1

Local Mapping of Polar Ionospheric Electrodynamics

K. M. Laundal', J. P. Reistad!, S. M. Hatch', M. Madelaire!, S. Walker!,
A. @. Hovland!, A. Ohma', V. G. Merkin?, K. A. Sorathia®

1Birkeland Centre for Space Science, Department of Physics and Technology, University in Bergen,

Norway
2 Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA

Key Points:

« We present a technique to use disparate data types to produce local maps of po-
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Abstract

An accurate description of the state of the ionosphere is crucial for understanding the
physics of Earth’s coupling to space, including many potentially hazardous space weather
phenomena. To support this effort, ground networks of magnetometer stations, optical
instruments, and radars have been deployed. However, the spatial coverage of such net-
works is naturally restricted by the distribution of land mass and access to necessary in-
frastructure. We present a new technique for local mapping of polar ionospheric elec-
trodynamics, for use in regions with high data density, such as Fennoscandia and North
America. The technique is based on spherical elementary current systems (SECS), which
were originally developed to map ionospheric currents. We expand their use by linking
magnetic field perturbations in space and on ground, convection measurements from space
and ground, and conductance measurements, via the ionospheric Ohm’s law. The result
is a technique that is similar to the Assimilative Mapping of Ionospheric Electrodynam-
ics (AMIE) technique, but tailored for regional analyses of arbitrary spatial extent and
resolution. We demonstrate our technique on synthetic data, and with real data from
three different regions. We also discuss limitations of the technique, and potential ar-

eas for improvement.

Plain Language Summary

The ionosphere, where a small but significant fraction of the atmosphere is ionized,
forms the edge of space. At only 100 km altitude, it is the region in space which is by
far best monitored by human instruments. Space scientists routinely use measurements
that inform about specific aspects of the dynamics in the ionosphere, but not the whole
picture. For example, magnetometers on ground measure one part of the electric cur-
rent system while magnetometers on satellites measure another part. Radars measure
the flow of charged particles in the ionosphere, while optical images and particle mea-
surements can be used to estimate electric conductivity. In this paper, we present a tech-
nique that combines all these different types of measurements to give a complete picture
of what takes place in the ionosphere. The technique is tailored for use in regions where
the data density is high, and the spatial resolution and extent of the analysis region are
flexible.

1 Introduction

Polar ionospheric electrodynamics can be thought of as a focused image of what
takes place much further away from the Earth, in the magnetosphere. However, this is
overly simplistic since the ionosphere also resists and reacts to this forcing via collisions
with neutrals. The tug-of-war between magnetospheric driving and ion-neutral collisions
leads to complex patterns of magnetic field disturbance and electric currents, whose re-
lation to the imposed plasma flow may be counter-intuitive and difficult to untangle. Nev-
ertheless, measurements are much more abundant near the ionosphere than higher up,
and therefore offer an invaluable source of information for understanding the coupling
between the Earth and the solar wind. Ground magnetometer measurements have been
used to chart ionospheric currents for more than a century (Birkeland, 1901; Vestine et
al., 1947), and space magnetometers have been used since the early space age (Iijima &
Potemra, 1978); and both have provided fundamental knowledge about how the Earth
and Sun are coupled. In the last decades, satellite (Heppner & Maynard, 1987) and radar
(Ruohoniemi & Baker, 1998) measurements have given us maps of ionospheric convec-
tion that reveal the Sun-Earth coupling in even greater detail.

Several statistical studies and empirical models exist that describe how ionospheric
convection (or electric fields) (Weimer, 2005; Forster & Haaland, 2015; Pettigrew et al.,
2010) and magnetic field perturbations (or currents) (Laundal et al., 2018; Weimer, 2013;
Edwards et al., 2020) vary as a function of seasons and solar wind conditions. These sta-
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tistical models are useful for helping us understand the coupling between the solar wind
and geospace in steady state, but they almost never capture the dynamics of this cou-
pling. Maps based on global networks of measurements offer a much better alternative
for studies of ionospheric dynamics. For example, the SuperMAG network of magnetome-
ters (Gjerloev, 2012) has been used to derive global maps of ground magnetic field per-
turbations at 1 min time resolution (Waters et al., 2015); the network of SuperDARN
radars have been used to derive global maps of ionospheric convection, also at 1-min time
resolution (Ruohoniemi & Baker, 1998; Gjerloev et al., 2018); and the fleet of Iridium
satellites carry magnetometers that are used to derive global maps of field-aligned cur-
rents (FACs) with effectively 10-min time resolution (Anderson et al., 2000; Waters et

al., 2020). To derive similar maps of ionospheric conductance at high time resolution,

one can use global satellite images of the UV aurora (Frey et al., 2003), which were spo-
radically available between 1996 and 2005 when NASA’s Polar and IMAGE satellite mis-
sions were active. Unfortunately the availability of global maps of conductance, convec-
tion, FACs, and ground magnetic field perturbations do not all overlap in time.

Even with these global maps we only achieve partial views of ionospheric electro-
dynamics, one parameter at a time. Their utility can be increased through data assim-
ilation, combining observations with theoretical models to obtain a more complete view
of ionospheric electrodynamics. A pioneering step towards this end was made by Kamide
et al. (1981), who presented what has become known as the “KRM technique.” The KRM
technique uses ground magnetic field measurements in combination with conductance
maps to calculate the ionospheric convection and electric field. They calculated the curl
of the ionospheric Ohm’s law to derive a partial differential equation that relates ground
magnetic field disturbances and the electric field. This approach is also at the founda-
tion of the Assimilative Mapping of Tonospheric Electrodynamics (AMIE) technique in-
troduced by Richmond & Kamide (1988). AMIE uses magnetic field measurements from
ground and space, and ionospheric convection or electric field measurements in an in-
version for the electric field. The electric field is represented with spherical cap harmon-
ics (Haines, 1985), basis functions that cover the entire region poleward of some chosen
latitude — typically 50°. AMIE also assumes that the ionospheric Ohm’s law is valid, and
it requires that the ionospheric Hall and Pedersen conductances are known or solved for
in a separate inversion (Lu, 2017). The AMIE technique has been successfully used for
more than three decades, and is still being actively developed to ingest the global data
sets mentioned above, and to improve error estimates and stability (Matsuo, 2020; AM-
GeO Collaboration, 2019).

AMIE yields patterns of ionospheric electrodynamics that cover the entire region
poleward of 50°. However, the observations used in the inversion are never evenly dis-
tributed. This is illustrated in Figure 1, which shows data from SuperMAG, Iridium, and
SuperDARN collected during a 4-min interval starting at 01:00 UT 5 April 2012. Su-
perMAG horizontal magnetic field perturbations, rotated 90° to align with an equiva-
lent overhead current are shown in orange. Iridium horizontal magnetic field measure-
ments, provided via the Active Magnetosphere and Planetary Electrodynamics Response
Experiment (AMPERE) (Anderson et al., 2017) are shown in blue. The green dots show
the locations where the SuperDARN radars could estimate line-of-sight convection ve-
locities during these minutes. We see that the data density is much higher in North Amer-
ica and in Fennoscandia compared to the rest of the polar region. AMIE inversions there-
fore have much stronger observational support in some regions of the map than others.
The high data density in some regions could also support a better spatial resolution than
can be justified in global analyses. This elicits the need for analysis techniques that are
more flexible with respect to spatial scale and extent. In addition to the nonuniform data
distribution on a global scale, there are certain measurements that can resolve very small-
scale structures, which would also benefit from analysis techniques with high spatial res-
olution. Examples include convection and conductivity measurements in the field of view
of phased array incoherent scatter radars, and high-resolution scans of the mesospheric
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Figure 1. Example distribution of ionospheric electrodynamics measurements, from a 4-min
period starting at 01:00 UT, 5 April 2012. The blue lines represent horizontal magnetic field
disturbances measured from the fleet of Iridium satellites, provided by AMPERE. The orange
lines represent horizontal magnetic field disturbances on ground, from SuperMAG. A scale for the
Iridium and SuperMAG magnetic field vectors is shown in the top right corner. The green dots
represent the locations of SuperDARN backscatter, which provides estimates of the line-of-sight
plasma convection velocity. The frames show the extent of the grids used in example figures in

Section 4.
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magnetic field along the track of the the upcoming Electrojet Zeeman Imaging Explorer
(EZIE) satellites (Yee et al., 2017; Laundal et al., 2021).

