References:
Anderson, K. A., & Milton, D. W. (1964), Balloon observations of X-rays in the auroral zone: 3. High time resolution studies, Journal of Geophysical Research , 69 (21), 4457–4479, https://doi.org/10.1029/JZ069i021p04457.
Anderson, B. R., S. Shekhar, R. M. Millan, A. B. Crew, H. E. Spence, D. M. Klumpar, J. B. Blake, T. P. O’Brien, and D. L. Turner (2017), Spatial scale and duration of one microburst region on 13 August 2015 J. Geophys. Res. Space Physics , 122, doi:10.1002/2016JA023752.
Blake, J. B., Looper, M. D., Baker, D. N., Nakamura, R., Klecker, B., & Hovestadt, D. (1996). New high temporal and spatial resolution measurements by SAMPEX of the precipitation of relativistic electrons. Advances in Space Research, 18(8), 171–186. https://doi.org/ 10.1016/0273‐1177(95)00969‐8.
Blake, J., Carranza, P., Claudepierre, S., Clemmons, J., Crain, W., Dotan, Y., Fennell, J., Fuentes, F., Galvan, R., George, J., et al. (2013), The magnetic electron ion spectrometer (MagEIS) instruments aboard the radiation belt storm probes (RBSP) spacecraft, Space Science Reviews , 179(1-4):383–421.
Blum, L., Li, X., and Denton, M. (2015), Rapid MeV electron precipitation as observed by SAMPEX/HILT during high-speed stream-driven storms, Journal of Geophysical Research: Space Physics , 120(5):3783–3794. 2014JA020633.
Blum, L. W, and Breneman, A. W. (2020), Chapter 3 – Observations of radiation belt losses due to cyclotron wave-particle interactions,The Dynamic Loss of Earth’s Radiation Belts , Elsevier, https://doi.org/10.1016/B978-0-12-813371-2.00003-2
Breneman, A. W., et al. (2017), Observations directly linking relativistic electron microbursts to whistler mode chorus: Van Allen Probes and FIREBIRD II, Geophys. Res. Lett. , 44, https://doi.org/10.1002/2017GL075001.
Capannolo, L., Li, W., Spence, H., Johnson, A. T., Shumko, M., Sample, J., & Klumpar, D. (2021), Energetic electron precipitation observed by FIREBIRD-II potentially driven by EMIC waves: Location, extent, and energy range from a multievent analysis, Geophysical Research Letters , 48, e2020GL091564, https://doi.org/10.1029/2020GL091564.
Chen, L., Breneman, A. W., Xia, Z., & Zhang, X.-J. (2020). Modeling of bouncing electron microbursts induced by ducted chorus waves. Geophysical Research Letters, 47, e2020GL089400. https://doi.org/10. 1029/2020GL089400.
Chen L, Zhang X-J Artemyev A, Zheng L, Xia Z, Breneman AW and Horne RB (2021) Electron Microbursts Induced by Nonducted Chorus Waves. Front. Astron. Space Sci. 8:745927. doi: 10.3389/fspas.2021.745927
Colpitts, C., Miyoshi, Y., Kasahara, Y., Delzanno, G. L., Wygant, J. R., Cattell, C. A., Breneman, A., Kletzing, C., Cunningham, G., Hikishima, M., Matsuda, S., Katoh, Y., Ripoll, J. F., Shinohara, I., & Matsuoka, A. (2020), First Direct Observations of Propagation of Discrete Chorus Elements From the Equatorial Source to Higher Latitudes, Using the Van Allen Probes and Arase Satellites, Journal of Geophysical Research: Space Physics , 125 (10), https://doi.org/10.1029/2020JA028315.
Crew, A. B., et al. (2016), First multipoint in situ observations of electron microbursts: Initial results from the NSF FIREBIRD II mission,J. Geophys. Res. Space Physics , 121, 5272–5283, doi:10.1002/2016JA022485.
Cully, C. M., Chaddock, D., Daniel, C., Davis, E., Galts, D., McGuffin, N., Quinn, C., Sheldon, 432 A. & Wilson, C., (2014), Early Results on Energetic Particle Precipitation Observed by 433 the ABOVE Instrument Array, Abstract SA13B-3997 presented at 2014 Fall Meeting, 434 AGU, San Francisco, Calif., 15-19 Dec.
