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Movie S1: Tectonic reconstruction showing the context of basin formation since 410 Ma 
(Müller et al., 2019; Young et al., 2019). East Antarctica is held fixed in this reconstruction 
which also does not include rift block motions or internal plate deformation. Sedimentary 
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basins are shown from their base-of-basin age to their top-of-basin age, with basin age 
indicating the time elapsed since the former. Continent-ocean boundaries (COB), oceanic 
crust age and isochrons and mid-ocean ridges (MOR) are also shown. Reconstruction was 
made using GPlates reconstruction software 

Introduction  

Supplementary figures included here show additional representations of the data shown in the 
main text including in Fig S1 an equivalent of Figure 1, zoomed into the data-rich McMurdo Sound 
region, and unannotated versions of Figures 3, 13, 14 and 16. All data and visualization are 
equivalent. 

The tectonic reconstruction shows the context of Antarctica’s basin s during the dispersal of plates 
from a Pangean configuration, beginning 410 Ma.  The reconstruction was implemented in GPlates 
reconstruction software using the combined rotations of Müller, Cao, and Young (Cao et al., 2022; 
Müller et al., 2019; Young et al., 2019) with the Torsvik et al. (2019) correction applied for the Pacific.  
The rotations do not contain all block motions discussed in the text nor any explicit model of 
internal plate deformations. 

As well as Antarctic basins (this study), we include in the reconstruction mid-ocean ridges from 
Müller et al. (2016), continent ocean boundaries from Müller et al. (2019) and the oceanic age grid 
and ocean crust isochrons from Seton et al. (2020). All these files are available by default in later 
versions of GPlates (version 2.3 was used here). The reconstruction uses East Antarctica as the fixed 
plate and shows relative motions to that plate. The animation is generated from a series of 
snapshots at 1 Ma intervals. 
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Figure S1. Representative data coverage in the vicinity of McMurdo Sound and Ross Island, 
indicating outcropping geology, drill core sites, onshore passive seismic and MT stations, and 
marine seismic reflection lines offshore. Bedmap3 data coverage is shown only for onshore ice-
covered areas.  
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Figure S2: Classification of geological bed type in Antarctica showing the main classes of Type 1 
and Type 2 basins, intra-basin volcanics, and crystalline basement, as well as regions of mixed class 
without annotations. Major sedimentary basin regions are outlined in grey. The coastline shows 
both the ice sheet grounding line and the ice shelf edge. 
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Figure S3: Structure of the Antarctic lithosphere showing a) Moho depth (Pappa et al., 2019), b) 
lithosphere-asthenosphere boundary depth (Hazzard et al., 2023), c) multidata lineament analysis 
(Stål et al., 2019) and d) multiscale gravity edge analysis. 
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Figure S4: Unannotated tectonic reconstruction snapshots a) 265 Ma, b) 120 Ma, c) 65 Ma and d) 
34 Ma showing the context of basin formation since Pangea (Müller et al., 2019; Young et al., 2019). 
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Figure S5: Unannotated influences on ice sheet dynamics showing a) deep-seated geothermal 
heat flux (Lösing & Ebbing, 2021) b) surface ice sheet velocity from InSAR phase mapping 
(Mouginot et al., 2019) c) inferred basal friction coefficient derived by inverting for basal conditions 
using the Ice sheet and Sea level System Model (Dawson et al., 2022), and d) subglacial hydrology, 
including subglacial lakes (Livingstone et al., 2022), and a modern-day drainage network (Le Brocq 
et al., 2013).Figure S5: Unannotated influences on ice sheet dynamics showing a) deep-seated 
geothermal heat flux (Lösing & Ebbing, 2021) b) surface ice sheet velocity from InSAR phase 
mapping (Mouginot et al., 2019) c) inferred basal friction coefficient derived by inverting for basal 
conditions using the Ice sheet and Sea level System Model (Dawson et al., 2022), and d) subglacial 
hydrology, including subglacial lakes (Livingstone et al., 2022), and a modern-day drainage 
network (Le Brocq et al., 2013). 
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