Several alternatives to spherical harmonic analysis exist, which may be more suit-
able for regional analyses of ionospheric electrodynamics. Amm (1997) introduced spher-
ical elementary current systems (SECS), basis functions that describe vector fields on
a spherical shell that point either east-west or north-south relative to the pole at which
they are placed. The former type is divergence-free, and the latter type is curl-free. The
amplitude of the SECS functions falls off rapidly away from the pole, which makes them
well suited for regional modeling. A superposition of SECS functions can represent any
well-behaved vector field on a sphere, provided that they are placed sufficiently dense
and scaled appropriately.

Historically SECS analysis has been used mostly for regional studies of equivalent
currents (e.g., Amm & Viljanen, 1999; Amm et al., 2002; Amm, 1997; Weygand et al.,
2011; Laundal et al., 2021). However, global studies are also possible (Juusola et al., 2014).
SECS basis functions can also be used to represent ionospheric convection velocity (Amm
et al., 2010) or electric fields (Reistad, Laundal, @stgaard, Ohma, Haaland, et al., 2019;
Reistad, Laundal, @Ostgaard, Ohma, Thomas, et al., 2019). SECS play an important part
in the technique presented here, so we return to a detailed description of their definition
and key properties below. We note that there are other options for representing electric
fields or plasma flow in a regional grid: Nakano et al. (2020) presented an analysis tech-
nique for ionospheric plasma convection that uses basis functions similar to SECS, but
without a singularity at the pole. Nicolls et al. (2014) used radar line-of-sight convec-
tion measurements to constrain a grid of electric potential values. The measurements
and potential values were related via a matrix that numerically evaluates the gradient
of the potential, i.e., the electric field components. Bristow et al. (2016), instead of fit-
ting an electric potential (a curl-free vector function), fitted a divergence-free velocity
to a set of SuperDARN radar measurements in a limited region with high data density.

The regional studies mentioned above were all concerned with one quantity at the
time, and did not combine data as in the KRM or AMIE techniques. A SECS equiva-
lent to the KRM technique, calculating the electric field from the equivalent current and
ionospheric conductivity, was presented by Vanhamaki & Amm (2007), but it involves
a multi-step inversion technique which may be difficult to control.

In this paper we present a SECS equivalent to the AMIE technique, of which KRM
is a subset. Our technique has one single matrix that relates many different kinds of quan-
tities at any location to a single set of model parameters. To find the model parameters,
we can combine measurements of magnetic field perturbations on ground and in space,
plasma convection, ionospheric electric field, or even FACs, in an inversion. When the
model parameters are known, the same quantities can be calculated as output at any lo-
cation within the analysis region. That means that if we know one quantity (e.g., the
magnetic field on ground), and the ionospheric conductance, everything else can be cal-
culated. The extent of the analysis region and the spatial resolution are flexible.

We call this method “Local mapping of polar ionospheric electrodynamics”, or Lompe
(not to be confused with the Norwegian potato-based flatbread). The theoretical basis
for the Lompe technique, including how we use results from SECS analysis to relate elec-
tric and magnetic fields, is presented in Section 2. In Section 3 we describe in detail the

numerical implementation of the technique. Example results from synthetic and real datasets

are presented in Section 4. Some limitations and future prospects are discussed in Sec-
tion 5, and Section 6 concludes the paper. Python code to reproduce the figures in this
paper, and to use the Lompe technique for other events, is publicly available (Laundal
et al., 2022).



168 2 Theoretical background

169 In this section we describe the theoretical background for the Lompe technique.

170 We seek to relate four different quantities: Ionospheric electric fields, F-region plasma
71 convection velocities, ground magnetic field disturbances, and space magnetic field dis-
172 turbances. The purpose of this discussion is to precisely describe the assumptions that
173 we make and the associated theoretical limitations. The numerical implementation, and
174 associated limitations, are discussed in Section 3.

175 2.1 Electric field

176 We choose to represent the ionospheric electric field as a sum of curl-free spheri-

177 cal elementary current systems (SECS) (Amm, 1997; Vanhaméki & Juusola, 2020) in a
178 grid on a spherical shell with radius R;. Physically, this corresponds to modelling the

179 electric field in terms of electric charge densities on a set of discrete lines that extend ra-
180 dially from R; to infinity (Reistad, Laundal, @stgaard, Ohma, Haaland, et al., 2019).
181 The use of curl-free local basis functions to represent E implies an assumption that, by
182 Faraday’s law, %—]? = 0.
183 Our task is to find the magnitudes of these vertical line charge densities that best
184 fit the available measurements and prior knowledge. Mathematically, we express the elec-
185 tric field as 2
—my; T[4 = Ad\
E = cot n;, 1
S gy oo () W
186 where the sum is over a grid of SECS poles that will be discussed in detail in Section 3;
187 A; is the latitude in a coordinate system where the ith SECS pole defines the north pole;
188 n; is a unit vector that points northward in this local coordinate system; and m; is the
189 amplitude of the ith SECS pole. The product m;eg, where € is the vacuum permittiv-
100 ity, has a unit of line charge density C/m (Reistad, Laundal, @stgaard, Ohma, Haaland,
191 et al., 2019). The negative sign in Equation (1) is included to make it consistent with
192 the convention from earlier papers (e.g., Vanhaméki & Juusola, 2020), which refer to the
103 —n; direction.
194 We stick to the historical designation of spherical elementary current system, even
105 though it is misleading in the context of electric fields. While most applications of SECS
196 analysis have focused on electric currents, Amm et al. (2010) and Reistad, Laundal, @stgaard,
107 Ohma, Haaland, et al. (2019) demonstrated its usefulness in analyses of ionospheric con-
198 vection and associated electric field.
199 The electric field representation in Equation (1) is a starting point of the Lompe
200 technique. In the following we will describe how we relate the electric field to F-region
201 ion velocity and magnetic field disturbances on ground and in space, and in Section 3
202 we specify how we relate all quantities to the set of SECS amplitudes m;.
203 2.2 F-region ion velocity
204 Electric fields and convection velocities are related by
v, = E x B/B?, (2)
205 where B is the magnetic field. Use of Equation (2) implies an assumption that the plasma
206 is frozen-in. This is usually a good approximation in the upper F-region. It breaks down
207 towards E-region altitudes where ion velocities become increasingly aligned with the neu-
208 tral wind, while electrons remain frozen-in. Ion velocity measurements used in Lompe
200 must be from a region where Equation (2) is valid. This is usually assumed to hold for
210 SuperDARN (Chisham et al., 2007) radar measurements and ion velocity measurements
oun from low Earth orbit satellites, such as Swarm (Knudsen et al., 2017) or Defense Me-
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teorological Satellite Program (DMSP) (Rich, 1994). Convection data from these and
similar sources could thus easily be incorporated in the Lompe technique.

