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Key Points: 30 

 Juno’s likely crossing of Io’s Main Alfvén Wing (MAW) during PJ12 reveals evidence of 31 

transverse ion acceleration  32 

 Observations suggest wave-particle interactions with ion cyclotron waves as the favored 33 

acceleration mechanism; however, Alfvén acceleration was not ruled out. 34 

 Ion conics generated in Io’s footprint tail or near the MAW are more intense and 35 

energetic than observed in other auroral regions 36 
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Abstract 43 

Observations of energetic charged particles associated with Io’s footprint (IFP) tail, and likely 44 

within or very near the Main Alfvén Wing, during Juno’s 12
th

 perijove (PJ) crossing show 45 

evidence of intense proton acceleration by wave-particle heating. Measurements made by 46 

Juno/JEDI reveal proton characteristics that include pitch angle distributions concentrated along 47 

the upward loss cone, broad energy distributions that span ~50 keV to 1 MeV, highly structured 48 

temporal/spatial variations in the particle intensities, and energy fluxes as high as ~100 mW/m
2
. 49 

Simultaneous measurements of the plasma waves and magnetic field suggest the presence of ion 50 

cyclotron waves and transverse Alfvénic fluctuations. We interpret the proton observations as 51 

upgoing conics likely accelerated via resonant interactions with ion cyclotron waves. These 52 

observations represent the first measurements of ion conics associated with moon-magnetosphere 53 

interactions, suggesting energetic ion acceleration plays a more important role in the IFP tail 54 

region than previously considered. 55 

Plain-Language Summary 56 

NASA’s Juno spacecraft orbits Jupiter’s polar region and makes direct measurements of the 57 

fields and particles that are responsible for creating Jupiter’s powerful auroras. In this article, we 58 

present new observations that show intense proton acceleration occurring at altitudes near the 59 

auroral emissions created by the interaction between Jupiter’s moon Io and the surrounding 60 

plasma and magnetic field environment. These unique observations provide clues on how 61 

particles are being accelerated and will help constrain particle acceleration theories.  62 

 63 

1. Introduction  64 

Juno’s exploration of Jupiter’s polar magnetosphere (Bagenal et al., 2017, Connerney et al., 65 

2017a) has given prominence to the “far-field” region of the Io-Jupiter interaction with new in 66 

situ measurements of Io’s footprint (IFP) tail auroral emissions. The far-field interaction 67 

specifically refers to the electromagnetic coupling between Io and Jupiter’s ionosphere. Decades 68 

of remote observations have established that Io generates steady auroral emissions in the radio 69 

(Bigg et al., 1964, Queinnec and Zarka, 1998, Zarka 2000), infrared (Connerney et al. 1993), and 70 

ultraviolet wavelengths (Clarke et al., 1996). Furthermore, more recent HST observations and 71 

analyses have characterized its auroral structuring (Bonfond et al. 2008) and correlated 72 

brightness changes with Io’s centrifugal latitude (Gérard et al. 2006). Previous flybys of Io from 73 

the Voyager and Galileo missions mapped out the local Io-plasma interaction. Plasma and 74 

energetic particle (e.g., Belcher et al. 1981, Frank et al. 1996, Williams et al. 1996, Gurnett et al. 75 

1996) and magnetic field (e.g., Acuña et al. 1981, Kivelson et al. 1996) perturbations were 76 

observed and consistent with theories of Alfvén wing model, but also have been discussed in the 77 

context of a unipolar inductor model (e.g., Goldreich and Lynden-Bell, 1969; Neubauer 1980; 78 

Goertz 1980; Gurnett & Goertz 1981; Bagenal 1983, Crary and Bagenal, 1997, Saur, 2004b). 79 

However, how these processes are coupled to Jupiter’s ionosphere, which may be the primary 80 

place where the energy is dissipated, and how that energy is transferred to accelerating charged 81 
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particles in the auroral region is still not well understood (e.g., Saur et al. 2004a, Kivelson et al. 82 

2004, Clarke et al., 2004) due the lack of in situ measurements in the auroral regions during these 83 

epochs. 84 

 85 

Recent analyses of the Juno magnetic field (Gershman et al., 2019), plasma wave (Sulaiman et 86 

al., 2020) and the low-energy charged particle data (Szalay et al., 2018, 2020a, 2020b) almost 87 

universally depict Alfvénic acceleration as a notable, if not dominant, electron acceleration 88 

mechanism associated with the IFP tail. More specifically, Gershman et al. (2019) found 89 

evidence of transverse magnetic field fluctuations consistent with strong magnetohydrodynamic 90 

