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Abstract

Smart stormwater systems equipped with real-time controls are transform-
ing urban drainage management by enhancing the flood control and water
treatment potential of previously static infrastructure. Real-time control
of detention basins, for instance, has been shown to improve contaminant
removal by increasing hydraulic retention times while also reducing down-
stream flood risk. However, to date, few studies have explored optimal real-
time control strategies for achieving both water quality and flood control
targets. This study advances a new model-predictive control (MPC) algo-
rithm for stormwater detention ponds that determines the outlet valve control
schedule needed to maximize pollutant removal and minimize flooding using
forecasts of the incoming pollutograph and hydrograph. We illustrate that,
compared to rule-based controls, MPC more effectively prevents overflows,
reduces peak discharges, improves water quality, and adapts to changing hy-
drologic inputs. Moreover, when paired with an online data assimilation
scheme based on Extended Kalman Filtering (EKF), we find that MPC is
robust to uncertainty in both pollutograph forecasts and water quality mea-
surements. By providing an integrated control strategy that optimizes both
water quality and quantity goals while remaining robust to uncertainty in
hydrologic and pollutant dynamics, our study paves the way for real-world
smart stormwater systems that will achieve improved flood and nonpoint
source pollution management.
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1. Introduction

Management of nonpoint source pollutants has long been recognized as
one of the most critical challenges in stormwater engineering (Harrington
et al., [1985; |Patterson et al., 2013; [Hammer| |1992). Today, a majority of wa-
ter bodies in the US are classified by the Environmental Protection Agency
(EPA) as impaired, with the primary drivers of impairment being nonpoint
source pollutants like sediments, nutrients, and sewage (U.S. Environmental
Protection Agency, 2017; Rowny and Stewart, 2012). Stormwater engineers
have traditionally managed these contaminants through the use of stormwa-
ter best management practices (BMPs) like detention basins, which provide
temporary storage of water to reduce peak discharge rates, prevent streambed
erosion, and remove contaminants through sedimentation (Li et al.,[2019; Liu
et al., |2014; Wilson et al., 2015). However, recent research has called into
question the ability of static BMPs to adequately respond to the changing
hydrologic conditions caused by climate change and urbanization (Tirpak
et al., [2021; Hathaway et al.. 2014). On one hand, stormwater ponds must
be designed to prevent flooding during large storm events, which necessi-
tates larger storage volumes and outlet pipes. At the same time, larger
pipes lead to erosive discharges that impact aquatic habitats downstream.
Moreover, given the effect of the first flush—with high levels of pollutants
carried by runoff early in the event—very limited treatment can be achieved
under design practices that prioritize localized flood control by maximizing
conveyance (Middleton and Barrett, 2008). Balancing between conflicting
water quality and flood control objectives with a single static design remains
a fundamental dilemma in urban drainage engineering.

In recent years, smart stormwater systems have emerged as a promising
new approach to urban drainage management that addresses many of the
shortcomings of static BMP design. Drawing on advances in the Internet
of Things, smart stormwater systems use distributed sensors and actuators
to dynamically reconfigure stormwater infrastructure for the purposes of im-
proved flood and pollution control (Kerkez et al., |[2016; |[Bartos et al., [2018).
Real-time control (RTC) of stormwater detention basins using actuated out-
let valves, for instance, increases available storage capacity prior to storm
events, thereby reducing flashy flows downstream and improving sedimenta-
tion of pollutants. Smart stormwater systems have been shown to improve
pollutant removal, mitigate urban flooding, reduce combined sewer overflows,
and drastically reduce the size of stormwater ponds needed to achieve desired



levels of treatment and flood control performance (Muschalla et al., [2014;
Wong and Kerkez, 2018; Mullapudi et al., 2017). Despite the promise for
real-time controls to solve urban flooding and water quality problems, opti-
mal control strategies for stormwater basins are as of yet poorly explored.
In particular, fundamental questions remain concerning (i) how stormwater
ponds should be controlled in real-time to meet both water quality and flood
control objectives, and (ii) how real-time control strategies can be made ro-
bust to the uncertainty inherent in real-world rainfall and pollutant inputs.
Most research on real-time stormwater pond control has focused on water
quantity targets, such minimizing overflows and floods (Wong and Kerkez,
2018), shaving hydraulic peaks (Kearney et al., 2011), or increasing hydraulic
retention time (HRT) in basins (Shishegar et al., 2019a). Though many stud-
ies demonstrate that water quality can be improved by RTC, water quality
is only presented as the result of the control and not as the decision vari-
able (Carpenter et al., 2014). In a few recent studies, control strategies have
explicitly included water quality as a parameter. Sharior et al. (2019) in-
corporate water quality into control rules for an outlet valve based on pond
height and Total Suspended Solids (T'SS) concentration. In this scheme, the
valve remains closed until the pond water level or T'SS concentration reaches
an upper bound, at which time the valve is opened and the pond is drained.
Akin et al. (2022) also integrate real-time turbidity data into control deci-
sions and test their control strategy in a real-world deployment to improve
the quality of efluent (Akin et al., [2022). In addition, Bowes et al. (2022)
propose a deep reinforcement learning-based control strategy for flood miti-
gation and pollutant treatment at the system level (Bowes et al.| |2022).
While previous work shows the power of RTC for improving water quality,
more work is needed to achieve holistic stormwater management strategies
that handle competing water quality and quantity goals under real-world
uncertainty. First, more adaptive alternatives to rule-based control are re-
quired. Predetermined rule-based approaches require pre-knowledge of the
system and trial-and-error tuning to set specific thresholds for control, and
may underperform when novel conditions are encountered. Rule-based con-
trols also struggle to balance between multiple competing objectives, and
have few built-in capabilities for handling uncertainty. In addition, incor-
poration of more dynamic control actions is necessary. Prior work largely
focuses on binary (on/off) control (i.e. totally opened or completely closed
gates), which limits the range of possible outcomes and may even may cause
oscillations in the gate position near thresholds, leading to increased oper-