Douma, E., Rodger, C., Blum, L., O’Brien, T., Clilverd, M., and Blake, J. (2019), Characteristics of relativistic microburst intensity from sampex observations, Journal of Geophysical Research: Space Physics , 124, 5627– 5640. https://doi.org/10.1029/2019JA026757.
Evans, D. S., and Greer, M. S. (2004), Polar orbiting environmental satellite space environment monitor-2: Instrument descriptions and archive data documentation, NOAA Tech. Mem. , version 1.4, Space Weather Prediction Center.
Imhof, W. L., & Nightingale, R. W. (1992), Relativistic electron enhancements observed over a range of L shells trapped at high altitudes and precipitating at low altitudes into the atmosphere, Journal of Geophysical Research , 97, 6397–6403, https://doi.org/10.1029/92JA0022.
Johnson, A.T. et al. (2020), The FIREBIRD-II CubeSat mission: Focused investigations of relativistic electron burst intensity, range, and dynamics, Review of Scientific Instruments 91, 034503 (2020) https://doi.org/10.1063/1.5137905
Kasaba, Y., Ishisaka, K., Kasahara, Y., Imachi, T., Yagitani, S., Kojima, H., et al. (2017), Wire Probe Antenna (WPT) and Electric Field Detector (EFD) of Plasma Wave Experiment (PWE) aboard the Arase satellite: specifications and initial evaluation results, Earth, Planets and Space , 69, 174, https://doi.org/10.1186/s40623-017-0760-x.
Kasahara, Y., Kasaba, Y., Kojima, H., Yagitani, S., Ishisaka, K., Kumamoto, A., et al. (2018), The plasma wave experiment (PWE) on board the Arase (ERG) satellite, Earth Planets and Space , 70(1), 86, https://doi.org/10.1186/s40623-018-0842-4.
Kawamura, M. T. Sakanoi, M. Fukizawa, Y. Miyoshi, K. Hosokawa, F. Tsuchiya, Y. Katoh, Y. Ogawa, K. Asamura, S. Saito, H. Spence, A. Johnson, S. Oyama and U. Brandstrom (2021), Simultaneous pulsating aurora and microburst observatiosns with ground-based fast auroral imagers and Cubesat Firebird-II, Geophys. Res. Lett ., 48, e2021GL094494, doi:10.1029/2021GL094494, 2021.
Kazama, Y., Miyoshi, Y., Kojima, H., Kasahara, Y., Kasahara, S., Usui, H., et al. (2021), Arase observation of simultaneous electron scatterings by upper-band and lower-band chorus emissions,Geophysical Research Letters , 48, e2021GL093708. https://doi. org/10.1029/2021GL093708.
Kersten, K., Cattell, C. A., Breneman, A., Goetz, K., Kellogg, P. J., Wygant, J. R., et al. (2011). Observation of relativistic electron microbursts in conjunction with intense radiation belt whistler‐mode waves. Geophysical Research Letters, 38, L08107. https://doi.org/10.1029/ 2011GL046810.
Kletzing, C., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., et al. (2013). The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP. Space Science Reviews, 179(1–4), 127–181. https://doi.org/10.1007/s11214‐013‐9993‐6.
Klumpar, D., et al. (2015), Flight system technologies enabling the twin-CubeSat FIREBIRD-II scientific mission, Proceedings of the 29th Annual AIAA/USU Conference on Small Satellites.
Lorentzen, K. R., Blake, J. B., Inan, U. S., & Bortnik, J. (2001a). Observations of relativistic electron microbursts in association with VLF chorus. Journal of Geophysical Research, 106(A4), 6017–6027. https://doi.org/10.1029/2000JA003018
Lorentzen, K. R., Looper, M. D., & Blake, J. B. (2001b). Relativistic electron microbursts during the GEM storms. Geophysical Research Letters, 28(13), 2573–2576. https://doi.org/10.1029/2001GL012926.
Martinez-Calderon C., Katoh, Y., Manninen, J., Kasahara, Y., Matsuda, S., Kumamoto, A., et al. (2020), Conjugate observations of dayside and nightside VLF chorus and QP emissions between Arase (ERG) and Kannuslehto, Finland, Journal of Geophysical Research: Physics , 125, e2019JA026663, https://doi.org/10. 1029/2019JA026663.