(MHD) turbulence that can supply ~3,000 mW/m
2
 of Alfvénic Poynting flux near Io’s Main 91 

Alfvén Wing (MAW). Similarly, plasma wave observations presented by Sulaiman et al. (2020) 92 

show evidence of inertial Alfvén waves, intense ion cyclotron waves and whistler-mode auroral 93 

hiss radiation. Field-aligned low-energy (100 eV/Q to 100 keV/Q) electron beams with 94 

broadband energy distributions further support the existence of whistler-mode hiss and the 95 

imprints of stochastic particle acceleration via Alfvén waves (Szalay et al., 2018). Finally, a 96 

detailed look at the low-energy (10 eV/Q to 46 keV/Q) ion population suggests there is also a 97 

significant amount of proton acceleration occurring both at the high-latitudes (in similar 98 

locations to the electrons) and near the Io torus “boundary” – leading Szalay et al. (2020b) to 99 

hypothesize that Alfvén waves generated near Io may be an important acceleration mechanism 100 

for the protons as well.  101 

 102 

In this work, we are motivated by the aforementioned studies (e.g., Gershman et al., 2019; 103 

Sulaiman et al., 2020, Szalay et al., 2020a, 2020b) to present the higher-energy charged particle 104 

observations with a particular focus on the proton data obtained during Juno’s 12
th

 perijove (PJ) 105 

crossing of the IFP tail in the northern hemisphere. We focus on the proton measurements 106 

because the Jupiter Energetic particle Detector Instrument (JEDI) (Mauk et al., 2017a) observed 107 

the most significant ion acceleration event to date, strongly suggesting that the electromagnetic 108 

coupling between Io and Jupiter is responsible for energizing protons up to ~ 1 MeV away from 109 

the planet. We compare these data to the magnetic field (Gershman et al., 2019) and plasma 110 

wave (Sulaiman et al., 2020) data from the same PJ12 IFP tail crossing near the MAW to better 111 

understand the underlying physics governing this unusually intense and unexpected event.  112 

 113 

2. Observations 114 

2.1 Juno’s crossing of the IFP tail  115 

The data presented here were collected on the inbound leg of PJ12 as Juno crossed the IFP tail in 116 

the northern hemisphere between ~09:20:35 to 09:20:55 UT on 2018-091 (01 April, 2018). 117 

Figure 1 is a trajectory schematic comprised of three different representations. Figure 1a 118 

illustrates Juno’s intersection of a field line that maps to 5.9 Jovian radii (RJ, where 1 RJ = 119 
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71,492 km), i.e., Io’s orbital position, in a cylindrical magnetic dipole coordinate system. Figure 120 

1b is a northern polar projection of Jupiter’s auroral regions in system III coordinates that 121 

encompasses the Io footprint tail (purple curve), Juno’s magnetic footprint (orange curve) – 122 

calculated using the JRM09 model (Connerney et al., 2018), and the statistical position of the 123 

main auroral oval (black trace) derived from Hubble Space Telescope (HST) observations (e.g., 124 

Grodent et al., 2003). Juno crossed the IFP tail at an altitude of 0.39 RJ and with a longitudinal 125 

separation of approximately 1.7 degrees from Io’s Main Alfvén Wing (MAW) spot (e.g., 126 

Bonfond et al., 2009) when account for the Alfvén wave trajectory bendback between Io and 127 

Jupiter’s ionosphere. This remains Juno’s closest approach to the MAW and potentially a direct 128 

crossing (Szalay et al., 2020a). Figure 1c shows Juno ultraviolet spectrometer (UVS) (Gladstone 129 

et al., 2017) observations of Jupiter’s main auroral oval and the IFP tail approximately six 130 

minutes prior to Juno crossing Io’s footprint tail. The UVS data are presented in a system III 131 

coordinate system with the red trace representing Juno’s magnetic footprint.  132 