The frozen-in approximation implies that B - E = 0. This equation can in prin-
ciple be used to retrieve the vertical component of E if its horizontal components are spec-
ified via Equation (1). However, for simplicity we neglect horizontal components in B,
and thus also any vertical component in E. This approximation simplifies the relation-
ship between electric currents and the magnetic field discussed below, and it leads to only
small errors in polar regions (e.g., Untiedt & Baumjohann, 1993). This approximation
implies that Equation (2) becomes

By
VJ_:EXﬁ§7 (3)

where 11 is an upward unit vector, B,, the upward component of the magnetic field, and
B is its magnitude. We believe that the effects of magnetic field inclination on polar iono-
spheric electrodynamics is an interesting and underexplored research topic, but it is be-
yond the scope of this study. Note that v is only the component of the velocity that

is perpendicular to B. Any parallel component should be subtracted before using Equa-
tion (3) to relate v and E.

2.3 Magnetic field disturbances

In order to relate electric fields and conductances to magnetic field disturbances,
we use the ionospheric Ohm’s law integrated over the height of the ionosphere:

J=SpE - S4E x B/B. (4)

J is the height-integrated electric current, which we model as a surface-current density

on the spherical shell at radius R;. E’ is the electric field in the reference frame of the

neutral wind. In the following, we make the assumption that the neutral wind is known,

and skip the primes. Xp (P for Pedersen) and ¥y (H for Hall) are height-integrated con-
ductivities, referred to as conductances. Equation (4) is a steady-state solution of the

set of momentum equations for ions and electrons, moving through an unaffected neu-

tral fluid (e.g., Dreher, 1997). Only the collision and Lorentz force terms are included

in the momentum equation. Inertia and all other forces are neglected. The Lompe parametriza-
tion thus assumes that these approximations are valid.

We also assume that the conductances are known. The great advantage of this is
that it ensures that all other quantities can be related to the electric field model param-
eters by linear equations. The disadvantage is that it is difficult to know the conductances
precisely. The main reason for this is the contribution to ionization from auroral pre-
cipitation, which can be highly variable and difficult to measure. The solar EUV con-
tribution to conductances is more stable. In Section 2.4 we present a novel approach to
calculate solar EUV conductances, which avoids the problem of infinite gradients at the
sunlight terminator that is present in some earlier work.

In its basic form, Equation (4) is not very useful to us, since we never really mea-
sure J directly. Instead, we measure magnetic field disturbances AB on ground and in
space. To relate AB and E we calculate the magnetic field disturbances associated with
J in Equation (4). One possible approach could be to perform a Biot-Savart integral over
a sufficiently large part of the ionospheric shell, but this would be numerically expen-
sive. Instead, we use results from SECS analysis.

First of all, we note that Helmholtz’s theorem implies that any well-behaved vec-
tor field on a 2D spherical shell can be represented as a sum of curl-free (superscript %)
and divergence-free (superscript o) vector fields. Consequently, we can write J = J*+
Je. J* and J° can be represented as sums of curl-free and divergence-free spherical el-
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ementary current systems:

I =Y 4;‘21 cot (”/ 22_ Ai) . (5)

i

° _ Sf 7T/2—>\,L' A
J(A,¢)—Z4ﬂRlcot< 5 )ez (6)

i

where the summation index i is over a grid of SECS nodes (to be specified in Section 3).
These basis functions are complete in that their sum can describe any 2D vector field

on the sphere provided that they are placed densely enough that all relevant spatial scales
are resolved. \; and n, have the same meaning as in Equation (1). &; is an eastward unit
vector in a coordinate system with the ¢th SECS pole in the north pole. The scalars S
and S7 represent the amplitudes of the ¢th curl-free and divergence-free basis functions,
respectively.

Given the representation of J in terms of curl-free and divergence-free spherical el-
ementary current systems, we can calculate magnetic field disturbances analytically: Amm
& Viljanen (1999) showed that the magnetic field of a single curl-free SECS is (follow-
ing notation from Vanhaméki & Juusola (2020), and using the co-latitude 6 = 7/2 — A):

ABy, (0;,7) = 0 (7)

AB, (6,) = 2t [0 r<th (8)
4drr | cot(0;/2) r > Ry

ABu(Gi, 7") =0 (9)

and the magnetic field of a single divergence-free SECS is

So ___s—cosf; tcost; r<R
AB,,(0;,1) = “07] W i w0
47y sin 0, mfl "> R,
° [=—=Z——=—-1 r<R
AB(0;,r) = M5 | ViF—gemn: ’ .
o \ ey, 5 T B
s = min(r, Ry)/max(r, Ry). (13)

The magnetic field of several curl-free and divergence-free elementary current systems
is the sum of the contribution from each current.

Given E, X, and X p, we could use the ionospheric Ohm’s law in Equation (4) to
find a SECS representation of J, and Equations (7)—(13) to find the associated magnetic
field disturbances. However, our task here is the opposite: To find E, given Xy, Xp, and
a set of measured magnetic field disturbances. To do that, we must find a relationship
between the electric field model parameters m; (Equation (1)) and the amplitudes in a
SECS representation of J.

To do this, we calculate the divergence and curl of Equation (4). Starting with the
divergence, we get

V-J=V.-J*=VEp-E+%pV-ETa- (ExVEp) (14)

where we have used the assumption V x E = 0 made in Section 2.1. Here F refers to

the northern (—) and southern (4) hemispheres due to the different orientations of the
Earth’s main magnetic field. This is a differential equation that relates the electric field
to the curl-free part of the horizontal current. Current continuity implies that the di-
vergence of the horizontal current is equal to the downward magnetic field-aligned cur-
rent. The combined magnetic effect of horizontal curl-free current and radial FACs is zero
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below the ionosphere according to Fukushima’s theorem (Fukushima, 1976) and Equa-
tions (7)—(9).

Equation (14) is fundamental in most schemes to couple the magnetosphere with
the ionosphere in global magnetohydrodynamic (MHD) simulations (e.g., Wiltberger et
al., 2004). MHD simulations give the field-aligned current density at the top of the iono-
sphere, which must be equal to the divergence of the horizontal ionospheric current given
by Equation (14), or else charges would pile up. The resulting current continuity equa-
tion can be solved for E, which is used as a boundary condition for the MHD simula-
tion. In Section 3.4 we show how the Lompe framework can be used to solve the cur-
rent continuity equation.

The curl-free spherical elementary current systems have the property that (Van-
haméki & Juusola, 2020)

1
V-3 =57 (50060 - e ) (15)
I

where §(\;, ¢;) is the Dirac delta function. This property can help us to relate Equation (14)
directly to a set of amplitudes S} of SECS basis functions. To achieve this, we place the
basis functions in a grid with cells denoted €2;. Integrating V - J over the jth cell, we

obtain

cot (/4 —X;/2)é;d (16)

/v JdA = /v Z
/ Zs*( i ;) — 1RI)dA (17)
=S5 — A; Z RQ? (18)

where A; is the area of ;. The sums are over all cells in a global grid. If we choose a
grid with cells that are small compared to the scale size of J, we can approximate the
integral on the left hand side to get

v-J|jAj:s;fAj;m. (19)

Equation (19) relates the divergence of J in Equation (14), evaluated on a discrete set
of points, to the amplitudes S;. These amplitudes are in turn related to the magnetic
field disturbances via the equations presented above. This relationship can then be used
to find a linear relationship between magnetic field disturbances associated with curl-
free currents and the electric field model parameters m;. In Section 3 we introduce our
choice of grid and describe how we use Equation (19) to construct matrix equations that
relate magnetic and electric fields.

