Acknowledgments
This work was supported by the National Natural Science Foundation of
China (42030606, and 42271412).
References
Andreae, M.O., Rosenfeld, D., Artaxo, P., Costa, A.A., Frank, G.P.,
Longo, K.M., Silva-Dias, M.A., 2004. Smoking rain clouds over the
Amazon. Science. 27, 303(5662):1337-1342.
Crawford, C.J., Roy, D.P., Arab,
S., Barnes, C., Vermote, E., Hulley, G., Gerace, A., Choate, M.,
Engebretson, C., Micijevic, E., Schmidt, G., Anderson, C., Anderson, M.,
Bouchard, M., Cook, B., Dittmeier, R., Howard, D., Jenkerson, C., Kim,
M., Kleyians, T., Maiersperger, T., Mueller, C., Neigh, C., Owen, L.,
Page, B., Pahlevan, N., Rengarajan, R., Roger, J.-C., Sayler, K.,
Scaramuzza, P., Skakun, S., Yan, L., Zhang, H.K., Zhu, Z., Zahn, S.,
2023. The 50-year Landsat collection 2 archive. Sci. Remote Sens. 8,
100103. https://doi.org/10.1016/j.srs.2023.100103
Doxani, G., Vermote, E.F., Roger, J.-C., Skakun, S., Gascon, F.,
Collison, A., De Keukelaere, L., Desjardins, C., Frantz, D., Hagolle,
O., Kim, M., Louis, J., Pacifici, F., Pflug, B., Poilvé, H., Ramon, D.,
Richter, R., Yin, F., 2023. Atmospheric Correction Inter-comparison
eXercise, ACIX-II Land: an assessment of atmospheric correction
processors for Landsat 8 and Sentinel-2 over land. Remote Sens. Environ.
285, 113412.
Dong, D., Han, Z., Yao, J., Gao, L., Zhang, B., Plaza, A., Chanussot,
J., 2022. SpectralFormer: Rethinking Hyperspectral Image Classification
With Transformers. IEEE Trans. Geosci. Remote Sens. 60, 5518615.
Fuller, R., Landrigan, P.J., Balakrishnan, K., Bathan, G.,
Bose-O’Reilly, S., Brauer, M., Caravanos, J., Chiles, T., Cohen, A.,
Corra, L., Cropper, M., Ferraro, G., Hanna, J., Hanrahan, D., Hu, H.,
Hunter, D., Janata, G., Kupka, R., Lanphear, B., Lichtveld, M., Martin,
K., Mustapha, A., Sanchez-Triana, E., Sandilya, K., Schaefli, L., Shaw,
J., Seddon, J., Suk, W., Téllez-Rojo, M.M., Yan, C., 2022. Pollution and
health: a progress update. Lancet Planet. Health 6, e535-e547.
Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., Denier van der
Gon, H., Facchini, M.C., Fowler, D., Koren, I., Langford, B., Lohmann,
U., Nemitz, E., Pandis, S., Riipinen, I., Rudich, Y., Schaap, M.,
Slowik, J.G., Spracklen, D.V., Vignati, E., Wild, M., Williams, M.,
Gilardoni, S., 2015. Particulate matter, air quality and climate:
lessons learned and future needs. Atmos. Chem. Phys. 15, 8217–8299.
GCOS (2010). Systematic
Observation Requirements for Satellite-Based Products for Climate, 2011
Update, Supplemental Details to the Satellite-Based Component of the
Implementation Plan for the Global Observing System for Climate in
Support of the UNFCCC (2010 Update). Global Climate Observing System,
World Meteorological Organization: Geneva.
Giles, D.M., Sinyuk, A., Sorokin,
M.G., Schafer, J.S., Smirnov, A., Slutsker, I., Eck, T.F., Holben, B.N.,
Lewis, J.R., Campbell, J.R., Welton, E.J., Korkin, S.V., Lyapustin,
A.I., 2019. Advancements in the Aerosol Robotic Network (AERONET)
Version 3 database – automated near-real-time quality control algorithm
with improved cloud screening for Sun photometer aerosol optical
depth (AOD) measurements. Atmos. Meas. Tech. 12, 169-209.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore,
R., 2017. Google Earth Engine: Planetary-scale geospatial analysis for
everyone. Remote Sens. Environ. 202, 18–27.
