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Climate models are our window into our warming world

* Regional hydrological trends and extremes remain an important
modeling uncertainty

* Global storm-resolving models (GSRMs, Ax = 2-5 km, 5o-150 levels)
give more realistic-looking simulations than CMIP6 GCMs with less
subgrid modeling assumptions, but are computationally expensive.

* Could GSRMs + machine learning (ML) improve or replace the
physical parameterization suites used in conventional GCMs?

* Could this enable more trustworthy projection of hydrological cycle?



3 km grid gives a better rainfall simulation than 200 km

Mean precipitation difference over land, simulated minus observed [mm/day] (GPCP)

Enabled by explicit simulation of cumulonimbus cloud systems & well-resolved mountains

The 3 km model resolves variability that requires complex subgrid parameterization in GLMs



Al2-CM ML approach to climate modeling

* A global atmosphere model simulates weather and its
interaction with land, ocean and ice surfaces for a long time

» Equations for temperature, moisture and winds on a 3D grid:
Rate of change = grid-resolved air flow + other processes

* Usual approach: Expert-designed parameterizations represent
other processes: clouds/rain, turbulence, radiation, etc.

* These processes are complex, but mostly work column-wise

* Al2-CM approach: Correct or replace parameterizations using
column-wise ML trained on a reference data set.




ML goal: Make coarse-grid model evolve like reference

Reference datasets:
- Reanalysis (present-day climate, data-based) - Watt-Meyer et al. 2021, GRL, doi:10.1029/2021GL092555
- Fine-grid model (range of climates, uncertain biases) — Bretherton et al. 2021, JAMES, submitted (ESSOAr)

Corrective ML Method: ‘Nudge’ coarse model state to the reference state on a
3-6 hour timescale and machine-learn the ‘nudging tendencies’ that do this.

time ’ Model
— nudging lAQa state a
tendency l
a — Qops
AQq= — s ML target Reference
state a,,,

1))
* This methodology can naturally transfer to any coarse-grid target model and fine-grid reference 7



Challenge of *hybrid’ ML coupled to other components

Coupled to fluid dynamics
and parameterized physics
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Corrective ML skill: Good on time-mean, modest on variability

* Training run nudged to coarsened 3 km X-SHIELD, 40 days

* ML for nudging tendencies of T, g, and optionally v, v, and surface downwelling radiation R;

* MLinputs: column T, g, u, v, cos(zenith), z,

* Google Cloud workflow with custom Python wrapper for FV3GFS (McGibbon et al. 2021, GMD)
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‘Nudge-to-fine’ ML reduces climate bias vs. reference

Base no-ML
RMSE 3.66 mm/day

* Reference for prognostic runs (like training):
3 km X-SHIELD, 40 days

* RF or3-layer neural net reduces time-mean
precipitation error vs. reference by 30%.

* ML for surface radiation removes land precip bias
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ML improves land precipitation diurnal cycle amplitude

Diurnal cycle of precipitation over land
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Baseline simulation: too weak

ML-corrected amplitude is good
but phase is 3 hrs early.

Diurnal cycle error is:

- Half from nudging-based training
- Half from ML



Mean-state drifts

a) 200hPa temperature b) 850hPa temperature
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Ongoing work

* Corrective ML trained and run for multiple climates (ASST = -4K, o, 4K, 8K)
- Reference fine-grid model: 25 km FV3GFS (runs fast), same physics as 200 km target

- ML-corrected 5-year run reduces land surface T and precip biases vs. 200 km
baseline across all climates, but stability and performance sensitive to random seed

- See our poster A15E-1683 by Clark et al. for details

 Corrective ML trained on a year-long X-SHIELD 3 km training run from GFDL.
- Prognostic 200 km runs corrected with some ML configurations can run for 2 years
- Double-ITCZ bias and upper-tropospheric temperature drifts are still problem areas

* Prognostic simulations with ‘fine-only’ ML of full fine-grid physics: Fast PW drifts |
L |?) _ﬁi»



Conclusions

‘Nudge-to-fine’ corrective ML trained with nudging of a coarse-resolution global
atmosphere model to a fine-grid reference can improve its weather and climate skill
In our example, time-mean precipitation distribution was improved 30%.

The nudge-to-fine method generalizes easily to any global model.

Two keys to its success:
1. The coarse model physical parameterizations help maintain out-of-sample

stability of the ML-corrected model
2. The nudging framework avoids jolting the coarse model during training
Controlling prognostic stability and climate drift remain challenging.