The other part of the magnetic field relates to divergence-free currents. We calcu-
late the curl of the ionospheric Ohm’s law to get an expression that only depends on this
part of the current:

(VxJ)y=(VxJI,=VSp xEF (VEy -E)aFSu(V-E), (20)

again using the assumption that V x E = 0. This is a differential equation that re-
lates the electric field to the divergence-free part of the current. The divergence-free cur-
rent is often treated as synonymous with the so-called equivalent current (e.g., Laundal
et al., 2015), a theoretical 2D current in the ionosphere that is equivalent with magnetic
field disturbances on the ground. Equation (20) is the foundation of the KRM technique
(Kamide et al., 1981) which is used to infer ionospheric electrodynamic parameters from
ground magnetometer measurements. We use the same principle here, applied to SECS
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instead of the spherical harmonic representation used by Kamide et al. (1981), or the
spherical cap harmonic representation used in AMIE (Richmond & Kamide, 1988). Van-
haméki & Amm (2007) were the first to use the KRM technique with SECS, but their
approach is different from what we propose here.

The divergence-free spherical elementary current systems have the property that

(5300 = 57 (30000 = 7). 21)

Following the same procedure as with V - J, integrating over the grid cell 2;, we find
that

(VxJ)u ‘ —A; Z RQ’ (22)

which will be used in Section 3, together with Equatlon (19), to find matrix equations
that relate magnetic field measurements to the electric field model parameters m;.

2.4 Solar EUV conductances

The Lompe technique requires that ionospheric conductances are known. The con-
ductance is a sum of contributions from precipitation by ionizing particles (auroral con-
ductance) and ionization by solar EUV radiation. Many empirical formulas for the so-
lar EUV contribution to ionospheric Pedersen and Hall conductances, hereafter EIEDUV
and SEVV express this contribution as a function of the solar zenith angle x that is pro-
portional to cos x or a linear combination of powers thereof (Ieda et al., 2014). The un-
derlying assumption is that $5VY and LEVV are related to the maximum ionospheric
plasma production along the path traveled by solar radiation (i.e., along the line defined
by a particular value of ). The maximum ionospheric plasma production for a partic-
ular species is, in turn, proportional to cos x under some simplifying assumptions, in-
cluding that (i) the neutral atmosphere is vertically stratified (i.e., the earth is flat), and
(ii) the neutral atmosphere density height profile is exponential (e.g., Schunk & Nagy,
2009; Ieda et al., 2014).

For our purposes the chief shortcoming of these formulations is that the derivatives
of Z}E;UV and E%UV are discontinuous at x = 90°. We have therefore developed an al-
ternative procedure for calculating LEVV and ZEUV by instead assuming that the neu-
tral atmosphere is radially rather than vertically stratified (i.e., the earth is round). In
summary, setting to zero the derivative of the plasma production function (e.g., Equa-
tion 9.21 in Schunk & Nagy, 2009)

q(2,x) = qon(z) e 7Y (23)
with respect to altitude z yields the transcendental equation
d 1

~(z=20)/HCp — 24

dz [ (X)) =  oHZng’ (24)

which can be solved numerically to obtain the height of maximum plasma production
zm(x) for a given value of x. In the preceding equations 7 (z, x) is the optical depth, n(z) =
noe~(*=%0)/H is the atmospheric neutral density profile, H is a constant scale height, o
is the absorption cross section, and

-1/2
Ch (z,x) H_/ ('=2)/H [1 <£§:z> smle dz' (25)
is the Chapman function (e.g., Huestis, 2001). We then calculate the relative maximum
production
q(Zm X))
/() = Lemb 0 (26)
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Figure 2. Solar EUV contribution to Pedersen conductance (top) and its derivative (bot-
tom) calculated using Equation (28) (thick gray line) and Equation (6) in Moen & Brekke (1993)
(dotted black line). Here zp,(x) in Equation (28) is calculated by solving Equation (24) with

no = 10 m™3, zp = 500 km, H = 50 km, and absorption cross section o = 1072° m?.

for all x in [0°,120°].

The function ¢’() is directly analogous to cos x, such that ¢'(x) — cosx as Rg —
oo in Equation (25). To calculate EUY and SEYV in the Lompe model we therefore re-
place cos x with ¢’(x) in the empirical formulas presented by Moen & Brekke (1993):

SEUV _ p10.7053 (0'81Q'(X) + 054@) ; 0
SEVV = F10.7%4 (0.34q’(><) + 093@) ' =

Figure 2 shows XEYY both as given by Equation (6) in Moen & Brekke (1993) and as
given here in Equation (28), as well as their derivatives with respect to x.

3 Numerical implementation

In this section we present how we formulate the theory of Section 2 in terms of ma-
trix equations that relate the electric field model parameters m; in Equation (1) to mea-
surements of the electric field, ionospheric convection, ground magnetic field disturbances,
and space magnetic field disturbances. We start by introducing the grid, before we go
through the matrix equations for each type of measurement. In Section 3.3 we discuss
how the resulting set of equations is solved.

3.1 The grid

The basis of the matrix formulations below is a regular grid in a cubed sphere pro-
jection (Ronchi et al., 1996). A cubed sphere projection maps every point on the Earth
onto a circumscribed cube by extending the line that connects the center of the Earth
and the position on the sphere until it intersects the cube. To minimize distortion, we
rotate the cube such that one of the faces intersects the center of our region of interest.
In our current implementation, we use only coordinates on this intersecting cube face.
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Figure 3 shows an example grid in red, with electric field SECS poles with ampli-
tudes m; (Equation (1)) at the center of each cell. This example grid is intentionally very
coarse for illustration purposes; in reality it can be placed at any location, with any ori-
entation, aspect ratio, and resolution. It can cover regions of any size as long as all points
map to a single cube face.

Figure 3 also shows an interior grid, in black, whose cells are centered on the in-
ner vertices of the red grid. As will be explained in more detail below, these points are
where the divergence (labeled d; in the figure) and curl (labeled ¢;) of J will be evalu-
ated in order to relate m; to magnetic field measurements. The outer grid has Kg grid
cells and the inner cell has K grid cells. In this example, Kg = 20 and K; = 12.

Before we proceed, we note that the relationships between E (expressed in terms
of m;) and the curl/divergence of J involve horizontal gradients of ¥y and ¥p. We there-
fore introduce K jx K ; matrices De.v and Dy.v (we use this “blackboard-bold” nota-
tion for matrices throughout the paper) which produces the eastward and northward com-
ponents of the gradient of a scalar field defined on the inner K ; grid cells. That is, if Xp
is a Kjyx1 vector containing the values of X at the centers of the inner grid cells, De.v Xy
yields another K ;x1 vector with €-VX evaluated at the same points. The differen-
tiation is carried out using a finite difference scheme, and the elements of the differen-
tiation matrices depend on the stencil used, distortion effects to take into account Earth’s
spherical shape (Ronchi et al., 1996), and on the orientation and position of the grid with
respect to the underlying global coordinate system.

Equations (14) and (20) also involve the divergence of E itself. We therefore also
define a K j x 2K ; matrix Dy., which calculates the divergence of E evaluated at the
center of the K ; grid cells. This matrix is also implemented using a finite difference scheme.
In Section 3.2.1 it will be made clearer how this matrix is used.

The SECS definitions include a cot function that approaches infinity towards the
node. This singularity is a main reason why we use two grids that are offset from each
other. For example, we evaluate the curl and divergence of J at the centers of the in-
ner grid cells, away from the electric field nodes. Our data points, however, are not nec-
essarily optimally placed with respect to the nodes. We handle this by modifying the SECS
function definitions near the node as proposed by Vanhaméki & Juusola (2020). The mod-
ification is applied in the region closer than half the extent of a grid cell.

