References
Abbe, T., Pess, G., Montgomery, D. R., & Fetherston, K. L. (2003).
Integrating Engineered Log Jam Technology into River Rehabilitation.Restoration of Puget Sound Rivers , 443–482.
Ader, E., Wohl, E., McFadden, S., & Singha, K. (2021). Logjams as a
driver of transient storage in a mountain stream. Earth Surface
Processes and Landforms , 43 (3), 701-11.
https://doi.org/10.1002/esp.5057
Anderson, J. K., Wondzell, S. M., Gooseff, M. N., & Haggerty, R.
(2005). Patterns in stream longitudinal profiles and implications for
hyporheic exchange flow at the HJ Andrews Experimental Forest, Oregon,
USA. Hydrological Processes: An International
Journal , 19 (15), 2931-2949. https://doi.org/10.1002/hyp.5791
Aquanty Inc. 2015. HydroGeoSphere. A Three-Dimensional Numerical Model
Describing Fully-Integrated Subsurface and Surface Flow and Solute
Transport. Waterloo, Ontario: Aquanty.
Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E.,
Packman, A. I., Newbold,J.D., & Sabater, F. (2008). Biophysical
controls on organic carbon fluxes in fluvial networks. Nature
geoscience , 1 (2), 95-100. https://doi.org/10.1038/ngeo101
Beckman, N. D., & Wohl, E. (2014). Carbon storage in mountainous
headwater streams: The role of old-growth forest and logjams.Water Resources Research , 50 (3), 2376–2393.
https://doi.org/10.1002/2013WR014167
Bencala, K. E. (1983). Simulation of solute transport in a mountain
pool-and-riffle stream with a kinetic mass transfer model for sorption.Water Resources Research , 19 (3), 732–738.
https://doi.org/10.1029/WR019i003p00732
Briggs, M. A., Lautz, L. K., Hare, D. K., & González-Pinzon, R. (2013).
Relating hyporheic fluxes, residence times, and redox-sensitive
biogeochemical processes upstream of beaver dams. Freshwater
Science , 32 (2), 622-641. https://doi.org/10.1899/12-110.1
Brunner, P., & Simmons, C. T. (2012). HydroGeoSphere: A fully
integrated, physically based hydrological model. Groundwater,
50 (2), 170–176. https://doi.org/10.1111/j.1745‐6584.2011.00882
Buffington, J. M., Lisle, T. E., Woodsmith, R. D., & Hilton, S. (2002).
Controls on the size and occurrence of pools in coarse-grained forest
rivers. River Research and Applications , 18 (6), 507–531.
https://doi.org/10.1002/rra.693
Buffington, J. M., & Montgomery, D. R. (1999). Effects of hydraulic
roughness on surface textures of gravel-bed rivers. Water
Resources Research , 35 (11), 3507–3521.
https://doi.org/10.1029/1999WR900138
Cardenas, M. B., Wilson, J. L., & Zlotnik, V. A. (2004). Impact of
heterogeneity, bed forms, and stream curvature on subchannel hyporheic
exchange. Water Resources Research , 40 (8), W08307.
https://doi.org/10.1029/2004WR003008
Cardenas, M. B., Wilson, J. L., & Haggerty, R. (2008). Residence time
of bedform-driven hyporheic exchange. Advances in Water
Resources , 31 (10), 1382-1386.
https://doi.org/10.1016/j.advwatres.2008.07.006
Collins, B. D., Montgomery, D. R., Fetherston, K. L., & Abbe, T. B.
(2012). The floodplain large-wood cycle hypothesis: A mechanism for the
physical and biotic structuring of temperate forested alluvial valleys
in the North Pacific coastal ecoregion. Geomorphology ,139 –140 , 460–470.
https://doi.org/10.1016/j.geomorph.2011.11.011
Crispell, J. K., & Endreny, T. A. (2009). Hyporheic exchange flow
around constructed in‐channel structures and implications for
restoration design. Hydrological Processes: An International
Journal , 23 (8), 1158-1168. https://doi.org/10.1002/hyp.7230
Day NK, Hall RO. 2017. Ammonium uptake kinetics and nitrification in
mountain streams. Freshwater Science, 36, 41-54.