 133 
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 134 

Figure 1: Io footprint tail crossing geometry. Panel a) Juno’s trajectory in cylindrical magnetic coordinates with Io’s 135 
M-Shell overlaid. Panel b) Magnetic footprints of Juno (orange curve), Io (purple) and the statistical location of 136 
Jupiter’s main emission depicted by the bounding black curves (Bonfond et al., 2012). Panel c) Similar 137 
representation as panel b), but illustrates the ultraviolet brightness observations from Juno/UVS with Juno’s 138 
magnetic footprint overlaid for reference (red curve). Juno/UVS observations occurred approximately six minutes 139 
before Juno crossed the IFP. 140 

 141 

2.2 Brief description of Juno/JEDI  142 

We focus on observations made by Juno’s Jupiter Energetic particle Detector Instrument (JEDI). 143 

JEDI comprises three sensors (J90, J180 and J270) which measure the energy, angular and 144 

brightness image of Jupiter from P12OBS 0031_start_spin_0310
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compositional distributions of >25 keV electrons and >10 keV ions (Mauk et al., 2017a). During 145 

this event, the J90 and J270 sensors operated in a high rate mode, thus accumulating time-of-146 

flight by energy rates for 0.25 s at a cadence of 0.5 s, with no sector averaging. Pitch angle 147 

distributions were obtained by combining the JEDI measurements with the measured local 148 

magnetic field from Juno/MAG (Connerney et al., 2017b). The geometric loss cone size at this 149 

time is 40° based on the dipole field approximation and 51° based on the JRM09 magnetic field 150 

model (Connerney et al., 2018). Both methods agree well with the measured loss cone 151 

distributions in the ion data. Each solid-state telescope has a full width at half maximum field-of-152 

view (FoV) that is approximately ~17° × 9° and therefore can resolve the loss cone in this 153 

region. The duration of the footprint tail crossing is ~20 seconds, which is shorter than it takes 154 

Juno to complete one revolution (Juno spins at ~2 revolutions per minute). This is important 155 

because instantaneous look directions and pitch angle averaging between the two sensors can 156 

average out fine structure in the IFP tail region. Therefore, we choose to perform all integral 157 

moment calculations, i.e., characteristic energies and energy fluxes, using a 1 second sampling 158 

window over a pitch angle range that contains just the upward moving protons (between 40° and 159 

90°). The integral moment equations are outlined in Mauk et al. (2004) and Clark et al. (2018). 160 

 161 

2.3 Energetic charged particle observations  162 

Figure 2 presents an overview of the energetic charged particles (Fig. 2a – Fig. 2d) as well as the 163 

plasma wave electric field spectral densities (Fig. 2e) from Sulaiman et al. (2020) and the 164 

transverse magnetic field fluctuations (Fig. 2f) from Gershman et al. (2019). Plasma wave and 165 

magnetic field measurements were obtained from Juno’s Waves (Kurth et al., 2017) and 166 

Magnetic field (Connerney et al., 2017b) investigations, respectively. The most prominent 167 

feature observed by JEDI is the dramatic proton intensity and pitch angle enhancements (Fig. 2c 168 

and 2d) corresponding to the IFP tail. In Fig. 2d,  protons in the IFP tail are shown to be 169 

concentrated along the loss cone (horizontal dashed lines) in the upward direction. There is also 170 

evidence of ions streaming upward along the local magnetic field line, but that feature only 171 

persists for ~1 second. We do not discuss it further here. The energy-time distribution of the 172 

protons (Fig. 2c) reveal broad energization ranging from ~50 keV to upward of ~1 MeV.  During 173 

the same time interval, the energetic electrons only show a modest response associated with the 174 

IFP tail. Figures 2a and 2b show a slight enhancement in low energy (< 60 keV) electrons and a 175 

slight decrease in the very energetic electron environment (>1 MeV), which leaves a signature 176 

indicated by the characteristic “penetrating charge particle” band near 160 keV (Mauk et al., 177 

2018). While ions show significant intensities in the upward loss cone, electrons mostly populate 178 

the downward loss cone.  179 

 180 
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 181 

Figure 2: Particles and Fields overview of the Juno PJ12 IFP tail crossing. Panels a-d) illustrate the Juno/JEDI 182 
observations of the energetic electrons and protons. Panels a & b) energetic electron energy-time and pitch angle-183 
time spectrograms, respectively. Panels c & d) energetic proton energy-time and pitch angle-time spectrograms, 184 
respectively. Panel e) electric field frequency-time spectrogram and panel f) magnetic field frequency-time 185 
spectrogram. The black dashed lines in panels c & d represent the size of the loss cone in degrees using the dipole 186 
field approximation. The black solid curve in panel e represents the proton cyclotron frequency derived by 187 
Juno/MAG (Sulaiman et al., 2020).  188 
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Figure 3 shows proton energy spectra and pitch angle distributions for various times associated 189 

with Io’s footprint tail crossing. The energy distribution of the protons resemble a power-law – 190 

monotonically decreasing intensities toward increasing particle energy (see Fig. 3 left panel). 191 