3.2 Matrix formulation

The model parameters, the electric field SECS amplitudes m;, are organized in a
Kpg x 1 vector m. We use the notation y to denote an N x 1 vector of N predictions
of some general quantity y, in practice either the electric field, F-region ion velocity, ground
magnetic field perturbation, or space magnetic field perturbation. In the following sub-
sections we go through the matrices that relate each of these quantities to the model vec-
tor m. Our aim is to describe the N x Kg matrix G in the linear system

which relates ¥ and m. This section (Section 3.2) describes the forward problem, how

to calculate G. Section 3.3 describes how we solve the inverse problem: Finding m given
a set of measurements y.

3.2.1 Electric field

As described in Section 2.1, the electric field is represented as a sum of curl-free
spherical elementary current systems with amplitudes m;, i = 1,2,..., Kg, forming the
elements of the vector m. We can relate Ng predictions of the electric field eastward and
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Figure 3. Example of the cubed sphere grid used in Lompe, in this case covering the British
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northward components to m via a 2Ng X Kg system of equations,

(&) =) ot
E =Em (30b)

where E, and E,, are Ngx1 column vectors with eastward and northward electric field
components, stacked to form the 2Ng x1 vector E. E. is a Ngx Kg matrix whose jth
row relates the jth element of E. to m. The elements of this row are the terms in the
sum in Equation (1), projected on the eastward unit vector. That is, the (j,4)th element

of E, is /
-1 T/2 — )\ i N R
Ec,. = P cot < 5 3, ) n;;- e, (31)

where \;; is the latitude of the jth element in E., expressed in a local coordinate Sys-
tem where the ith SECS node is at the north pole. n;; is a unit vector pointing tangen-
tially to the sphere from the jth prediction to the ith SECS node (a northward unit vec-
tor in the coordinate system centered on the ith node). E, is defined analogously, re-
lating the northward components to m.

3.2.2 Velocity

The velocity is related to the electric field via Equation (3), given the assumptions
outlined in Section 2.2. Equation (3) includes the magnetic field, which is strongly dom-
inated by sources internal to the Earth, the “main magnetic field,” described by the In-
ternational Geomagnetic Reference Field (IGRF) (Alken et al., 2021). Let By be an N, x
N, diagonal matrix formed by B,/ B2, where B, is the upward component and B the
total magnitude of the main field at N, velocity vector locations. N, predictions of the
eastward and northward components of the velocity are related to m via a 2N, X Kg

system of equations,
Ve) _ (Ve
<{,n) = <Vn> m (32a)

(5 &) (%)
¥ =Vm (32c)

where 0 is an N, x N, zero matrix. Here V., V,,, E. and E,, are N, x Kg matrices.

Very often the ion velocity is only measured along one direction. For example, Su-
perDARN gives measurements of v along the line-of-sight direction of the radars. If we
have N, line-of-sight measurements, the matrix V).s, which relates the line-of-sight mea-
surements to m, has dimensions N, X Kg and can be expressed in terms of unit vec-
tors in the line-of-sight direction, 1 =Il.e + [, n:

‘N’los - Vlosrn - BO(IeEn - InEe)m (33)

where I, and |,, are N, xN, diagonal matrices formed by the N, line-of-sight vector com-
ponents [, and [,,, respectively.

3.2.3 Ground magnetic field

As discussed in Section 2.3, the combined magnetic field of FACs and curl-free cur-
rents cancel on ground, so only the divergence-free currents are relevant when model-
ing ground magnetic field perturbations.

In this classical application of spherical elementary current systems, the divergence-
free part of the horizontal ionospheric current is represented as a weighted sum of ele-
mentary currents, Equation (6), and ground magnetic field disturbances are related to
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these currents via Equations (10)—(12). Let S° be a K ;x1 vector of divergence-free SECS
amplitudes, defined on the K ; interior grid points. We can write the relationship between
S° and a set of ground magnetic field disturbance vector components A]ége, Af’)gn and
Afigu (subscripts referring to east, north, up) as

AB\  (H.
AB,, | = | HS, | S° (34a)
ABgu H;u

AB, = HZS° (34b)

where the elements of the matrices Hy,, H7,, and H,, are given by Equations (10)-(12).

With a total of Np, 3D vector predictions, Hg has shape 3Ng, x K.

Our aim is to relate the magnetic field vector components to the electric field model
vector m. To do that, we use the curl of the ionospheric Ohm’s law, Equation (20). We
define a column vector ¢ formed by the curl of the ionospheric current evaluated at the
center of the K; interior grid points. Equation (22) can be used to construct a matrix
equation that relates ¢ and S°:

Ac = QS° (35)

where A is a K jx K ; diagonal matrix formed by the areas of the K ; cells. Q is a K ;X
K ; matrix with elements
Qji = 0ji — Ajj /AR (36)

where d;; is the Kronecker delta, defined to be 0 when j # ¢ and 1 when j = 4, not
to be confused with the Dirac delta function used in Equations (15) and (21).

The last term in Equation (36) comes from the sum in Equation (22). This sum
is the contribution to the curl in the jth cell (i.e., ;) from all elementary current sys-
tems. In theory, this should include current systems that are outside our grid. We ig-
nore this here, noting that their contributions to the curl are scaled by a very small num-
ber: The area of the local grid cell A;; divided by the total area of the sphere. Their net
amplitude would have to be very large to make a significant contribution to the curl in
cell Q;.

Equations (34b) and (35) can be combined to give
AB, = HQ 'Ac. (37)

The vector ¢ can be expressed in terms of the electric field model vector m by using Equa-
tion (20):

c= [ — diag(Dﬁ.vEp)Ee + diag(Dé.vEp)En
Fdiag(Da.vXEx)E, F diag(De.vXp)E.
Fdiag(Xp)Dy.Ejm = cm, (38)

where the “diag” function produces a diagonal matrix with the elements of the argument
vector on the diagonal. ¥ and ¥ p are K x 1 column vectors that contain the Hall
and Pedersen conductances, respectively, in the K ; interior grid cells. Recall that the
matrices Dg.v and Dy.v, multiplied by 3, produces K ; values of the gradient of the
Hall conductance in the eastward and northward directions, respectively.

In Equation (38), E is a 2K ; x K matrix composed of the two K; x Kg block
matrices E. and E,, that map the Kg electric field SECS amplitudes in m to K; val-
ues of eastward and northward electric field components at the centers of the interior grid
cells. With this definition, the divergence matrix Dy. from Section 3.1 can be used to
directly map m to the electric field divergences at the centers of the K; interior grid cells:
Dv.Em.
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The sum of all the terms in square brackets is a K jx Kg matrix c. This gives the
following relationship between AB, and m:
AB, =H?Q'Acm
=B,m = B,m (39)

The divergence-free SECS amplitudes S° are not directly involved in Equation (39),
but can be calculated if needed by combining Equations (35) and (39):

S° =Q 'Acm. (40)

3.2.4 Space magnetic field

The magnetic field in space is often assumed to be dominated by the curl-free part
of the ionospheric current system, including the field-aligned currents which represents
its divergence. If this assumption is true, the magnetic field in space can be related to
a set of K; curl-free currents with amplitudes S* via Equation (5):

AB; H:
AB: | = [ H: | S (41a)
AB? H

AB* = H*S* (41b)

The first step in relating S* to the model vector m is to relate it to the divergence
of the ionospheric Ohm’s law. Let d be a column vector with the divergence of the cur-
rent evaluated in the center of the K interior grid cells. Equation (19) gives the follow-
ing relationship:

Ad = QS* (42)
where A and Q are the same as in Equation (35).

