References
[1] Qu X, He Y, Qu M. et al. Identification of embedded nanotwins at
c-Si/a-Si:H interface limiting the performance of high-efficiency
silicon heterojunction solar cells, Nat. Energy. 2021;6:194-202.
doi: 10.1038/s41560-020-00768-4
[2] Zhou J, Su X, Huang Q, Zhang B, Yang J, Zhao Y, Hou G. Recent
advancements in Poly-Si/SiOx passivating contacts for
high-efficiency silicon solar cells: Technology review and
perspectives. J Mater Chem A. 2022;10:
20147. doi:1039/d2ta04730f
[3] Lin H, Yang M, Ru X, et al. Silicon heterojunction solar cells
with up to 26.81% efficiency achieved by electrically optimized
nanocrystalline-silicon hole contact layers. Nat Energy . 2023.
doi: 10.1038/s41560-023-01255-2
[4] Dong G, Sang J, Peng C-W, Liu F, Zhou Y, Yu C. Power
conversion efficiency of 25.26% for silicon heterojunction solar cell
with transition metal element doped indium oxide transparent conductive
film as front electrode.Prog Photovolt Res Appl.2022;30( 9):1136-1143. doi: 10.1002/pip.3565
[5] Li S, Pomaska M, Lambertz A, et al.
Transparent-conductive-oxide-free front contacts for high-efficiency
silicon heterojunction solar cells. Joule . 2021;5(6): 1535-1547.
doi:10.1016/j.joule.2021.04.004
[6] Ibarra Michel J, Dréon J, Boccard M, Bullock J, Macco B.
Carrier-selective contacts using metal compounds for crystalline silicon
solar cells. Prog Photovolt Res Appl . 2023;31(4):380-413.
doi:10.1002/pip.3552
[7] Gao K, Bi Q, Wang X, Liu W, et al. Progress and Future
Prospects of Wide-Bandgap Metal-Compound-Based Passivating Contacts for
Silicon Solar Cells. Adv
Mater. 2022;34:2200344. doi:10.1002/adma.202200344
[8] Geissbühler J, Werner J, Martin de Nicolas S, et al. 22.5%
efficient silicon heterojunction Solar cell with molybdenum oxide hole
collector. Appl Phys Lett . 2015;107(8):081601. doi:10.1063/1.
4928747
[9] Wang J, Lin H, Wang Z, et al. Hard mask processing of 20%
efficiency back-contacted silicon solar cells with dopant-free
heterojunctions. Nano Energy. 2019;66:104116. doi:
10.1016/j.nanoen.2019.104116
[10] Mews, Mathias, Korte, et al. Oxygen vacancies in tungsten oxide
and their influence on tungsten oxide/silicon heterojunction solar
cells. Sol Energy Mater Sol Cells . 2016;158:77-83.
doi:10.1016/j.solmat.2016.05.042
[11] Yang X, Xu H, Liu W, et al. Atomic Layer Deposition of Vanadium
Oxide as Hole-Selective Contact for Crystalline Silicon Solar Cells.Advanced Electronic Materials. 2020;6(8):2000467. doi:
10.1002/aelm.202000467
[12] Liu M, Zhou Y, et al. SnO2/Mg combination
electron selective transport layer for Si heterojunction solar cells.Sol Energy Mater Sol Cells. 2019;200:109996. doi:
10.1016/j.solmat.2019.109996
[13] Yang X, Weber K, Hameiri Z, et al. Industrially feasible,
dopant-free, carrier-selective contacts for high-efficiency silicon
solar cells. Prog Photovolt Res Appl. 2017, 25(11):896-904. doi:
10.1002/pip.2901
[14] Li F, Sun Z, Zhou Y, et al. Lithography-free and dopant-free
back-contact silicon heterojunction solar cells with solution-processed
TiO2 as the efficient electron selective layer.Sol Energy Mater Sol Cells. 2019; 203:110196. doi:
0.1016/j.solmat.2019.110196
[15] Bullock J, Hettick M, Geissbühler J, et al. Efficient silicon
solar cells with dopant-free asymmetric heterocontacts. Nat
Energy. 2016;1(3): 15031. doi: 10.1038/nenergy.2015.31
[16] Lin W, Boccard M, Zhong S, et al. Degradation Mechanism and
Stability Improvement of Dopant-Free ZnO/LiFx/Al
Electron Nanocontacts in Silicon Heterojunction Solar Cells. 2020.ACS Appl Nano Mater. 2020;3(11):11391–11398. doi:
10.1021/acsanm.0c02475
[17] Chang NL, Poduval GK, Sang B, et al. Techno-economic analysis
of the use of atomic layer deposited transition metal oxides in silicon
heterojunction solar cells. Prog Photovolt Res Appl .