Doughty, M., Sawyer, A. H., Wohl, E., & Singha, K. (2020). Mapping
increases in hyporheic exchange from channel-spanning logjams.Journal of Hydrology , 587 , 124931.
https://doi.org/10.1016/j.jhydrol.2020.124931
Ensign, S. H., & Doyle, M. W. (2005). In-channel transient storage and
associated nutrient retention: Evidence from experimental manipulations.Limnology and Oceanography , 50 (6), 1740–1751.
https://doi.org/10.4319/lo.2005.50.6.1740
Fanelli, R. M., & Lautz, L. K. (2008). Patterns of Water, Heat, and
Solute Flux through Streambeds around Small Dams. Ground Water ,46 (5), 671–687. https://doi.org/10.1111/j.1745-6584.2008.00461.
Fausch, K. D., & Northcote, T. G. (1992). Large woody debris and
salmonid habitat in a small coastal British Columbia stream.Canadian Journal of Fisheries and Aquatic Sciences , 49 (4),
682–693. https://doi.org/10.1139/f92-077
Faustini, J. M., & Jones, J. A. (2003). Influence of large woody debris
on channel morphology and dynamics in steep, boulder-rich mountain
streams, western Cascades, Oregon. Geomorphology ,51 (1–3), 187–205. https://doi.org/10.1016/S0169-555X(02)00336-7
Fischer, H., Kloep, F., Wilzcek, S., & Pusch, M. T. (2005). A river’s
liver–microbial processes within the hyporheic zone of a large lowland
river. Biogeochemistry , 76 (2), 349-371.
https://doi.org/10.1007/s10533-005-6896-y
Follett, E., Schalko, I., & Nepf, H. (2021). Logjams With a Lower Gap:
Backwater Rise and Flow Distribution Beneath and Through Logjam
Predicted by Two‐Box Momentum Balance. Geophysical Research
Letters , 48 (16), e2021GL094279.
https://doi.org/10.1029/2021GL094279
Friedrich, H., Ravazzolo, D., Ruiz‐Villanueva, V., Schalko, I.,
Spreitzer, G., Tunnicliffe, J., & Weitbrecht, V. (2022). Physical
modelling of large wood (LW) processes relevant for river management:
Perspectives from New Zealand and Switzerland. Earth Surface
Processes and Landforms , 47 (1), 32-57.
https://doi.org/10.1002/esp.5181
Gippel, C. J. (1995). Environmental Hydraulics of Large Woody Debris in
Streams and Rivers. Journal of Environmental Engineering ,121 (5), 388–395.
https://doi.org/10.1061/(asce)0733-9372(1995)121:5(388)
Gooseff, M. N., Hall, R. O., & Tank, J. L. (2007). Relating transient
storage to channel complexity in streams of varying land use in Jackson
Hole, Wyoming. Water Resources Research , 43 (1), 1–10.
https://doi.org/10.1029/2005WR004626
Grabowski, R. C., Gurnell, A. M., Burgess-Gamble, L., England, J.,
Holland, D., Klaar, M. J., Morrissey, I., Uttley, C., & Wharton, G.
(2019). The current state of the use of large wood in river restoration
and management. Water and Environment Journal , 33 (3),
366–377. https://doi.org/10.1111/WEJ.12465
Gupta, A., & Cvetkovic, V. (2000). Temporal moment analysis of tracer
discharge in streams: Combined effect of physicochemical mass transfer
and morphology. Water Resources Research ,6 (10), 2985– 2997. https://doi.org/10.1029/2000WR900190
Hall, R. J. O., Bernhardt, E. S., & Likens, G. E. (2002). Relating
nutrient uptake with transient storage in forested mountain streams.Limnology and Oceanography , 47 (1), 255–265.