The vector d, the divergence of the electric current evaluated in the interior grid
cells, can be expressed from the divergence of the ionospheric Ohm’s law, Equation (14):

d = [ diag(Da.vXn)E. £ diag(De.vXx)En
+diag(Dé.v2p)Ee + diag(Dﬁ‘vEp)En
+diag(Xp)Dy.Ejm = dm, (43)

where E.,E,,, and E are defined as in Equation (38). Now we can combine Equations (41b),
(42), and (43) to find a matrix B* that relates the magnetic field of curl-free currents to
the model vector m:

AB* = H*Q"'Adm = B*m. (44)

This set of equations is quite often sufficient to model magnetic field perturbations
in space, especially when observed at high altitudes. However, satellites in lower orbits,
like Swarm, also sense the magnetic field of the divergence-free currents. In that case,
the full magnetic field is a sum of two contributions. We get

AB = AB° + AB* = (H°Q'Ac + H*Q*Ad)m = (B® + B*)m = B,m, (45)

where the matrix H{ is analogous to Hj from equation (39), except that it is calculated
with the versions of Equations (10)-(12) for r > Rj.
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3.2.5 The full forward problem

Equations (30b), (32c¢), (39), and (45) relate model predictions of the electric field,
F-region plasma velocity, ground magnetic field perturbations, and space magnetic field
perturbations, to the same set of model parameters, m. The full set of linear equations
can be written as

E E
v . \
B, |~ y= B, m = Gm. (46)
B, B

G has dimensions (2NE+2NU+3NBQ +3Np,)x Kg, possibly with fewer rows if not all
vector components are calculated. G depends on the conductance and on the geometry

of the problem: The choice of grids, and the coordinates of the model predictions y. When
m is known, all the parameters on the left hand side of Equation (46) can be estimated.

3.3 Inversion

Here we describe our approach for solving the set of Equations (46) for m, given
a set of measurements y. Naively, this could be done by minimizing the sum of squared
errors, which can be written as

x> =(y—6m)'(y—Gm). (47)

However, there are several problems with this, which we outline below, along with our
approach to solve them.

First, in SI units the magnetic field variance 0% is several orders of magnitude less

than the electric field variance 0%, and even less than the convection velocity variance
o2. If we formulate the equations in SI units, which we do in our implementation, the
misfit will be dominated by convection velocities. If we just minimize x?, any magnetic
field measurement would be practically neglected because of this mismatch. We solve
this problem by scaling x? using the matrix C:

X* = (¥ — Gm) ' C(y — Gm), (48)

where the diagonal elements of C are w;/(op+¢€;)%, w;/(0y+€;)?, or w;/(cg+e;)?, de-
pending on which measurement that element corresponds to. Here, €; is the measure-
ment error of the ith data point. For example, if o = 100 nT, equations that involve
Swarm magnetometer data (sub nT precision) would be weighted by w; /(100 - 1079),
while an Iridium data point with, say, 50 nT error would be weighted by w;/(150-107).

Second, the measurements are almost always highly non-uniform. If no correction
is applied, we risk that an isolated good data point is overshadowed because of a nearby
cluster of data points. Our solution to this problem is to introduce spatial weights w;,
defined as 1 divided by the number of measurements in the grid cell in which the mea-
surement belongs.

Finally, even with these adjustments to the cost function (Equation (48)), the in-
verse problem is almost always ill-posed. The reason for this is that the number, type,
and distribution of measurements rarely is sufficient to robustly determine m. This leads
to overfitting and large variations in m for small changes in the measurements. We solve
this by adding a priori information to the cost function. Specifically, we (i) add a penalty
for large model vectors to ensure relatively smooth spatial structures and (ii) add a penalty
for large gradients in m; in the magnetic eastward direction. The latter is justified by
the fact that auroral electrodynamics tends to be aligned in the magnetic east-west di-
rection. However, in the polar cap, poleward of the auroral oval, this constraint may be
less suitable. We can control the balance between the two constraints using two regu-
larization parameters A} and A,. The total cost function is then:

f=(y—Gm)'C(y — Gm) + A{[lm|* + A3 De,,.vm]|* (49)
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where D¢ ,.v is a Kgpx Kg differentiation matrix, as defined in Section 3.1, except that
it gives the gradient in the magnetic eastward direction. We seek the model vector m
that minimizes f. This can be found by solving the equation df/dm = 0 for m. The
solution is:

m = (G'CG + X1+ \,D{ ¢De, .v) '(G'Cy), (50)

where | is the Kgx K identity matrix. Since the magnitude of the elements in G'CG
depends on the amount of data, A} and A\, must be different in different events even with
the same degree of regularization. To make the numbers more comparable between events,
we will instead refer to the unprimed A; and Ay, which relate to the primed variables as

A = a1\, Ay = an)g, (51)

where «a; is the median diagonal element of GTCG, and ay is the same number divided
by the median diagonal element of ng_vDém.V. This normalization ensures that if A\;
and Ao are 1, the corresponding scaled regularization matrices will have elements that
are of similar magnitude as the diagonal elements in G' CG. In this paper, we find a suit-
able set of regularization parameters by visual inspection, looking for (approximately)
the smallest possible values that prevent over-fitting. A more unbiased approach would
be preferable, and we will explore different methods in future studies.

This regularization technique was also used in the Observing System Simulation
Experiment carried out for the Electrojet Zeeman Imaging Explorer (Laundal et al., 2021),
a NASA mission planned for launch in 2024. We plan to explore alternative methods in
future applications of the Lompe technique. For example, instead of damping variation
in the magnetic east-west direction, more complex spatial structures could be promoted
by changing the regularization matrix accordingly. For example, one could use the spa-
tial structure of empirical models or, as demonstrated by Clayton et al. (2019) with a
different technique, use auroral images to derive the dominant direction of variation.

3.4 Solving the current continuity equation

Before we present example applications, we mention an alternative use of the ma-
trices described above: Solving the current continuity equation for the electric field, given
a pattern of vertical currents. As mentioned in Section 2, this is a standard way to cou-
ple global MHD simulations of the magnetosphere to the ionosphere. The upward cur-
rent density, from the MHD simulation, is set equal to the negative divergence of the hor-
izontal ionospheric current (Equation (14)), and the resulting equation is solved for the
electric field, which then serves as the inner boundary condition for the magnetosphere
simulation.

With the matrices defined above, we can formulate the following matrix equation
relating electric field amplitudes m and vertical current densities jy:

T diag(Xp)E. +diag(Xp)E,

Ju =Dy [(diag(Ep)En T\ Fdiag(=p)E. ) | ™ (52)
where, as earlier, the two signs apply to the northern (top) and southern (bottom) hemi-
spheres. The quantity in square brackets, when multiplied by m, gives the sum of Ped-
ersen and Hall current densities defined on the K ; interior grid points, with the east-

ward components stacked on top of the northward components. The matrix in square
brackets has shape 2K ; x Kg. Dy. has shape K; x 2K ; as before.

In this equation, unlike Equation (46), the data vector on the left hand side, ju,
does not represent measurements at arbitrary positions, but specifically K ; vertical cur-
rent densities at the internal grid points. In theory, the right hand side could be mul-
tiplied by an appropriate interpolation matrix to relate vertical current densities at ar-
bitrary positions to m.
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In the current form, given a set of vertical currents across the analysis domain, Equa-
tion (52) can be inverted to find m, and thus the electric field. The electric potential,
convection velocity, horizontal current densities, and magnetic field disturbances at any
altitude can then be calculated from the equations presented earlier in this section. Be-
low we demonstrate this with field-aligned current densities from an MHD simulation.
AMPERE field-aligned currents can also be used as input for this procedure, as recently
demonstrated by Robinson et al. (2021) and Chartier et al. (2022), using two different
techniques.