Matsuda, S., Kasahara, Y., Kojima, H., Kasaba, Y., Yagitani, S., Ozaki, M., et al. (2018), Onboard software of plasma wave experiment aboard Arase: Instrument management and signal processing of waveform capture/onboard frequency analyzer, Earth Planets and Space , 70(1), 75, https://doi.org/10.1186/s40623-018-0838-0.
Mauk, B.H., Fox, N.J., Kanekal, S.G. et al.  (2013), Science Objectives and Rationale for the Radiation Belt Storm Probes Mission, Space Sci Rev  179 3–27, https://doi.org/10.1007/s11214-012-9908-y.
Millan, R. M., Lin R. P., Smith D. M., Lorentzen K. R., and McCarthy M. P. (2002), X‐ray observations of MeV electron precipitation with a balloon‐borne germanium spectrometer, Geophys Res. Lett. , 29(24), 47–1, doi:10.1029/2002GL015922.
Millan, R. M., and Thorne, R. M. (2007), Review of radiation belt relativistic electron losses, Journal of Atmospheric and Solar-Terrestrial Physics , 69, 362-377, https://doi.org/10.1016/j.jastp.2006.06.019.
Mitani, T., Takashima, T., Kasahara, S. et al. (2018), High-energy electron experiments (HEP) aboard the ERG (Arase) satellite,Earth Planets Space 70, 77,  https://doi.org/10.1186/s40623-018-0853-1.
Miyoshi, Y., Shinohara, I., Takashima, T., Asamura, K., Higashio, N., Mitani, T., et al. (2018a), Geospace exploration project ERG,Earth, Planets and Space , 70(1), https://doi.org/10.1186/s40623-018-0862-0.
Miyoshi, Y., T. Hori, M. Shoji, M. Teramoto, T-F. Chang, T. Segawa, N. Umemura, S. Matsuda, S. Kurita, K. Keika, Y. Miyashita, K. Seki, Y. Tanaka, N. Nishitani, S. Kasahara, S. Yokota, A. Matsuoka, Y. Kasahara, K. Asamura, T. Takashima, and I. Shinohara (2018b), The ERG Science Center, Earth, Planets, Space., 70:96, doi:10.1186/s40623-018-0867-8.
Miyoshi, Y., S. Saito, S. Kurita, K. Asamura, K. Hosokawa, T. Sakanoi, T. Mitani, Y. Ogawa, S. Oyama, F. Tsuchiya, S. L. Jones, A. N. Jaynes, and J. B. Blake (2020), Relativistic Electron Microbursts as High Energy Tail of Pulsating Aurora Electrons, Geophys. Res. Lett ., 47 doi:10.1029/2020GL090360,2020.
Moldwin, M. B., Downward, L., Rassoul, H. K., Amin, R., and Anderson, R. R. (2002), A new model of the location of the plasmapause: CRRES results, J. Geophys. Res. , 107( A11), 1339, doi:10.1029/2001JA009211.
Nakamura, R., Isowa, M., Kamide, Y., Baker, D. N., Blake, J. B., & Looper, M. (2000). SAMPEX observations of precipitation bursts in the outer radiation belt. Journal of Geophysical Research, 105(A7), 15,875–15,885. https://doi.org/10.1029/2000JA900018.
O’Brien, T. P., Lorentzen, K. R., Mann, I. R., Meredith, N. P., Blake, J. B., Fennell, J. F., & Anderson, R. R.(2003), Energization of relativistic electrons in the presence of ULF power and MeV microbursts: Evidence for dual ULF and VLF acceleration, Journal of Geophysical Research: Space Physics , 108(A8), 1329, https://doi.org/10.1029/2002JA009784.
Ozaki, M., Shiokawa, K., Miyoshi, Y., Hosokawa, K., Oyama, S., Yagitani, S., et al. (2018a), Microscopic observations of pulsating aurora associated with chorus element structures: Coordinated Arase satellite-PWING observations, Geophysical Research Letters , 45, 12,125– 12,134, https://doi.org/10.1029/2018GL079812.
Ozaki, M., Yagitani, S., Kasahara, Y., Kojima, H., Kasaba, Y., Kumamoto, A., et al. (2018b), Magnetic search coil (MSC) of plasma wave experiment (PWE) aboard the Arase (ERG) satellite, Earth, Planets and Space , 70(1), https://doi.org/10.1186/s40623-018-0837-1.