There is no clear evidence of peaked or accelerated Maxwellian-like energy distributions, 192 

representative of magnetic field-aligned electric fields (Clark et al., 2017b, Mauk et al., 2017b; 193 

Mauk et al., 2018). In Fig. 3 the energy spectra from published Juno/JEDI proton observations 194 

are compared (Clark et al., 2017a, Mauk et al., 2018). The observations made in the footprint tail 195 

suggest that the protons are more efficiently accelerated than in the other auroral regions, which 196 

can be seen by the power-law curves representing 𝐸−2.5 and 𝐸−3.5. Pitch angle distributions for 197 

two different times show clear peaks with centroids near 53° and a full width at the 10% level of 198 

~30°. Error bars in Figure 3 are determined by estimating the counting uncertainties associated 199 

with a Poisson distribution.  200 

 201 

Figure 3: Measured energy spectra (left panel) and pitch angle distributions (right panel). For comparison purposes, 202 
energy spectra of proton conic distributions observed during PJ1 (Clark et al., 2017b) and PJ7 (Mauk et al., 2018) 203 
are also shown as well as power-law curves illustrating the different spectral slopes. 204 

 205 

In Figure 4 we provide a closer inspection of the energy-time structuring and show the integral 206 

moments calculated using a one second sampling window over a pitch angle range that contains 207 

just the upward moving protons (between 40° and 90°). The energy-time spectrogram in Fig. 4a 208 

shows discrete stripes that occur somewhat regularly throughout the ~20 second IFP tail 209 

crossing. Similarly, in Fig. 4b the 100 keV proton intensities are chosen to highlight the 210 

variations, which fluctuate by factors of 3-10 on intervals as short as one second. Juno provides 211 

just a single point measurement and cannot disentangle the temporal/spatial ambiguity, therefore 212 

the 2-3 second variations may also be associated with ~50-100 km structures in the auroral 213 

region. It is possible that the variations are a measurement artifact due to the finite angular 214 

� ∝� .

� ∝� .
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resolution of JEDI. A crude analysis suggests that a collimated beam of particles can produce a 215 

~2 second variation in JEDI as a result of Juno’s 12° s
-1 

rotation rate combined with the ~27° 216 

separation between the JEDI telescopes. This sort of temporal variation is observed in the polar 217 

cap where electron beams are often narrower than JEDI can resolve (Mauk et al., 2017a; 218 

Paranicas et al., 2018). In this particular event, the variation is likely not an artifact because the 219 

measured width of the proton pitch angle distribution is relatively broad, i.e., ~30° (see Fig. 3), 220 

compared to a single telescope FoV.  221 

 222 

The integral moments associated with the IFP tail crossing show energetic protons characteristic 223 

energies varying between ~80 – 400 keV (with a mean ~200 keV) (Fig. 4c) and likewise the 224 

proton energy fluxes (Fig. 4d, averaged over pitch angles 40°-90° from ~50 keV to 1 MeV) to 225 

vary between ~10 mW/m
2
 to ~100 mW/m

2
 for the J90 sensor and ~1 mW/m

2 
to ~30 mW/m

2 
for 226 

the J270 sensor. Note that instantaneous pitch angle coverage is attributed to these differences. 227 

For comparison, we show the plasma electron (100 eV to 40 keV) precipitating energy fluxes 228 

(Szalay et al., 2020a) measured by Juno/JADE-E (McComas et al., 2017). JADE-E energy fluxes 229 

vary between ~3 - 600 mW/m
2
.  230 
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 231 

 232 

Figure 4: Panel a) JEDI J90 & 270 combined proton energy-time spectrogram filtered on pitch angles 40° 233 
- 90°; panel b) 100 keV proton intensities; panel c) > 50 keV proton characteristic energies; panel d) J90 234 
(black diamonds), J270 (gray triangles) energetic proton energy flux vs. JADE-E (blue circles) energy 235 
fluxes of plasma electrons < 40 keV.  236 