https://doi.org/10.4319/lo.2002.47.1.0255
Harvey, C. F., & Gorelick, S. M. (1995). Temporal Moment‐Generating
Equations: Modeling Transport and Mass Transfer in Heterogeneous
Aquifers. Water Resources Research , 31 ( 8), 1895– 1911.
https://doi.org/10.1029/95WR01231
Harvey, J. W., & Bencala, K. E. (1993). The Effect of streambed
topography on surface‐subsurface water exchange in mountain catchments.Water Resources Research , 29 (1), 89–98.
https://doi.org/10.1029/92WR01960
Harvey, J. W., Conklin, M. H., & Koelsch, R. S. (2003). Predicting
changes in hydrologic retention in an evolving semi-arid alluvial
stream. Advances in Water Resources , 26 (9), 939-950.
https://doi.org/10.1016/S0309-1708(03)00085-X
Harvey, J., & Gooseff, M. (2015). River corridor science: Hydrologic
exchange and ecological consequences from bedforms to basins. InWater Resources Research (Vol. 51, Issue 9, pp. 6893–6922).
Blackwell Publishing Ltd. https://doi.org/10.1002/2015WR017617
Harvey, J. W., Wagner, B. J., & Bencala, K. E. (1996). Evaluating the
Reliability of the Stream Tracer Approach to Characterize
Stream-Subsurface Water Exchange. Water Resources Research ,32 (8), 2441–2451. https://doi.org/10.1029/96WR01268
Harvey, J. W., & Wagner, B. J. (2000). Zones Interactions between. InStreams and Ground Waters . Elsevier Inc.
https://doi.org/10.1016/B978-0-12-389845-6.50002-8
Herdrich AT, Winkelman DL, Venarsky MP, Walters DM, Wohl E. (2018). The
loss of large wood affects Rocky Mountain trout populations.Ecology of Freshwater Fish , 27 ,1023-1036.
https://doi.org/10.1111/eff.12412
Herzog, S. P., Higgins, C. P., Singha, K., & McCray, J. E. (2018).
Performance of engineered streambeds for inducing hyporheic transient
storage and attenuation of resazurin. Environmental science &
technology , 52 (18), 10627-10636.
https://doi.org/10.1021/acs.est.8b01145
Hester, E. T., & Doyle, M. W. (2008). In-stream geomorphic structures
as drivers of hyporheic exchange. Water Resources Research ,44 (3). https://doi.org/10.1029/2006WR005810
Hester, E. T., & Gooseff, M. N. (2010). Moving beyond the banks:
Hyporheic restoration is fundamental to restoring ecological services
and functions of streams. Environmental Science and Technology ,44 (5),1521-1525. https://doi.org/10.1021/es902988n
Hester, E.T., Brooks, K.E., & Scott, D.T. (2018). Comparing reach scale
hyporheic exchange and denitrification induced by instream restoration
structures and natural streambed morphology. Ecological
Engineering 115 , 105-121. https://doi.org/10.1016/j.ecoleng.2018.01.011
Jackson, T. R., Haggerty, R., Apte, S. V., & O’Connor, B. L. (2013). A
mean residence time relationship for lateral cavities in gravel-bed
rivers and streams: Incorporating streambed roughness and cavity shape.Water Resources Research , 49 (6), 3642–3650.
https://doi.org/10.1002/wrcr.20272
Kasahara, T., & Hill, A. R. (2006). Hyporheic exchange flows induced by
constructed riffles and steps in lowland streams in southern Ontario,
Canada. Hydrological Processes: An International
Journal , 20 (20), 4287-4305. https://doi.org/10.1002/hyp.6174
Kasahara, T., & Wondzell, S. M. (2003). Geomorphic controls on
hyporheic exchange flow in mountain streams. Water Resources
Research , 39 (1), SBH 3-1-SBH 3-14.
https://doi.org/10.1029/2002wr001386
Kaufmann, P. R., & Faustini, J. M. (2012). Simple measures of channel
habitat complexity predict transient hydraulic storage in streams.Hydrobiologia , 685 (1), 69–95.
