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Introduction
Identification of global methane sources is critical to the quantification 
and mitigation of this greenhouse gas. Future spaceborne imaging 
spectrometer missions, such as Carbon Mapper, will provide global 
observations that will enable accurate mapping of methane sources. 
Due to the sheer data volume of these missions, manual methane 
source identification is infeasible, and an automated source detection 
method is needed. Recent works have demonstrated the feasibility of 
Convolutional Neural Networks (CNNs) for plume detection; however,  
these models have suffered from high false positive rates, noisy 
training data, small sample sizes, and were limited in their training and 
evaluation to individual flight campaigns.

To develop a more robust methane source detector,
• We curated three AVIRIS-NG campaigns for machine learning.
• We trained CNN methane plume detection models on individual 
and collective campaigns.
• We evaluated detector performance within and across 
campaigns to determine generalization performance.
• We converted the CNN into an FCN to generate flightline-level 
methane plume saliency maps.

Data Preparation
We curated three AVIRIS-NG campaigns:
• 2020 California campaign - “COVID”
• 2019 Texas Permian Basin campaign - “Permian”
• 2018 California campaign - “CalCH4”

These campaigns were selected for their diversity of surface 
conditions, spatial resolutions, and source types. Domain experts 
reviewed all methane matched filter product flightlines to filter out 
severe systematic artifacts, orthorectification artifacts, and 
erroneously identified methane source candidates.

Based on the resulting methane source coordinates, 256x256 pixel 
tiles were sampled with a per-flightline plume-to-background tile 
sampling ratio of 1:20 to create a classification dataset.

Methodology
For per-campaign models, we train the GoogLeNet CNN classifica-
tion model (Szegedy et al., 2014) on each campaign’s sampled plume 
and background tiles. A test set is held out from the training set, on 
which all performance metrics are calculated. We also leverage
Sharpness-Aware Minimization (Foret et al., 2021) and simple data 
augmentation for improved generalization and robustness.

For the multi-campaign model, we train the same model on tiles from 
all campaigns. To ensure that each campaign contributes to the model 
equally, some tiles from underrepresented campaigns are repeated 
each training epoch to match tile quantities in larger campaigns.

Saliency map generation typically requires expensive segmentation 
labels. Instead, by replacing the pooling and fully connected layers at 
the end of the model architecture with a 1x1 convolution layer and
implementing shift-and-stitch interlacing (Long et al., 2015), we can 
convert the classification CNN into a saliency map FCN.

Results
The results table presents detection performance of the four models 
on all test datasets. The prototype model was trained using a set of 
~200 plume tiles sampled from flightlines observed in early AVIRIS-NG 
methane survey campaigns in 2015-2016. Models constructed using 
the curated plumes and diverse background samples in the datasets 
described in this work consistently outperform the prototype model. 
Per-campaign models perform well within their original campaigns, but 
give mixed results when applied to other campaigns.
The multi-campaign model performs best overall, even
outperforming some models on their original campaigns.

Figure 1 shows an example saliency map correctly highlighting 
methane plumes in a COVID campaign flightline. Figure 2 breaks 
down true positive and false negative detections of plumes with IPCC 
source attributions. We do not identify any underperformance on 
specific IPCC sectors.

A15L-1395

Plume Classification on Multicampaign AVIRIS-NG Validation Data

Test Data
F1=2(pre+rec)/(pre*rec) . Precision = tp/(tp+fp) . Recall=tp/(tp+fn)

CalCH4 Permian COVID Multi CalCH4 Permian COVID Multi CalCH4 Permian COVID Multi

Prototype 17 23 15 19 10 15 9 11 54 50 86 57
.

CalCH4 73 52 77 61 79 43 65 52 69 68 95 73

Permian 62 75 50 67 57 63 39 56 67 94 73 84

COVID 79 62 82 70 87 59 73 67 72 66 95 72
.

Multi 85 73 78 77 88 64 65 68 81 86 97 87
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Fig 1. Example saliency map output by the multi-campaign model.

Fig 2. True positive and false negative plume detections by IPCC sector.