 237 

3. Discussion & Conclusions 238 

The angular distribution of energetic protons along the upward loss cone reveal strong evidence 239 

for energetic ion conic acceleration associated with Io’s footprint tail and probably the MAW. 240 

Ion conics are the result of thermal ionospheric ions heated perpendicular to the magnetic field 241 

via wave-particle interactions and then accelerated upward due to gradients in the magnetic field 242 

and/or field-aligned electric fields (e.g., Klumpar et al., 1979; Gorney et al., 1985; Chang, 1993; 243 
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Retterer et al., 1994; Carlson et al., 1998; Lynch et al., 2002). Wave-heating alone does not 244 

produce the most energetic ions; therefore, it is thought that electrostatic confinement via 245 

magnetic field-aligned potentials is required to trap the ions and further accelerate in the wave-246 

heating region. This is referred to as the so-called “pressure cooker” mechanism (e.g., Gorney et 247 

al., 1985). Observations from Parker Solar Probe close to the Sun (Mitchell et al., 2020), Cassini 248 

at Saturn (Mitchell et al., 2009) and Juno at Jupiter (Clark et al., 2017b) have confirmed their 249 

existence elsewhere in the solar system, but have not been directly observed as a result of planet-250 

moon interactions. Below we discuss possible proton acceleration mechanisms associated with 251 

the IFP tail. 252 

 253 

The first mechanism we consider is a cyclotron resonant heating mechanism. Sulaiman et al. 254 

(2020) analyzed the Juno/Waves measurements during the PJ12 IFP tail crossing and found 255 

evidence of upward-propagating, left-hand polarized ion cyclotron waves with large spectral 256 

densities (maximum of ~10
5 

V
2
m

-2
Hz

-1
) near and at the proton cyclotron frequency. Using the 257 

theoretical energy transfer relationship from Chang et al. (1986), Sulaiman et al. (2020) 258 

estimated the ion heating rate, denoted as 𝑑𝑊⊥/𝑑𝑡, to have an upper limit of ~500 eV/s. To 259 

estimate the proton energies achievable from this heating rate we need to know the time-of-flight 260 

of the ions between their source region and the spacecraft. First, the altitude of the source region 261 

can be estimated from the measured pitch angle distributions, shown in Fig. 3, and by assuming 262 

the first adiabatic invariant is conserved as the protons are transported along the magnetic field. 263 

We also assume the protons are heated purely perpendicular to the local magnetic field, i.e., pitch 264 

angles of 90°, in the source region (see similar method outlined in Clark et al., 2017b and 265 

references therein) and neglect changes in an ion’s pitch angle as it is transported along the field 266 

line. The measured local magnetic field during the IFP tail crossing is ~3×10
5
 nT and the 267 

centroid of the proton pitch angle distributions vary between ~50° and 60°. Combining this 268 

information together and using the latest magnetic field model (JRM09; Connerney et al., 2018), 269 

we find the source location to be ~11,000 km or 0.16 RJ above Jupiter’s 1-bar oblate surface. The 270 

last piece of information required is the bulk velocity of ions in Jupiter’s ionosphere. The only 271 

published ion bulk flow measurements in this region to date is from a study of low-energy ions 272 

in Jupiter’s topside ionosphere using the JADE-Ion sensor (Valek et al., 2020). The authors 273 

performed a numerical integration of the plasma proton distributions and derived an outflow 274 

speed, 𝑣𝑏𝑢𝑙𝑘,  of 20 km/s. Here we assume this to be the outflow speed of the protons in the 275 

region connected to the IFP tail and thus, the time-of-flight of the protons is estimated to be 276 

approximately 𝑡 ≈ 900 s where, 𝑡 = 𝑑/𝑣𝑏𝑢𝑙𝑘 , where 𝑑 = 18,500 𝑘𝑚 is the integrated length 277 

along the field between Juno at  0.33 𝑅𝐽 and the source region at 0.16 𝑅𝐽. Multiplying the 278 

proton’s time-of-flight with the heating rate derived by Sulaiman et al. (2020) suggests ion 279 

cyclotron heating may be able to produce conic energies as large as 450 keV. This number is 280 

commensurate with the characteristic energies of the proton observations in the IFP tail (see Fig. 281 