https://doi.org/10.1007/s10750-011-0841-y
Lautz, L. K., Siegel, D. I., & Bauer, R. L. (2006). Impact of debris
dams on hyporheic interaction along a semi-arid stream.Hydrological Processes , 20 , 183-196.
https://doi.org/10.1002/hyp.5910
Lees, M. J., Camacho, L. A., & Chapra, S. (2000). On the relationship
of transient storage and aggregated dead zone models of longitudinal
solute transport in streams. Water Resources Research ,36 (1), 213–224. https://doi.org/10.1029/1999WR900265
Lenth,R.,Buerkner,P.,Herve,M.,Love,J.,Riebl,H., & Singmann,H.(2020).emmeans: Estimated Marginal Means, aka Least-Squares Means
(1.5-2-1) .Vienna. R Core Team.
Livers, B., Lininger, K. B., Kramer, N., & Sendrowski, A. (2020).
Porosity problems: Comparing and reviewing methods for estimating
porosity and volume of wood jams in the field. Earth Surface
Processes and Landforms , 45 (13), 3336-3353.
https://doi.org/10.1002/esp.4969
Livers, B., & Wohl, E. (2016). Sources and interpretation of channel
complexity in forested subalpine streams of the Southern Rocky
Mountains. Water Resources Research , 52 (5), 3910–3929.
https://doi.org/10.1002/2015WR018306
Manners, R. B., Doyle, M. W., & Small, M. J. (2007). Structure and
hydraulics of natural woody debris jams. Water Resources
Research , 43 (6). https://doi.org/10.1029/2006WR004910
Mao, L., Uyttendaele, G. P., Iroumé, A., & Lenzi, M. A. (2008). Field
based analysis of sediment entrainment in two high gradient streams
located in Alpine and Andine environments. Geomorphology ,93 (3–4), 368–383.
https://doi.org/10.1016/j.geomorph.2007.03.008
Marttila, H., Turunen, J., Aroviita, J., Tammela, S., Luhta, P. L.,
Muotka, T., & Kløve, B. (2018). Restoration increases transient
storages in boreal headwater streams. River Research and
Applications , 34 (10), 1278–1285.
https://doi.org/10.1002/rra.3364
Massong, T. M., & Montgomery, D. R. (2000). Influence of sediment
supply, lithology, and wood debris on the distribution of bedrock and
alluvial channels. Bulletin of the Geological Society of America ,112 (4), 591–599.
https://doi.org/10.1130/0016-7606(2000)112<591:IOSSLA>2.0.CO;2
MATLAB. (2020). version 9.9.0 (R2020b) . Natick, Massachusetts:
The MathWorks Inc.
Mulholland, P. J., Valett, H. M., Webster, J. R., Thomas, S. A., Cooper,
L. W., Hamilton, S. K., & Peterson, B. J. (2004). Stream
denitrification and total nitrate uptake rates measured using a field
15N tracer addition approach. Limnology and
Oceanography , 49 (3), 809-820.
https://doi.org/10.4319/lo.2004.49.3.0809
Mutz, M., Kalbus, E., & Meinecke, S. (2007). Effect of instream wood on
vertical water flux in low‐energy sand bed flume
experiments. Water Resources Research , 43 (10).
https://doi.org/10.1029/2006WR005676
Nordin, C. F., & Troutman, B. M. (1980). Longitudinal dispersion in
rivers: The persistence of skewness in observed data. Water
Resources Research , 16 (1), 123–128.
https://doi.org/10.1029/WR016i001p00123
Nyssen, J., Pontzeele, J., & Billi, P. (2011). Effect of beaver dams on
the hydrology of small mountain streams: example from the Chevral in the
Ourthe Orientale basin, Ardennes, Belgium. Journal of
hydrology , 402 (1-2), 92-102.
https://doi.org/10.1016/j.jhydrol.2011.03.008
Peakall, J., Ashworth, P., Best, & Jim. (1996). Physical Modelling in
Fluvial Geomorphology: Principles, Applications and Unresolved Issues.The Scientific Nature of Geomorphology: Proceedings of the 27th
Binghamton Symposium in Geomorphology , 221–253. (The Binghampton
symposia in geomorphology). John Wiley and Sons.