He, L., Wang, L., Li, Z., Jiang,
D., Sun, L., Liu, D., Liu, L., Yao, R., Zhou, Z., Wei, J., 2021. VIIRS
Environmental Data Record and Deep Blue aerosol products: validation,
comparison, and spatiotemporal variations from 2013 to 2018 in China.
Atmos. Environ. 250, 118265.
Holben, B.N., Eck, T.F., Slutsker, I., Tanré, D., Buis, J.P., Setzer,
A., Vermote, E., Reagan, J.A., Kaufman, Y.J., Nakajima, T., Lavenu, F.,
Jankowiak, I., Smirnov, A., 1998. AERONET—a federated instrument
network and data archive for aerosol characterization. Remote Sens.
Environ. 66, 1–16.
Hsu, N.C., Jeong, M.-J.,
Bettenhausen, C., Sayer, A.M., Hansell, R., Seftor, C.S., Huang, J.,
Tsay, S.-C., 2013. Enhanced Deep Blue aerosol retrieval algorithm: the
second generation. J. Geophys. Res. Atmos. 118, 9296–9315.
Jia, C., Sun, L., Chen, Y., Liu, Q., Yu, H., Zhang, W., 2022. Satellite
aerosol retrieval ysing scene simulation and deep belief network. IEEE
Trans. Geosci. Remote Sens. 60, 1–16.
Kaufman, Y.J., Tanré, D., Gordon,
H.R., Nakajima, T., Lenoble, J., Frouin, R., Grassl, H., Herman, B.M.,
King, M.D., Teillet, P.M., 1997. Passive remote sensing of tropospheric
aerosol and atmospheric correction for the aerosol effect. J. Geophys.
Res. Atmos. 102, 16,815–16,830.
Kaufman, Y.J., Tanré, D., Boucher, O., 2002. A satellite view of
aerosols in the climate system. Nature 419, 215–223.
Kim, K.-H., Kabir, E., Kabir, S.,
2015. A review on the human health impact of airborne particulate
matter. Environ. Int. 74, 136–143.
Kumar, A., Mehta, M., 2023. Investigating the applicability of a simple
iterative approach for aerosol optical depth (AOD) retrieval over
diverse land surface types from Landsat 8 and Sentinel 2 using visible
and near-infrared (VNIR) spectral bands. Atmos. Environ. 314, 120082.
Levy, R.C., Mattoo, S., Munchak,
L.A., Remer, L.A., Sayer, A.M., Patadia, F., Hsu, N.C., 2013. The
Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas.
Tech. 6, 2989–3034.
Li, S., Wang, W., Hashimoto, H., Xiong, J., Vandal, T., Yao, J., Qian,
L., Ichii, K., Lyapustin, A., Wang, Y., Nemani, R., 2019. First
provisional land surface reflectance product from geostationary
satellite Himawari-8 AHI. Remote Sens. 11, 2990.
Li, Z., Zhao, X., Kahn, R.,
Mishchenko, M., Remer, L., Lee, K.H., Wang, M., Laszlo, I., Nakajima,
T., Maring, H., 2009. Uncertainties in satellite remote sensing of
aerosols and impact on monitoring its long-term trend: a review and
perspective. Ann. Geophys. 27, 2755–2770.
Li, Z., Niu, F., Fan, J., Liu, Y., Rosenfeld, D., Ding, Y., 2011.
Long-term impacts of aerosols on the vertical development of clouds and
precipitation. Nature Geosci. 4, 888–894.
Li, Z., Guo, J., Ding, A., Liao,
H., Liu, J., Sun, Y., Wang, T., Xue, H., Zhang, H., Zhu, B., 2017.
Aerosol and boundary-layer interactions and impact on air quality.National Sci. Rev. 4 , 810–833.
Li,
Z.B., Roy, D.P., Zhang, H.K., Vermote, E.F., Huang, H., 2019. Evaluation
of Landsat-8 and Sentinel-2A aerosol optical depth retrievals across
Chinese cities and implications for medium spatial resolution urban
aerosol monitoring. Remote Sens. 11(2).
