References
[1] Qu X, He Y, Qu M. et al. Identification of embedded nanotwins at c-Si/a-Si:H interface limiting the performance of high-efficiency silicon heterojunction solar cells, Nat. Energy. 2021;6:194-202. doi: 10.1038/s41560-020-00768-4
[2] Zhou J, Su X, Huang Q, Zhang B, Yang J, Zhao Y, Hou G. Recent advancements in Poly-Si/SiOx passivating contacts for high-efficiency silicon solar cells: Technology review and perspectives. J Mater Chem A. 2022;10: 20147. doi:1039/d2ta04730f
[3] Lin H, Yang M, Ru X, et al. Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nat Energy . 2023. doi: 10.1038/s41560-023-01255-2
[4] Dong G,  Sang J,  Peng C-W,  Liu F,  Zhou Y,  Yu C. Power conversion efficiency of 25.26% for silicon heterojunction solar cell with transition metal element doped indium oxide transparent conductive film as front electrode.Prog Photovolt Res Appl.2022;30( 9):1136-1143. doi: 10.1002/pip.3565
[5] Li S, Pomaska M, Lambertz A, et al. Transparent-conductive-oxide-free front contacts for high-efficiency silicon heterojunction solar cells. Joule . 2021;5(6): 1535-1547. doi:10.1016/j.joule.2021.04.004
[6] Ibarra Michel J, Dréon J, Boccard M, Bullock J, Macco B. Carrier-selective contacts using metal compounds for crystalline silicon solar cells. Prog Photovolt Res Appl . 2023;31(4):380-413. doi:10.1002/pip.3552
[7] Gao K,  Bi Q,  Wang X,  Liu W,  et al. Progress and Future Prospects of Wide-Bandgap Metal-Compound-Based Passivating Contacts for Silicon Solar Cells. Adv Mater.  2022;34:2200344. doi:10.1002/adma.202200344
[8] Geissbühler J, Werner J, Martin de Nicolas S, et al. 22.5% efficient silicon heterojunction Solar cell with molybdenum oxide hole collector. Appl Phys Lett . 2015;107(8):081601. doi:10.1063/1. 4928747
[9] Wang J, Lin H, Wang Z, et al. Hard mask processing of 20% efficiency back-contacted silicon solar cells with dopant-free heterojunctions. Nano Energy. 2019;66:104116. doi: 10.1016/j.nanoen.2019.104116
[10] Mews, Mathias, Korte, et al. Oxygen vacancies in tungsten oxide and their influence on tungsten oxide/silicon heterojunction solar cells. Sol Energy Mater Sol Cells . 2016;158:77-83. doi:10.1016/j.solmat.2016.05.042
[11] Yang X, Xu H, Liu W, et al. Atomic Layer Deposition of Vanadium Oxide as Hole-Selective Contact for Crystalline Silicon Solar Cells.Advanced Electronic Materials. 2020;6(8):2000467. doi: 10.1002/aelm.202000467
[12] Liu M, Zhou Y, et al. SnO2/Mg combination electron selective transport layer for Si heterojunction solar cells.Sol Energy Mater Sol Cells. 2019;200:109996. doi: 10.1016/j.solmat.2019.109996
[13] Yang X, Weber K, Hameiri Z, et al. Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells. Prog Photovolt Res Appl. 2017, 25(11):896-904. doi: 10.1002/pip.2901
[14] Li F, Sun Z, Zhou Y, et al. Lithography-free and dopant-free back-contact silicon heterojunction solar cells with solution-processed TiO2 as the efficient electron selective layer.Sol Energy Mater Sol Cells. 2019; 203:110196. doi: 0.1016/j.solmat.2019.110196
[15] Bullock J, Hettick M, Geissbühler J, et al. Efficient silicon solar cells with dopant-free asymmetric heterocontacts. Nat Energy. 2016;1(3): 15031. doi: 10.1038/nenergy.2015.31
[16] Lin W, Boccard M, Zhong S, et al. Degradation Mechanism and Stability Improvement of Dopant-Free ZnO/LiFx/Al Electron Nanocontacts in Silicon Heterojunction Solar Cells. 2020.ACS Appl Nano Mater.  2020;3(11):11391–11398. doi: 10.1021/acsanm.0c02475
[17] Chang NL, Poduval GK, Sang B, et al. Techno-economic analysis of the use of atomic layer deposited transition metal oxides in silicon heterojunction solar cells. Prog Photovolt Res Appl . 2023;31(4):414-428. doi:10.1002/pip.3553
[18] Asmar R A, Zaouk D, Bahouth P, et al. Characterization of electron beam evaporated ZnO thin films and stacking ZnO fabricated by e-beam evaporation and rf magnetron sputtering for the realization of resonators. Microelectron Eng . 2006;83(3):393-398. doi: 10.1016/j.mee.2005.10.010