3.5 Note about coordinate systems

In our implementation of the Lompe technique we use geographic coordinates by
default. This is because geographic coordinates are orthogonal, unlike some magnetic
coordinate systems (Laundal & Richmond, 2017), and therefore easier to work with. This
choice also avoids ambiguities related to secular variations in the magnetic field, and con-
fusion about which type of magnetic coordinate systems is used. The apexpy Python mod-
ule (van der Meeren et al., 2021; Emmert et al., 2010) is used to find the magnetic east-
ward direction in Quasi-Dipole coordinates (Richmond, 1995), which we use to calcu-
late Dg,, in Equation (50). Our code also has an option to make all calculations in cen-
tered dipole coordinates, which is convenient in some cases, like the examples shown in
Section 4.1 which are based on synthetic data from simulations performed with a dipole
magnetic field.

4 Results

In this section we present a set of example applications of the Lompe technique.
First we demonstrate the technique with synthetic data based on a magnetohydrody-
namic simulation (Section 4.1). We also use the simulation output to give an example
of how boundary effects influence the inversion. Then we present three examples with
real data: In Section 4.2 we show an example using Iridium, SuperMAG, and SuperDARN
data in a large grid that covers North America, with auroral conductance specified us-
ing a relatively simple empirical model. In Section 4.3 we show an example with con-
ductance based on auroral imaging, but with no Iridium magnetometer data. In Section 4.4,
we zoom in on a region with good coverage by SuperDARN. In all the examples with
real data, we include measurements within a grid extended by 10 grid cells in each di-
rection. Data further away would have very little influence due to the sharp decrease of
the SECS functions (Equation (1)).

4.1 Synthetic test

Here we present an example of applying the Lompe technique with synthetic sim-
ulated data, which means that we have perfect coverage and no uncertainty in the in-
put, and we know what the output should be. To produce the synthetic data, we sim-
ulate the magnetospheric response to a solar wind pressure increase using the the Grid
Agnostic MHD for Extended Research Applications (GAMERA) code (B. Zhang et al.,
2019; Sorathia et al., 2020). For our purposes, the specifics of the simulation is not very
important, except that some structure in the ionospheric electrodynamics is preferred.
The important point is that all the different quantities are consistently related. GAM-
ERA ionospheric electric field and currents are calculated as described in Section 3.4,
but with a different numerical scheme than used in the Lompe technique (Merkin & Lyon,
2010).

Figure 4 shows the GAMERA output in the first column, shown on a cubed sphere
projection. The top row shows electric potential (black contours), and Pedersen conduc-
tance in color. The Hall conductance is similar, but not shown. The next rows show, from
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Figure 4. Results of Lompe inversions with synthetic data. The synthetic data comes from
GAMERA MHD simulations, and the output is shown in the left column. Each row shows one
quantity, indicated to the left. All plots, except for the left column, show Lompe inversion out-
puts. The eight rows correspond to eight different inputs to the inversion, indicated above the

top row. The inversion result can be assessed by comparing the plots to the left column with

GAMERA output, which can be considered to be the ground truth in this experiment.
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top to bottom, the field-aligned current, the eastward, northward, and upward compo-
nents of the magnetic field disturbances on ground, and the eastward, northward, and
upward components of the magnetic field disturbances at an altitude of 1000 km, well
above the horizontal current layer which is placed at 120 km. Except for the first col-
umn, all plots show Lompe output, when the input is the parameter indicated at the top.
For example, the plot in the fifth column, second row, shows the Lompe field-aligned cur-
rent density when the northward magnetic field on ground is the only input to the in-
version. Comparing this to the first column, which is the “ground truth” in this case,

we see that it is faithfully reproduced.

In Figure 4, the regularization parameters are zero when the input is electric po-
tential and field-aligned current. That is, the solution is just a minimization of the least-
squares difference between input and model output. For the other columns, where the
input is magnetic field components, we used Ay = 0.1 and A2 = 0 in Equation (50).
With A\; = 0, all parameters except for the input were not well represented. The need
for a tiny damping parameter shows that there are many electric fields which, given the
conductance pattern, can produce the same pattern of magnetic field disturbances. That
is, the inverse problem is ill-posed even with perfect data.

Figure 5 has the same format and the same simulated input data as in Figure 4,
but a smaller analysis region. We have zoomed in on a region that contains the spot with
high conductance in the post-noon local time sector. We see that in general the retrieved
patterns are similar to the original input data, but with some clear deviations. For ex-
ample, the Lompe output FAC for magnetic field input has features at the boundary of
the analysis region which are wrong. This result is expected: The magnetic field is a func-
tion of the global current system, not only the current within the analysis region; when
we seek a current that is represented by spherical elementary current systems entirely
within the analysis region, artificial edge structures emerge to account for remote cur-
rents. There is not much we can do about this except to be careful in the interpretation
of the output patterns, unless we can add more information to constrain the electric field.
The overall good fit in the interior region is encouraging, and shows that the Lompe out-
put is useful if handled with some care. We discuss edge effects in more detail in Sec-
tion 5.

In the rightmost columns of Figures 4 and 5, the input is the vertical magnetic field
disturbances at 1000 km altitude. In both figures, the Lompe output in this column is
particularly poor compared to the other columns. Since the Lompe techniques assumes
a vertical main field, the vertical magnetic field disturbances are not linked to FACs (Equa-
tion (9)), but solely to divergence-free currents 880 km below (Equation (12)). At this
distance, small-scale structures in the ionospheric shell at 120 km contribute very little
to the magnetic field. This is likely the reason for the notable deviations seen in the right
columns. In the Lompe code (Laundal et al., 2022), there is an option to use space mag-
netometer data only to constrain FACs, intended for use with satellites at relatively high
orbit and/or with relatively imprecise measurements.

4.2 North America grid with Hardy model conductance

Figure 6 shows an example of the Lompe technique applied with real data. The
analysis region covers much of North America and Greenland. Its extent is shown in black
in Figure 1 in geographic coordinates, and in the top right panel of Figure 6 in magnetic
apex coordinates (Richmond, 1995). The grid cell dimension is 100x100 km in the cen-
ter and slightly larger towards the edges due to the cubed sphere projection.

The input data to the Lompe inversion in this example are SuperDARN line-of-
sight convection measurements (Chisham et al., 2007), Iridium magnetometer measure-
ments provided via AMPERE (Anderson et al., 2000; Waters et al., 2020), and ground
magnetometer data provided via SuperMAG (Gjerloev, 2012). All data are from the four
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Figure 5. Results of Lompe inversions with synthetic data. The format and simulation data is
the same as in Figure 4, except that this figure is based on input from, and shows output from, a

much smaller region.
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Figure 6. Lompe input and output for a 4 min time period centered at 5 April 2012 05:12
UT. The top row shows, from left to right: Convection flow field (SuperDARN line-of-sight
measurements in orange) and electric potential contours; horizontal magnetic field disturbances
110 km above the ionosphere as black arrows and radial current density as color contours (Irid-
ium horizontal magnetic field measurements in orange); horizontal ground magnetic field pertur-
bations as black arrows and radial magnetic field perturbations as color contours (SuperMAG
horizontal magnetic field perturbations as orange arrows); and a map that shows the grid’s po-
sition and orientation with respect to apex magnetic latitude and local time. The bold grid
edge corresponds to the lower edge of the projections shown in the other plots. The bottom row
shows, from left to right: Pedersen conductance; Hall conductance; horizontal height-integrated

ionospheric currents based on Lompe output; and color scale / vector scales.