Li, Z.Q., Xu, H., Li, K.T., Li,
D.H., Xie, Y.S., Li, L., Zhang, Y., Gu, X.F., Zhao, W., Tian, Q.J.,
Deng, R.R., Su, X.L., Huang, B., Qiao, Y.L., Cui, W.Y., Hu, Y., Gong,
C.L., Wang, Y.Q., Wang, X.F., Wang, J.P., Du, W.B., Pan, Z.Q., Li, Z.Z.,
Bu, D., 2018. Comprehensive study of optical, physical, chemical, and
radiative properties of total columnar atmospheric aerosols over China:
an overview of Sun–sky radiometer observation network (SONET)
measurements. Bull. Am. Meteorol. Soc. 99, 739–755.
Liang, T., Liang, S., Zou, L.,
Sun, L., Li, B., Lin, H., He, T., Tian, F., 2022. Estimation of aerosol
optical depth at 30 m resolution using Landsat imagery and machine
learning. Remote Sens. 14, 1053.
Lin, H., Li, S., Xing, J., He, T., Yang, J., Wang, Q., 2021a. High
resolution aerosol optical depth retrieval over urban areas from
Landsat-8 OLI images. Atmos. Environ. 261, 118591.
Lin, H., Li, S., Xing, J., Yang, J., Wang, Q., Dong, L., Zeng, X.,
2021b. Fusing retrievals of high resolution qerosol optical depth from
Landsat-8 and Sentinel-2 observations over urban areas. Remote Sens. 13,
4140.
Liu, Y., Lapata, M, 2019. Text summarization with pretrained encoders.
In, Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (pp. 3730–3740). Hong Kong, China:
Association for Computational Linguistics.
Lundberg, S.M., Lee, S.-I., 2017.
A unified approach to interpreting model predictions. In,Proceedings of the 31st International Conference on Neural
Information Processing Systems (pp. 4768–4777). Long Beach,
California, USA: Curran Associates Inc.
Luo, N., Wong, M.S., Zhao, W.,
Yan, X., Xiao, F., 2015. Improved aerosol retrieval algorithm using
Landsat images and its application for PM10 monitoring
over urban areas. Atmos. Res. 153 , 264–275.
Lyapustin, A., Wang, Y., Korkin, S., Huang, D., 2018. MODIS Collection 6
MAIAC algorithm. Atmos. Meas. Tech. 11, 5741–5765.
Ma, Z., Dey, S., Christopher, S.,
Liu, R., Bi, J., Balyan, P., Liu, Y., 2022. A review of statistical
methods used for developing large-scale and long-term
PM2.5 models from satellite data. Remote Sens. Environ.
269, 112827.
Masek, J.G., Wulder, M.A., Markham, B., McCorkel, J., Crawford, C.J.,
Storey, J., Jenstrom, D.T., 2020. Landsat 9: Empowering open science and
applications through continuity. Remote Sens. Environ. 248, 111968.
Ramanathan, V., Crutzen, P.J., Kiehl, J.T., Rosenfeld, D., 2001.
Aerosols, climate, and the hydrological cycle. Science 294, 2119–2124.
Rodriguez, J.D., Perez, A., Lozano, J.A., 2010. Sensitivity analysis of
k-fold cross validation in prediction error estimation. IEEE Trans.
Pattern Anal. Mach. Intell. 32, 569–575.
Rosenfeld, D., Sherwood, S., Wood, R., Donner, L., 2014. Climate effects
of aerosol-cloud interactions. Science 343, 379–380.
Roy, D.P., Wulder, M.A.,
Loveland, T.R., C.E, W., Allen, R.G., Anderson, M.C., Helder, D., Irons,
J.R., Johnson, D.M., Kennedy, R., Scambos, T.A., Schaaf, C.B., Schott,
J.R., Sheng, Y., Vermote, E.F., Belward, A.S., Bindschadler, R., Cohen,
W.B., Gao, F., Hipple, J.D., Hostert, P., Huntington, J., Justice, C.O.,
Kilic, A., Kovalskyy, V., Lee, Z.P., Lymburner, L., Masek, J.G.,
McCorkel, J., Shuai, Y., Trezza, R., Vogelmann, J., Wynne, R.H., Zhu,
Z., 2014. Landsat-8: science and product vision for terrestrial global
change research. Remote Sens. Environ. 145, 154–172.