[19] Lu T, Boudour S, Bouchama I, et al. Multifractal analysis of Mg-doped ZnO thin films deposited by sol–gel spin coating method.Microsc Res Techniq . 2022;85(4):1213–1223. doi:10. 1002/jemt.23988
[20] Dréon J, Jeangros Q, Cattin J, et al. 23.5%‐efficient silicon hetero- junction silicon solar cell using molybdenum oxide as hole‐selective contact, Nano Energy . 2020:104495. doi:10.1016/j.nanoen.2020. 104495
[21] Cao L, Procel P, Alcañiz A, et al. Achieving 23.83% conversion efficiency in silicon heterojunction solar cell with ultra-thin MoOx hole collector layer via tailoring (i)a-Si:H/MoOx interface. Prog Photovolt Res Appl . 2022;1‐10. doi:10.1002/pip.3638
[22] Chen D, Gao M, Wan Y, et al. Electronic structure of molybdenum-involved
amorphous silica buffer layer in MoOx/n-Si heterojunction. Applied Surface Science , 2019;473:20-24.doi: 10.1016/j.apsusc.2018.12.112
[23] Takefumi K, Yutaka H, et al. Effects of annealing temperature on workfunction of MoOx at MoOx/SiO2 interface and process-induced damage in indium tin oxide/MoOx/SiOx/Si stack. Japanese Journal of Applied Physics 2018;57:076501. doi: 10.7567/JJAP.57.076501
[24] Hatt T, Kluska S, Yamin M, et al. Native Oxide Barrier Layer for Selective Electroplated Metallization of Silicon Heterojunction Solar Cells. Sol RRL. 2019;3(6):1900006. doi: 10.1002/solr.201900006
[25] Li F, Zhou Y, et al. Silicon Heterojunction Solar Cells with MoOx Hole‐Selective Layer by Hot Wire Oxidation–Sublimation Deposition. Sol RRL . 2020;4(3):1900514. doi: 10.1002/solr.201900514
[26] Xing C, Gu W, Gao K, et al. Electron-Selective Strontium Oxide Contact for Crystalline Silicon Solar Cells with High Fill Factor.Sol RRL. 2023;2201100. doi:10.1002/solr.202201100
[27] Wang Q, Zhou Y, Guo W, et al. p-type c-Si/SnO2/Mg heterojunction solar cells with an induced inversion layer. Appl Phys Lett . 2021;119:263502. doi: 10.1063/5.0070585
[28] Kobayashi E, Watabe Y, Yamamoto T, et al. Cerium oxide and hydrogen co-doped indium oxide films for high-efficiency silicon heterojunction solar cells. Sol Energy Mater Sol Cells.2016;149:75-80. doi: 10.1016/j.solmat.2016.01.005
[29] Tutsch L,  Sai H,  Matsui T,  Bivour M,  Hermle M,  Koida T.  The sputter deposition of broadband transparent and highly conductive cerium and hydrogen co-doped indium oxide and its transfer to silicon heterojunction solar cells. Prog Photovolt Res Appl .  2021; 29: 835–845. doi: 10.1002/pip.3388
[30] Liu H, Gong Y, Diao H. et al. Comparative study on IWO and ICO transparent conductive oxide fifilms prepared by reactive plasma deposition for copper electroplated silicon heterojunction solar cell.J Mater Sci: Mater Electron. 2022;33: 5000–5008. doi: 10.1007/s10854-021-07689-2
[31] Guo S, Gregory G, Gabor A M, et al. Detailed investigation of TLM contact resistance measurements on crystalline silicon solar cells.Sol Energy , 2017;151: 163-172. doi: 10.1016/j.solener.2017.05.015
[32] R. H. Cox and H. Strack. Ohmic contacts for GaAs devices.Solid State Electron. 1967;10:1213–1218. doi: 10.1016/0038-1101(67)90063-9
[33] Wang W, Lin H, Yang Z, et al. An Expanded Cox and Strack Method for Precise Extraction of Specific Contact Resistance of Transition Metal Oxide/n-Silicon Heterojunction. IEEE J. Photovoltaics .2019;9(4):1113-11208. doi: 10.1109/JPHOTOV.2019.2917386
[34] Cao S, Li J, Lin Y, et al. Interfacial Behavior and Stability Analysis of p-Type Crystalline Silicon Solar Cells Based on Hole-Selective MoOX/Metal Contacts. Sol RRL . 2019;3: 1900274. doi: 10.1002/solr.201900274
[35] Kumar M, Cho EC, Prodanov MF, Kang C, Srivastava AK, Yi J. MoOx work function, interface structure, and thermal stability analysis of ITO/MoOx/a‐Si(i) stacks for hole‐selective silicon heterojunction solar cells. Appl Surf Sci . 2021;553:149552. doi: 10.1016/j.apsusc. 2021.149552