—23—



717

718

719

720

722

723

725

726

727

728

729

730

731

732

733

734

735

736

737

100
HOSOW !
QAN
R

2012-04-05 05:12:00 UT

00 25 50 7.5 100 125 150 17.5 20.0

T
-300 -200 -100 O 100 200 300

3 -2 -1 0 1 2 3
ua/m?

300 nT (ground), 300 nT (space)
— 500 mA/m, 1000 m/s

Figure 7. Same as Figure 6, except that we only use ground magnetometer data in the inver-

sion.

minutes starting at 05:12 UT on 5 April 2012. The input data are shown as orange vec-
tors in the three top left panels, except for the vertical component of the ground mag-
netic field. The data are related to the electric field via the equations described in Sec-
tions 2 and 3 and the conductance maps shown in the bottom left panels. The conduc-
tances are a combination of auroral and EUV contributions; the EUV contribution is cal-
culated as described in Section 2.4, and the auroral contribution is calculated with the
relatively crude Hardy et al. (1987) empirical model with Kp = 4. The ionosphere is
placed at 110 km altitude in this and the following examples.

The model parameters m were found from Equation (50) with A\; = 1 and Ay = 10.
The corresponding convection pattern and electric potential are shown in the top left
panel, together with the input data, all in a reference frame that rotates with the Earth.
The black arrows in the next panel show the magnetic field in space, 110 km above the
ionosphere, and the color contours show the vertical current density. The third panel from
the left shows the ground magnetic field disturbances horizontal components as black
vectors and vertical component as color contours. The panel below shows the horizon-
tal height-integrated ionospheric currents.

We see that the inversion yields the night-side portion of a two-cell convection pat-
tern with the dusk cell slightly wrapped around the dawn cell, so that plasma that leaves
the polar cap on the dusk cell goes south-east and then west. This is the Harang rever-
sal (Harang, 1946). Looking at the data (orange arrows), we see that the reversal in con-
vection pattern has observational support. Beyond this qualitative statement, it is chal-
lenging to compare the input to the output in the convection map since the input is only
in the line-of-sight direction. The field-aligned current map is dominated by Region 1
and Region 2 currents as defined by Iijima & Potemra (1978), but some finer-scale struc-
tures are seen near the Harang reversal region. The radial magnetic field disturbance on
ground is smooth and large-scale. The horizontal field exhibits sharp reversals in the left
part of the map, which is seen in both the data and the inversion output.

To elucidate the effect of combining datasets in Figure 6, we show a contrasting
example in Figure 7, where we have used the same setup as in Figure 6, but removed Su-
perDARN and Iridium data. The inversion in this figure is based only on ground mag-
netometer data, and is thus similar to the KRM technique (Kamide et al., 1981; Van-
haméki & Amm, 2007). We see that the dawn cell structure is largely similar, but the
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Figure 8. Lompe inversion results from 17 August 2001, using data from a four min inter-
val starting at 16:27:14 UT. This was two min before a WIC image was taken, which we use to

estimate auroral conductance. The format of this figure is the same as for Figure 6.

convection is stronger in the KRM version. The most striking difference between the fig-
ures is in the Harang reversal region, which is not well resolved with ground magnetome-
ter data alone. We note again that the Hardy et al. (1987) auroral conductance model

is crude, and that a better conductance estimate would improve the inversion results in
both cases.

4.3 A High-Latitude Dayside Aurora event

Figure 8 shows an example of the Lompe technique used with SuperMAG ground
magnetic field data and SuperDARN line-of-sight convection measurements taken dur-
ing a 4 min interval starting at 16:27 UT 17 August 2001. In this example the auroral
conductances were estimated based on a UV image of the aurora, taken by the Wide-
band Imaging Camera (WIC) (Mende et al., 2000) on the Imager for Magnetopause-to-
Aurora Global Exploration (IMAGE) satellite (Burch, 2000). The full auroral image is
shown in Figure 9. We have removed contamination from sunlight using a model that
is based on viewing geometry (Ohma et al., 2018). The corrected WIC intensity was con-
verted to energy flux via relationships presented by Frey et al. (2003), assuming an av-
erage electron energy of 2.56 keV, and no contribution from protons. The estimated en-
ergy flux and assumed average energy were then used in the Robinson et al. (1987) for-
mulae to obtain Hall and Pedersen conductances. Our assumed average energy, which
is close to that observed in particle measurements by a nearby DMSP satellite, gives a
Hall-to-Pedersen ratio of 1. This method, despite large uncertainties, presumably yields
much better representations of the auroral conductance and its gradients than the Hardy
et al. (1987) model used in the example in Section 4.2. The solar EUV-induced conduc-
tance was added using the method described in Section 2.4. The result, displayed in Fig-
ure 8, show that the EUV conductance dominates. The Lompe inversion was done with
data taken +2 min relative to the time of the WIC image. In this inversion, Ay = 1 and
A2 = 10 in Equation (50). The grid cells in the center are 75 x 75 km.

The Challenging Mini-satellite Payload (CHAMP) satellite passed over the anal-
ysis region at about 440 km altitude during the same time interval (green line in Fig-
ure 9, left). CHAMP carried a very accurate fluxgate magnetometer (Rother & Michaelis,
2019), and its 1 Hz measurements of the eastward, northward, and upward components
of the magnetic field, with the main magnetic field (Alken et al., 2021) subtracted, are
shown as solid lines in Figure 9 (right). The Lompe magnetic field, evaluated at the same
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positions as the CHAMP measurements, is shown as dashed lines. Although it would
have been possible to include it (see Section 3.2.4), the CHAMP data was not used in

the Lompe inversion. The good match demonstrates that the combination of ground mag-
netometer measurements, SuperDARN radar measurements, and reasonable conductance
estimates, is sufficient to retrieve the magnetic field in space. Notice also that the steep
decrease in the eastward magnetic field after it peaks matches well between CHAMP mea-
surements and Lompe estimates. This is the very strong (= 7 pA/m?) downward field-
aligned current which appears as a blue strip in Figure 8.

The data analyzed in this example is part of an event that was analyzed in detail
by both Longley et al. (2016) and @stgaard et al. (2018). They conclude that the spot
in the middle of the analysis region, which was present for several hours, is a so-called
High-Latitude Dayside Aurora (HiLDA), (Frey, 2007). Recently Q.-H. Zhang et al. (2021)
presented detailed images of what was presumably a HiLDA spot, and coined the term
space hurricane since the spot had spiral arms like atmospheric hurricanes. The HiLDA
spot / space hurricane is clearly visible in the WIC image displayed in Figure 9. It is a
signature of lobe reconnection during times when the interplanetary magnetic field has
a strong positive B, component (or negative, if observed in the Southern hemisphere)
(Reistad et al., 2021).

Ostgaard et al. (2018) also sketched a convection pattern for this event based on
a qualitative assessment of the available data and knowledge about statistical models.
In agreement with our results, they suggested that ionospheric plasma circles clockwise
around the auroral spot when viewed from above. Also in agreement with our results,
they suggested that the polar cap plasma enters the auroral oval at around 18-21 mag-
netic local time (MLT), signifying closure of magnetic flux via tail reconnection in this
region (e.g., Laundal, Ostgaard, Snekvik, & Frey, 2010). However, Figure 8 also refines
the pattern suggested by Ostgaard et al. (2018), and reveals some unexpected features:
On the night side of the spot, the convection is strongly reduced, and the polar cap plasma
appears to go quite far towards dawn before turning back towards dusk, circling a large
region of almost sta