Ozaki, M., Miyoshi, Y., Shiokawa, K. et al. (2019), Visualization of rapid electron precipitation via chorus element wave–particle interactions, Nat. Commun ., 10, 257, https://doi.org/10.1038/s41467-018-07996-z.
Ozaki, M., Inoue, T., Tanaka, Y., Yagitani, S., Kasahara, Y., Shiokawa, K., et al. (2021), Spatial evolution of wave-particle interaction region deduced from flash-type auroras and chorus-ray tracing, Journal of Geophysical Research: Space Physics , 126, e2021JA029254, https://doi.org/10.1029/2021JA029254.
Pettit, J. M., Randall, C. E., Peck, E. D., & Harvey, V. L, (2021), A new MEPED-based precipitating electron data set, Journal of Geophysical Research: Space Physics , 126, e2021JA029667, https://doi.org/10.1029/2021JA029667.
Rodger, C. J., M. A. Cliverd, J. C. Green, and M. M. Lam (2010), Use of POES SEM-2 observations to examine radiation belt dynamics and energetic electron precipitation into the atmosphere, J. Geophys. Res. , 115, A04202, https://doi.org/10.1029/2008JA014023.
Santolík, O. and D. A. Gurnett (2003), Transverse dimensions of chorus in the source region, Geophys. Res. Lett. , 30, 1031, https://doi.org/10.1029/2002GL016178.
Shiokawa, K., Katoh, Y., Hamaguchi, Y., Yamamoto, Y., Adachi, T., Ozaki, M., et al. (2017), Ground-based instruments of the PWING project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG-ground coordinated observation network,Earth, Planets and Space , 69(1), https://doi.org/10.1186/s40623-017-0745-9.
Shprits, Y. Y., Li, W., and Thorne, R. M. (2006), Controlling effect of the pitch angle scattering rates near the edge of the loss cone on electron lifetimes, J. Geophys. Res. , 111, A12206, doi:10.1029/2006JA011758.
Shumko, M., et al. (2020), Electron microburst size distribution derived with AeroCube-6, J. Geophys. Res. Space Phys. , 125(3), doi:10.1029/2019JA027651.
Shumko, M., Gallardo-Lacourt, B., Halford, A. J., Liang, J., Blum, L. W., Donovan, E., et al. (2021), A strong correlation between relativistic electron microbursts and patchy aurora, Geophysical Research Letters , 48, e2021GL094696, https://doi.org/10.1029/2021GL094696.
Spence, H. E., et al. (2012), Focusing on size and energy dependence of electron microbursts from the Van Allen radiation belts, Space Weather, 10, S11004, doi:10.1029/2012SW000869.
Thorne, R. M., O’Brien, T. P., Shprits, Y. Y., Summers, D., and Horne, R. B. (2005), Timescale for MeV electron microburst loss during geomagnetic storms, Journal of Geophysical Research , 110, A09202, https://doi.org/10.1029/2004JA010882.
Thorne, R. M., Radiation belt dynamics: The importance of wave particle interactions (2010), Geophys. Res. Lett. , 37, L22107, doi:10.1029/2010GL044990.
Winckler, J. R., P. D. Bhavsar, and K. A. Anderson (1962), A study of the precipitation of energetic electrons from the geomagnetic field during magnetic storms, J. Geophys. Res ., 67, 3717.
Wygant, J. R., Bonnell, J. W., Goetz, K., Ergun, R. E., Mozer, F. S., Bale, S. D., et al. (2013). The Electric Field and Waves Instruments on the Radiation Belt Storm Probes mission. Space Science Reviews, 179(1–4), 183–220. https://doi.org/10.1007/s11214‐013‐0013‐7.
Yando, K., Millan, R. M., Green, J. C., & D. S. Evans (2011), A Monte Carlo simulation of the NOAA POES Medium Energy Proton and Electron Detector instrument, Journal of Geophysical Research , 116 , A10231, https://doi.org/10.1029/2011JA016671.
Zhang, X.-J., Angelopoulos, V., Mourenas, D., Artemyev, A., Tsai, E., & Wilkins, C. (2022), Characteristics of electron microburst precipitation based on high-resolution ELFIN measurements, Journal of Geophysical Research: Space Physics , 127, e2022JA030509, https://doi.org/10.1029/2022JA030509.