology, interannual variability, and response
to global warming using a 50-km resolution GCM. Journal of
Climate , 22 (24), 6653-6678.
Zhao, Q., & Carr, F. H. (1997). A prognostic cloud scheme for
operational NWP models. Monthly Weather
Review , 125 (8), 1931–1953.
Zhou, L., Lin, S.‐J., Chen, J.‐H., Harris, L. M., Chen, X., & Rees, S.
L. (2019). Toward convective‐scale prediction within the next generation
global prediction system. Bulletin of the American Meteorological
Society . https://doi.org/10.1175/BAMS-D-17-0246.1