2023;31(4):414-428. doi:10.1002/pip.3553
[18] Asmar R A, Zaouk D, Bahouth P, et al. Characterization of
electron beam evaporated ZnO thin films and stacking ZnO fabricated by
e-beam evaporation and rf magnetron sputtering for the realization of
resonators. Microelectron Eng . 2006;83(3):393-398. doi:
10.1016/j.mee.2005.10.010
[19] Lu T, Boudour S, Bouchama I, et al. Multifractal analysis of
Mg-doped ZnO thin films deposited by sol–gel spin coating method.Microsc Res Techniq . 2022;85(4):1213–1223. doi:10.
1002/jemt.23988
[20] Dréon J, Jeangros Q, Cattin J, et al. 23.5%‐efficient silicon
hetero- junction silicon solar cell using molybdenum oxide as
hole‐selective contact, Nano Energy . 2020:104495.
doi:10.1016/j.nanoen.2020. 104495
[21] Cao L, Procel P, Alcañiz A, et al. Achieving 23.83% conversion
efficiency in silicon heterojunction solar cell with ultra-thin
MoOx hole collector layer via tailoring
(i)a-Si:H/MoOx interface. Prog Photovolt Res
Appl . 2022;1‐10. doi:10.1002/pip.3638
[22] Chen D, Gao M, Wan Y, et al. Electronic structure of
molybdenum-involved
amorphous silica buffer layer in MoOx/n-Si
heterojunction. Applied Surface Science , 2019;473:20-24.doi:
10.1016/j.apsusc.2018.12.112
[23] Takefumi K, Yutaka H, et al. Effects of annealing temperature
on workfunction of MoOx at
MoOx/SiO2 interface and process-induced
damage in indium tin oxide/MoOx/SiOx/Si
stack. Japanese Journal of Applied Physics 2018;57:076501. doi:
10.7567/JJAP.57.076501
[24] Hatt T, Kluska S, Yamin M, et al. Native Oxide Barrier Layer
for Selective Electroplated Metallization of Silicon Heterojunction
Solar Cells. Sol RRL. 2019;3(6):1900006. doi:
10.1002/solr.201900006
[25] Li F, Zhou Y, et al. Silicon Heterojunction Solar Cells with
MoOx Hole‐Selective Layer by Hot Wire
Oxidation–Sublimation Deposition. Sol RRL . 2020;4(3):1900514.
doi: 10.1002/solr.201900514
[26] Xing C, Gu W, Gao K, et al. Electron-Selective Strontium Oxide
Contact for Crystalline Silicon Solar Cells with High Fill Factor.Sol RRL. 2023;2201100. doi:10.1002/solr.202201100
[27] Wang Q, Zhou Y, Guo W, et al. p-type
c-Si/SnO2/Mg heterojunction solar cells with an induced
inversion layer. Appl Phys Lett . 2021;119:263502. doi:
10.1063/5.0070585
[28] Kobayashi E, Watabe Y, Yamamoto T, et al. Cerium oxide and
hydrogen co-doped indium oxide films for high-efficiency silicon
heterojunction solar cells. Sol Energy Mater Sol Cells.2016;149:75-80. doi: 10.1016/j.solmat.2016.01.005
[29] Tutsch L, Sai H, Matsui T, Bivour M, Hermle M, Koida
T. The sputter deposition of broadband transparent and highly
conductive cerium and hydrogen co-doped indium oxide and its transfer to
silicon heterojunction solar cells. Prog Photovolt Res
Appl . 2021; 29: 835–845. doi: 10.1002/pip.3388
[30] Liu H, Gong Y, Diao H. et al. Comparative study on IWO and ICO
transparent conductive oxide fifilms prepared by reactive plasma
deposition for copper electroplated silicon heterojunction solar cell.J Mater Sci: Mater Electron. 2022;33: 5000–5008. doi:
10.1007/s10854-021-07689-2
[31] Guo S, Gregory G, Gabor A M, et al. Detailed investigation of
TLM contact resistance measurements on crystalline silicon solar cells.Sol Energy , 2017;151: 163-172. doi:
10.1016/j.solener.2017.05.015
[32] R. H. Cox and H. Strack. Ohmic contacts for GaAs devices.Solid State Electron. 1967;10:1213–1218. doi:
10.1016/0038-1101(67)90063-9
[33] Wang W, Lin H, Yang Z, et al. An Expanded Cox and Strack Method
for Precise Extraction of Specific Contact Resistance of Transition
Metal Oxide/n-Silicon Heterojunction. IEEE J. Photovoltaics .2019;9(4):1113-11208. doi: 10.1109/JPHOTOV.2019.2917386
[34] Cao S, Li J, Lin Y, et al. Interfacial Behavior and Stability
Analysis of p-Type Crystalline Silicon Solar Cells Based on
Hole-Selective MoOX/Metal Contacts. Sol RRL .
2019;3: 1900274. doi: 10.1002/solr.201900274
[35] Kumar M, Cho EC, Prodanov MF, Kang C, Srivastava AK, Yi J.
MoOx work function, interface structure, and thermal
stability analysis of ITO/MoOx/a‐Si(i) stacks for hole‐selective silicon
heterojunction solar cells. Appl Surf Sci . 2021;553:149552. doi:
10.1016/j.apsusc. 2021.149552