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Artificial Intelligence

Application
Permafrost Carbon Feedback
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Permafrost Carbon Feedback

Due to climate change, rising global 
temperatures continue to accelerate 
thawing permafrost, exposing large 
quantities of ancient frozen carbon to 
microbial decomposition.

Carbon released from thawing permafrost 
is a climate change catalyst - and when 
coupled with anthropogenic-induced 
warming - trigger, accelerate and sustain a 
positive self-reinforcing nonlinear carbon-
climate feedback for hundreds of 
thousands of years (Schuur et al., 2015).
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What is it and why is it important?
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Permafrost Carbon Feedback
How is it a challenging problem?
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§ Big Data: Operating in a space of diametrically opposing issues, i.e., dearth of field data over space and time or an over-
abundance much data acquired from remote sensing and modeling resources to store, process, and analyze.

§ Remote Sensing: The ability to quantify or infer the magnitude, rate, and extent of the permafrost carbon feedback (i.e., 
thaw variability, carbon release) with high confidence across space and time is restricted with remote sensing platforms 
(Miner et al., 2021; Gay, et al., 2023; Esau et al., 2023).

§ Modeling: Subroutines and interactions governing earth system models (ESMs) vary widely, with many overlooking the 
dynamics and long-term impacts of the PCF when simulating high-latitude systems (Li et al., 2017; Randall et al., 2007).
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Permafrost Carbon Feedback

Fortunately, artificial intelligence (AI) optimizes complex earth 
system data processing, captures nonlinear relationships, and 
improves model skill and reduces uncertainty.

We pursued an AI approach resulting in GeoCryoAI, a 
multimodal hybridized ensemble learning formulation that 
leverages site-level in situ measurements, remote sensing 
observations, and modeling outputs across Alaska.

What solutions help reconcile these challenges?
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Study Domain and Data Dichotomy

The study domain consisted of Alaska (1.723M km2) 
covering 26.92% of the ABoVE Domain (6.4M km2) 
and 11.88% of the Arctic landscape (14.5M km2).

After transformation, dimensionality reduction, trend 
removal, time-delayed supervision, and regression 
analyses, model training initializes 2.51M parameters 
and high dimensional, time-variant multimodal 
hyperspatiospectral datasets:

§ 13.1M in situ measurements
§ 8.06B airborne observations
§ 7.48B model outputs.
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Data Dichotomy
What are the different modalities and how is scale reconciled?
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Thorpe, A.K., et al. (2017). https://doi.org/10.5194/amt-10-3833-2017 Watts, J.D., et al. (2023). https://doi.org10.1111/gcb.16553

Eight Mile Lake, Denali North UAVSAR (L-band, polSAR RPI/inSAR VV/VV), 2017 July-September ∆) denalN_09115_17066-008_17100-003_0094d_s01_L090_01; 29396, 4811, 4.99m, 17-Jun-2017 22:29:35-22:41:16 UTC-19-Sep-2017 
21:30:17-21:41:14 UTC, 160-km length of processing data (Linear Power, Phase Radians)

Eight Mile Lake AVng_242A-242Z_FL194 AVIRIS-NG: (RGB; 44.914 km) 
ang20170706t183519_rdn_v2p9

https://doi.org/10.5194/amt-10-3833-2017
https://doi.org10.1111/gcb.16553
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GeoCryoAI
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GeoCryoAI
The engine under the hood

The GeoCryoAI architecture is constructed with a process-constrained ensemble learning hybridized framework of stacked convolutionally-layered long 
short-term memory-encoded recurrent neural networks optimized with a hyperparameter dictionary and a Bayesian Optimization search algorithm.
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Results
Cost Functions and Performance
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ALT (1969-2022), 
cm

CH4 (2011-2022), 
nmolCH4m-2s-1

CO2 (2006-2019), 
µmolCO2m-2s-1

Naïve RMSE 2.00 0.88 1.91
GeoCryoAI RMSE 1.33 0.72 0.70

Fractional Reduction RMSE -33.55% -19.12% -63.43%

Gay et al., 2023. In Prep

Loss functions and predictions derived from GeoCryoAI simulations of (L) in situ thaw depth and 
carbon release during teacher forcing and (R) multimodal thaw depth and carbon release data

Gay et al., 2023
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So What?
What are the contributions and limitations?

Contributions
§ GeoCryoAI introduces ecological memory components of a dynamical system by effectively learning the subtle complexities 

among these covariates while demonstrating an aptitude for emulating permafrost degradation and carbon flux dynamics 
with increasing precision and minimal loss.

§ These efforts provided a novel and multidisciplinary approach to constraining spatiotemporal complexities and 
understanding the Arctic ecosystem while refining traditional model parameterization efficiencies with state-of-the-art 
developments in computing and artificial intelligence.

Limitations
§ The model presented minor prediction errors and exposure biases that compounded iteratively, and the teacher-forcing 

approach simplified the loss landscape in exchange for computational efficiency.
§ The vanishing and exploding gradients presented multiple challenges throughout training, including the risk of overfitting due 

to model complexity (i.e., dampened with dropout generalization) and the inability to label sparse and coarse data.
§ Additional uncertainty may originate from landscape-level dynamics and regional lagged effects in response to increased 

warming
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Summary and Significance
Does GeoCryoAI work and is it useful?

Problem: Reconciliation of Data Dichotomy with Artificial Intelligence
Application: Permafrost Carbon Feedback

GeoCryoAI ingests a huge amount of data (~15.7B measurements and observations) to learn, simulate, and 
forecast primary constituents of the permafrost carbon feedback with prognostic and retrospective 
capabilities.

With more gravitation towards implementing AI/ML approaches to better understand high latitude dynamics 
(e.g., Brovkin, Nitze, Grosse, Pastick), this study underscores the significance of thaw-induced climate 
change exacerbated by the PCF and highlights the importance of resolving the spatiotemporal variability of 
ALT as a sensitive harbinger of change.
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Ongoing Research and Steps Forward

Ongoing research will further elucidate on the PCF and delayed subsurface phenomena by:

§ Expanding the flexibility, efficiency, and knowledge base of the model with batching pipeline and cloud computing (e.g., 
ADAPT) in the interest of supporting current and future missions to minimize loss and improve performance (e.g., AVIRIS-3, 
UAVSAR, TROPOMI, PREFIRE, NISAR, CRISTAL; SBG TIR)

§ Generating Circumarctic zero-curtain space-time maps to distribute to the State of Alaska, First Nations/Native Corporations, 
and the USGS as a JPL-led first-order effort to engage leadership and identify cross-sector risks at local, state, regional, and 
global levels (e.g., critical infrastructure damage, disturbance tipping points, cultural vulnerabilities).

12/15/23 This document has been reviewed and determined not to contain export controlled technical data. 13

Sentinel-5P, OCO-2, OCO-3, Sentinel-6, PREFIRE, AWS, MAIA, NISAR, CRISTAL, Harmony (Credit: eoportal, NASA JPL, NASA, ESSP, ESA)

Gay et al., 2023. In Prep

What is next?
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