Improving Imaging Spectrometer Methane Plume Detection with Large Eddy Simulations
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Figure 1. (Left) AVIRIS-NG 2D radiance cube is passed through a matched filter CH, retrieval to produce a CH, map. (Right)
The California Methane Survey identified that 10% of point-source ‘super-emitters’ are responsible for 60% of emissions in

California.

= Methane is the second most important anthropogenic greenhouse gas.

= Mitigation requires accurate quantification of stochastic and intermittent point-source emitters [1]

Problem Description

= Current efforts to quantify emissions from point-source emitters at the space-borne level lack
sufficient spatial resolution; In-situ measurements are sparse. This has led to ambigious regional

budgets [2]

= Airborne measurements with AVIRIS-NG and GAO maps CH,4 plumes at a high spatial resolution and
allows source attribution + emission quantification (Figure 3).

= Convolutional Neural Networks (CNNs) can efficiently learn spatial information from hyperspectral
imagery when trained to classify CHy4 plumes from AVIRIS-NG airborne data.

= Problem: Current CNNs trained on a plume-classification task have a high false-positivity rate and

poorly generalize to new campaigns and ground terrain.
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Problem

True Positive, P(Plume) = 0.94

Max CMF (ppm/m): 2236.97802734375

Lack of High Quality Training Data; Availability of Diverse Plumes Restricted to Field-Collected

Datasets

Research Question

Can synthetic CH4 plumes generated with Large Eddy Simulations (LES) [3] improve robustness of
CNNs to false-positive plume detections and create cross-campaign generalizable classifiers?
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Methodology - Constraining Enhancement Distributions
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Figure 2. Long-Tailed, high enhancement distribution of Synthetic LES plumes constrained by mean-scaling and overlaying
Background Enhancements randomly sampled from California COVID Campaign (2020), and CalCH, Campaign (2018)

Synthetic LES plumes had a significantly higher mean enhancement with a long tailed enhancement dis-
tribution. CNNs easily distinguish synthetic plumes from real data captured in the California COVID
campaign (2020), and the Cal-Methane Campaign (2019).

Methodology - Synthetic Data Filtering as a 2-Player Adversarial Game
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Figure 3. (Top) Filtering for realistic plumes is reformulated as a 2-player adversarial game. Scaled LES plumes are posed to a
discriminator network that classifies the plume as synthetic or real. LES Plumes successfully classified as a real-campaign
plume are included in training datasets, while LES-identified plumes are re-scaled/ rejected based on a CNN confidence
output. (Bottom) Selected LES plumes are ranked according to a ‘realism’ metric; Top N most realistic plumes are selected for
training.
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Results

Multi-Campaign Tests

To simulate flightline-level test-time imbalance, we sample a total of 60 plumes evenly distributed over 3
campaigns and append 13000 background tiles, creating a plume:background ratio of 1:217.

Train Dataset Test dataset Precision Recall F1
LES + COVID + CalCH4 Imbal 0.32 0.90 0.47
COVID + CalCHy4 Imbal 0.20 0.85 0.34
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Figure 4. Plume classification precision vs Dataset Imbalance (Higher = More Realistic)

LES-aided CNNs exhibit a lower false-positivity rate when trained on realistic datasets spanning multiple
campaigns.
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Figure 5. Missed Plume Analysis: (Left) Source-Type vs Integrated Methane Enhancement (IME) for LES-aided CNNs. (Right)
Fetch-IME plot for LES (Bottom) and non-LES-aided (Top) CNNSs.

Conclusion

= LES-trained CNNs show improved precision and recall performances and classify plumed
previously missed by traditional models.

= LES plumes show significant precision and recall improvements with large class imbalance,
outperform real-world plume datasets.

= However, LES-trained CNNs predict small, weak plumes as background with near-certainty.

= LES plumes are not equipped to replace weak, diffused plume data such as those found near
landfills (Figure 5).
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