Prestegaard, K. L. (1983). Bar resistance in gravel bed streams at
bankfull stage. Water Resources Research , 19 (2), 472–476.
https://doi.org/10.1029/WR019i002p00472
Pryshlak, T. T., Sawyer, A. H., Stonedahl, S. H., & Soltanian, M. R.
(2015). Multiscale hyporheic exchange through strongly heterogeneous
sediments. Water Resources Research , 51 (11), 9127-9140.
https://doi.org/10.1002/2015WR017293
Richmond, A. D., & Fausch, K. D. (1995). Characteristics and function
of large woody debris in subalpine Rocky Mountain streams in northern
Colorado. Canadian Journal of Fisheries and Aquatic Sciences ,52 (8), 1789–1802. https://doi.org/10.1139/f95-771
Roni, P., Beechie, T., Pess, G., & Hanson, K. (2014). Wood placement in
river restoration: Fact, fiction, and future direction. Canadian
Journal of Fisheries and Aquatic Sciences , 72 (3), 466–478.
https://doi.org/10.1139/cjfas-2014-0344
Sawyer, A. H., Bayani Cardenas, M., & Buttles, J. (2011). Hyporheic
exchange due to channel-spanning logs. Water Resources Research ,47 (8). https://doi.org/10.1029/2011WR010484
Sawyer, A. H., & Cardenas, M. B. (2009). Hyporheic flow and residence
time distributions in heterogeneous cross‐bedded sediment. Water
Resources Research , 45 (8). https://doi.org/10.1029/2008WR007632
Sawyer, A. H., & Cardenas, M. B. (2012). Effect of experimental wood
addition on hyporheic exchange and thermal dynamics in a losing meadow
stream. Water Resources Research , 48 (10), 10537.
https://doi.org/10.1029/2011WR011776
Sear, D. A., Millington, C. E., Kitts, D. R., & Jeffries, R. (2010).
Logjam controls on channel:floodplain interactions in wooded catchments
and their role in the formation of multi-channel patterns.Geomorphology , 116 (3–4), 305–319.
https://doi.org/10.1016/j.geomorph.2009.11.022
Spreitzer, G., Tunnicliffe, J., & Friedrich, H. (2019). Using Structure
from Motion photogrammetry to assess large wood (LW) accumulations in
the field. Geomorphology , 346 (106851).
https://doi.org/10.1016/j.geomorph.2019.106851
Spreitzer, G., Tunnicliffe, J. & Friedrich, H. (2021) Effects of large
wood (LW) blockage on bedload connectivity in the presence of a
hydraulic structure. Ecological Engineering, 161 (106156).
https://doi.org/10. 1016/j.ecoleng.2021.106156
Stewart, R. J., Wollheim, W. M., Gooseff, M. N., Briggs, M. A., Jacobs,
J. M., Peterson, B. J., & Hopkinson, C. S. (2011). Separation of river
network-scale nitrogen removal among the main channel and two transient
storage compartments. Water Resources Research , 47 (10).
https://doi.org/10.1029/2010WR009896
Tank, J. L., Rosi-Marshall, E. J., Griffiths, N. A., Entrekin, S. A., &
Stephen, M. L. (2010). A review of allochthonous organic matter dynamics
and metabolism in streams. Journal of the North American
Benthological Society , 29 (1), 118–146.
https://doi.org/10.1899/08-170.1
Therrien, R., McLaren, R. G., Sudicky, E. A., & Panday, S. M. (2006).
HydroGeoSphere: A three‐dimensional numerical model describing
fully‐integrated subsurface and surface flow and solute transport (p.
349). Waterloo, Ontario: Groundwater Simul. Group.