4c). Major limitations of this crude estimate include the assumption that the wave-heating is 282 

constant along the flux tube between the source region and the spacecraft and the bulk ion speed 283 

remains the same. While the wave-heating assumption appears to be reasonable in Earth’s 284 
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auroral region (e.g., Lynch et al., 2002), it is uncertain if the same holds true for Jupiter. Next we 285 

consider the role of Alfvén waves as a possible energization mechanism.  286 

 287 

Gershman et al. (2019) analyzed the magnetic field fluctuations in Jupiter’s polar magnetosphere 288 

and found direct evidence of strong transverse perturbations associated with the IFP tail. The 289 

perturbations were identified as Alfvénic (between 0.2 to 5 Hz) and the Alfvén Poynting flux 290 

was calculated to be as high as ~3,000 mW/m
2
 during the likely PJ12 crossing of Io’s MAW. 291 

Sulaiman et al. (2020) used Juno/Waves data to demonstrate that Alfvénic fluctuations, first 292 

observed by MAG, extend into the higher frequencies spanning a range from ~50 to 800 Hz. 293 

Clearly, Alfvén waves are present and carry a significant source of energy in the IFP tail and 294 

near the MAW. In this letter, we do not address the fundamental idea regarding the role of 295 

Alfvén waves in generating ion conics, but we discuss important observational details and ideas 296 

that may help future theoretical pursuits. One striking observation is the energy partitioning 297 

between the Alfvénic Poynting flux and the particle energy fluxes. In Figure 4d, we show that 298 

the energetic ion energy flux is comparable to the 0.1 to 40 keV electron energy flux. If the 299 

energy reservoir is the same for the two populations then the observations presented here 300 

suggests that energy conversion efficiencies between Alfvén waves and ions (~3-5%) are 301 

comparable to the lower-energy electrons except for brief moments where the electron energy 302 

flux peaks as high as 580 mW/m
2
. Numerous studies have investigated ion acceleration in 303 

Earth’s aurorae and the role of Alfvén waves (e.g., Li and Temerin, 1993; Knudsen and 304 

Wahlund, 1998; Chaston et al., 2004). However, in the absence of wave-particle interaction 305 

models for the Io fluxtube and its tail, which consider the ion response specifically, we turn to 306 

comparisons with models at larger L-shells. Saur et al. (2018) find that on L-shells between 10 307 

and 40 RJ, at high latitudes, ion-Landau damping is effectively not taking place, while electron 308 

Landau damping of inertial Alfvén waves is a highly effective acceleration mechanism in 309 

accordance with previous modeling and existing observations of energetic electrons (e.g. Hess et 310 

al. 2010, Hess et al. 2013, Bonfond et al. 2017, Saur et al. 2018, Clark et al., 2018, Szalay et al. 311 

2020a). If the temporal scales of the waves become extremely small, then ion-cyclotron damping 312 

becomes more prominent (e.g., Sulaiman et al. 2020). Of the two resonant mechanisms 313 

discussed, i.e., Landau and cyclotron damping, non-resonant mechanisms (e.g., Lu and Li, 2007) 314 

of ion acceleration through Alfvén waves have not been studied for the Jupiter system and their 315 

effectiveness is thus difficult to assess without detailed studies. 316 

 317 

The Juno/JEDI data presented in this study represent the first measurements of energetic proton 318 

conics associated with Io’s footprint tail near the MAW. This discovery showcases the diversity 319 

of planetary systems and interactions present where ion conics exist, e.g., Earth, Saturn and 320 

Jupiter’s auroral regions and now as a result of moon-magnetospheric interactions. Our primary 321 

conclusions in this study are the following:  322 

1. Energetic proton acceleration associated with the IFP tail appears significant and perhaps the 323 

most intense ion event recorded by Juno/JEDI to date. 324 
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2. The angular distributions of the protons suggest these are the ion conic distributions and are 325 

likely accelerated by ion cyclotron waves via a resonant interaction; however, Alfvénic 326 

turbulence was not ruled out and may play a role. 327 

3. Proton acceleration associated with Io’s footprint tail is more intense than compared to the 328 

main auroral (Mauk et al., 2018) or polar cap regions (Clark et al., 2017b), thus highlighting 329 

the unique and strong electromagnetic interaction between Jupiter and Io.  330 
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