She, L., Zhang, H., Wang, W.,
Wang, Y., Shi, Y., 2019. Evaluation of the Multi-Angle Implementation of
Atmospheric Correction (MAIAC) aerosol algorithm for Himawari-8 data.
Remote Sens. 11, 2771.
She, L., Zhang, H.K., Bu, Z., Shi, Y., Yang, L., Zhao, J., 2022. A
deep-neural-network-based aerosol optical depth (AOD) retrieval from
Landsat-8 top of atmosphere data. Remote Sens. 14, 1411.
Su, T., Laszlo, I., Li, Z., Wei,
J., Kalluri, S., 2020. Refining aerosol optical depth retrievals over
land by constructing the relationship of spectral surface reflectances
through deep learning: application to Himawari-8. Remote Sens. Environ.
251, 112093.
Sun, H., Shin, Y.M., Xia, M., Ke, S., Wan, M., Yuan, L., Guo, Y.,
Archibald, A.T., 2022. Spatial resolved surface ozone with urban and
rural differentiation during 1990–2019: a space–time Bayesian neural
network downscaler. Environ. Sci. Tech. 56, 7337–7349.
Sun, L., Wei, J., Bilal, M., Tian, X., Jia, C., Guo, Y., Mi, X., 2016.
Aerosol optical depth retrieval over bright areas using Landsat 8 OLI
images. Remote Sens. 8 , 23.
Tamiminia, H., Salehi, B.,
Mahdianpari, M., Quackenbush, L., Adeli, S., Brisco, B., 2020. Google
Earth Engine for geo-big data applications: a meta-analysis and
systematic review. ISPRS J. Photogramm. Remote Sens. 164, 152–170.
Tao, M., Chen, J., Xu, X., Man,
W., Xu, L., Wang, L., Wang, Y., Wang, J., Fan, M., Shahzad, M.I., Chen,
L., 2023. A robust and flexible satellite aerosol retrieval algorithm
for multi-angle polarimetric measurements with physics-informed deep
learning method. Remote Sens. Environ. 297, 113763.
Tian, X., Liu, Q., Song, Z., Dou, B., Li, X., 2018. Aerosol optical
depth retrieval from Landsat 8 OLI images over urban areas supported by
MODIS BRDF/Albedo data. IEEE Trans. Geosci. Remote Sens. 15, 976–980.
Vaswani, A., Shazeer, N., Parmar,
N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.,
2017. Attention is all you need. Adv. Neural Inf. Process. Syst. 30.
Vermote, E., Justice, C.,
Claverie, M., Franch, B., 2016. Preliminary analysis of the performance
of the Landsat 8/OLI land surface reflectance product. Remote Sens.
Environ. 185, 46–56.
Wang, W., Wang, Y., Lyapustin,
A., Hashimoto, H., Park, T., Michaelis, A., Nemani, R., 2022. A novel
atmospheric correction algorithm to exploit the diurnal variability in
hypertemporal geostationary observations. Remote Sens. 14, 964.
Wang, Y., Yuan, Q., Li, T., Shen,
H., Zheng, L., Zhang, L., 2019. Evaluation and comparison of MODIS
Collection 6.1 aerosol optical depth against AERONET over regions in
China with multifarious underlying surfaces. Atmos. Environ. 200,
280–301.
Wei, J., Huang, B., Sun, L.,
Zhang, Z., Wang, L., Bilal, M., 2017. A simple and universal aerosol
retrieval algorithm for Landsat series images over complex surfaces. J.
Geophys. Res. Atmos. 122, 13,338–313,355.
Wei, J., Sun, L., Peng, Y., Wang,
L., Zhang, Z., Bilal, M., Ma, Y., 2018. An improved
high-spatial-resolution aerosol retrieval algorithm for MODIS images
over land. J. Geophys. Res. Atmos. 123, 12,291–12,307.
Wei, J., Li, Z., Peng, Y., Sun, L., 2019a. MODIS Collection 6.1 aerosol
optical depth products over land and ocean: validation and comparison.
Atmos. Environ. 201, 428–440.
Wei, J., Li, Z., Sun, L., Peng, Y., Zhang, Z., Li, Z., Su, T., Feng, L.,
Cai, Z., Wu, H., 2019b. Evaluation and uncertainty estimate of
next-generation geostationary meteorological Himawari-8/AHI aerosol
products. Sci. Total Environ. 692, 879–891.