Tonina, D., & Buffington, J. M. (2007). Hyporheic exchange in gravel
bed rivers with pool‐riffle morphology: Laboratory experiments and
three‐dimensional modeling. Water Resources
Research , 43 (1). https://doi.org/10.1029/2005WR004328
Tonina, D., & Buffington, J. M. (2009). Hyporheic exchange in mountain
rivers I: Mechanics and environmental effects. Geography
Compass , 3 (3), 1063-1086.
https://doi.org/10.1111/j.1749-8198.2009.00226.x
Toran, L., Nyquist, J. E., Fang, A. C., Ryan, R. J., & Rosenberry, D.
O. (2013). Observing lingering hyporheic storage using electrical
resistivity: Variations around stream restoration structures, Crabby
Creek, PA. Hydrological Processes . 27, 1411-1425.
https://doi.org/10.1002/hyp.9269
Venarsky MP, Walters DM, Hall RO, Livers B, Wohl E. 2018. Shifting
stream planform state decreases stream productivity yet increases
riparian animal production. Oecologia, 187 , 167-180.
https://doi.org/10.1007/s00442-018-4106-6
Wade, J., Lautz, L., Kelleher, C., Vidon, P., Davis, J., Beltran, J., &
Pearce, C. (2020). Beaver dam analogues drive heterogeneous
groundwater–surface water interactions. Hydrological
Processes , 34 (26), 5340-5353. https://doi.org/10.1002/hyp.13947
Ward, A. S., Gooseff, M. N., Fitzgerald, M., Voltz, T. J., & Singha, K.
(2014). Spatially distributed characterization of hyporheic solute
transport during baseflow recession in a headwater mountain stream using
electrical geophysical imaging. Journal of Hydrology , 517 ,
362–377. https://doi.org/10.1016/j.jhydrol.2014.05.036
Ward, A. S., Gooseff, M. N., & Singha, K. (2010a). Imaging hyporheic
zone solute transport using electrical resistivity. Hydrological
Processes . https://doi.org/10.1002/hyp.7672
Ward, A. S., Gooseff, M. N., & Singha, K. (2010b). Characterizing
hyporheic transport processes - Interpretation of electrical geophysical
data in coupled stream-hyporheic zone systems during solute tracer
studies. Advances in Water Resources , 33 (11), 1320–1330.
https://doi.org/10.1016/j.advwatres.2010.05.008
Wilhelmsen, K., Sawyer, A. H., Marshall, A., McFadden, S., Singha, K.,
& Wohl, E. (2021). Laboratory Flume and Numerical Modeling Experiments
Show Log Jams and Branching Channels Increase Hyporheic
Exchange. Water Resources Research , 57 (9), e2021WR030299.
https://doi.org/10.1029/2021WR030299
Wohl, E., Cenderelli, D. A., Dwire, K. A., Ryan‐Burkett, S. E., Young,
M. K., & Fausch, K. D. (2010). Large in‐stream wood studies: a call for
common metrics. Earth Surface Processes and Landforms: The Journal
of the British Geomorphological Research Group , 35 (5), 618-625.
https://doi.org/10.1002/esp.1966
Wohl, E., & Scott, D. N. (2017). Wood and sediment storage and dynamics
in river corridors. Earth Surface Processes and Landforms ,42 (1), 5–23. https://doi.org/10.1002/esp.3909
Wondzell, S. M. (2006). Effect of morphology and discharge on hyporheic
exchange flows in two small streams in the Cascade Mountains of Oregon,
USA. Hydrological Processes: An International
Journal , 20 (2), 267-287. https://doi.org/10.1002/hyp.5902
Wörman, A., Packman, A. I., Johansson, H., & Jonsson, K. (2002). Effect
of flow-induced exchange in hyporheic zones on longitudinal transport of
solutes in streams and rivers. Water Resources Research ,38 (1), 2-1-2–15. https://doi.org/10.1029/2001WR000769
Zhang, N., Rutherfurd, I., & Ghisalberti, M. (2019). Effect of
instream logs on bank erosion potential: a flume study with a single
log . Journal of
Ecohydraulics, 5(1), 43-56. https://doi.org/10.1080/24705357.2019.1634499