Wei, J., Huang, W., Li, Z., Sun,
L., Zhu, X., Yuan, Q., Liu, L., Cribb, M., 2020a. Cloud detection for
Landsat imagery by combining the random forest and superpixels extracted
via energy-driven sampling segmentation approaches. Remote Sens.
Environ. 248, 112005.
Wei, J., Li, Z., Sun, L., Peng, Y., Liu, L., He, L., Qin, W., Cribb, M.,
2020b. MODIS Collection 6.1 3-km-resolution aerosol optical depth
product: global evaluation and uncertainty analysis. Atmos. Environ.
240, 117768.
Wei, J., Li, Z., Lyapustin, A.,
Sun, L., Peng, Y., Xue, W., Su, T., Cribb, M., 2021. Reconstructing
1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in
China: spatiotemporal variations and policy implications. Remote Sens.
Environ. 252, 112136.
Wei, J., Li, Z., Chen, X., Li,
C., Sun, Y., Wang, J., Lyapustin, A., Brasseur, G.P., Jiang, M., Sun,
L., Wang, T., Jung, C.H., Qiu, B., Fang, C., Liu, X., Hao, J., Wang, Y.,
Zhan, M., Song, X., Liu, Y., 2023. Separating daily 1-km
PM2.5 inorganic chemical composition in China since 2000
via deep learning integrating ground, satellite, and model data.Environ. Sci. Tech., in press.
Wei, X., Chang, N.-B., Bai, K.,
Gao, W., 2020. Satellite remote sensing of aerosol optical depth:
advances, challenges, and perspectives. Crit. Rev. Environ. Sci.
Technol. 50, 1640–1725.
Wulder, M.A., Loveland, T.R.,
Roy, D.P., Crawford, C.J., Masek, J.G., Woodcock, C.E., Allen, R.G.,
Anderson, M.C., Belward, A.S., Cohen, W.B., Dwyer, J., Erb, A., Gao, F.,
Griffiths, P., Helder, D., Hermosilla, T., Hipple, J.D., Hostert, P.,
Hughes, M.J., Huntington, J., Johnson, D.M., Kennedy, R., Kilic, A., Li,
Z., Lymburner, L., McCorkel, J., Pahlevan, N., Scambos, T.A., Schaaf,
C., Schott, J.R., Sheng, Y., Storey, J., Vermote, E., Vogelmann, J.,
White, J.C., Wynne, R.H., Zhu, Z., 2019. Current status of Landsat
program, science, and applications. Remote Sens. Environ. 225, 127–147.
Wulder, M.A., Roy, D.P.,
Radeloff, V.C., Loveland, T.R., Anderson, M.C., Johnson, D.M., Healey,
S., Zhu, Z., Scambos, T.A., Pahlevan, N., Hansen, M., Gorelick, N.,
Crawford, C.J., Masek, J.G., Hermosilla, T., White, J.C., Belward, A.S.,
Schaaf, C., Woodcock, C.E., Huntington, J.L., Lymburner, L., Hostert,
P., Gao, F., Lyapustin, A., Pekel, J.-F., Strobl, P., Cook, B.D., 2022.
Fifty years of Landsat science and impacts. Remote Sens. Environ. 280,
113195.
Yang, Y., Yang, K., Chen, Y.,
2022. Aerosol retrieval algorithm for Sentinel-2 images over complex
urban areas. IEEE Trans. Geosci.
Remote Sens. 60, 1–9.
Yeom, J.M., Jeong, S., Ha, J.S.,
Lee, K.H., Lee, C.S., Park, S., 2022. Estimation of the hourly aerosol
optical depth from GOCI geostationary satellite data: deep neural
network, machine learning, and physical models. IEEE Trans. Geosci.
Remote Sens. 60, 1–12.
Zhang, Y., Li, Z., Bai, K., Wei,
Y., Xie, Y., Zhang, Y., Ou, Y., Cohen, J., Zhang, Y., Peng, Z., Zhang,
X., Chen, C., Hong, J., Xu, H., Guang, J., Lv, Y., Li, K., Li, D., 2021.
Satellite remote sensing of atmospheric particulate matter mass
concentration: advances, challenges, and perspectives. Fundam. Res. 1,
240–258.