ational cost and wear-and-tear (Gaborit et al., 2013). Most importantly,
reactive control systems that base control actions only on current and past
sensor observations must to be upgraded to incorporate predictions. Pre-
dictive control based on weather forecasts has been shown to outperform
reactive control for flood attenuation because it enables current control ac-
tions to be adjusted to reflect future inputs and thus prevent stormwater
ponds from overflowing (Shishegar et al., |2019b; |Gaborit et al.; |2016; Xu
et al., 2020). However, taking into account pollutant dynamics in the control
of stormwater infrastructure is a difficult task given the uncertainty in water
quality predictions.

Model predictive control (MPC) provides a method to overcome the afore-
mentioned limitations, especially under uncertainty in rainfall and pollutant
forecasts. MPC is an optimization-based method that has been successfully
implemented in many industries—including chemical plants, robot control,
and autonomous vehicles—as an effective tool to drive future optimal con-
trol strategies from a system model and forecasts of external inputs with
constraints on controls and states (Camacho and Albaj [2013). For a given
forecast window, MPC uses the system’s current state as the initial state
and solves a finite horizon open-loop optimal control problem to determine
the optimal control action at each time step. This optimization yields an
optimal control sequence, and only the first control in this sequence is ap-
plied to the system (Mayne et al., 2000). This process is repeated as the
prediction horizon recedes. MPC’s receding horizon strategy confers on it
an inherent robustness to uncertainty (De Nicolao et al., [1996; Magni and
Sepulchre, 1997). Within the field of water resources engineering, MPC has
been mainly applied in urban drainage systems, especially for CSO control
(Cembrano et al.| 2004; Ocampo-Martinez et al., [2013; |[Lund et al., |2018;
Joseph-Duran et al., 2015; |[Puig et al., [2009; Sun et al., 2020). However,
due to the nonlinearity of the dynamics of water quantity and quality, most
studies depend on approximate linear models (Sun et al., 2020, 2021) or
HRT as a surrogate for water quality (Shishegar et al.| 2019b). We consider
a nonlinear model predictive control (NMPC) strategy to take into account
the nonlinearity of the combined hydraulic and quality models. In addition
to the advantages of linear MPC, such as enabling constraints on decision
variables, NMPC can compute optimal control moves under nonlinear costs
and constraints.

To that end, this study develops an optimal control strategy for a stormwa-
ter basin to maximize its flood and pollution control considering the nonlin-
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earity of water system dynamics. Control is implemented using NMPC based
on a mass balance and continuously stirred tank reactor (CSTR) representa-
tion. To account for real-world uncertainty in the pollutograph forecast, an
Extended Kalman Filter is implemented to estimate the contaminant con-
centration in the pond at each time step by assimilating simulated turbidity
sensor data into the model. The proposed optimization approach offers an
adaptable way to minimize floods and maximize runoff treatment without
building additional infrastructure. The fundamental contributions of this
paper are the following:

e We derive a new methodology for optimal control of stormwater deten-
tion ponds that explicitly incorporates water quality parameters into
the control objective and strategy.

e We show that when combined with data assimilation, the control strat-
egy remains robust to uncertainty in both the pollutograph forecasts
and sensor measurements.

e We demonstrate that, as compared to rule-based control, the MPC-
based control strategy is more successful at (i) preventing overflows,
(ii) slowing and reducing the peak outflow, and (iii) improving water
quality.

2. Material and methods

In this section, we derive, implement, and evaluate a model predictive con-
trol algorithm for improving water quality in stormwater detention basins.
First, a physically-based model is derived to simulate the hydraulics and con-
taminant dynamics within a real-world stormwater pond. Drawing on this
model, a model predictive control algorithm is developed to determine the
optimal outlet valve control strategy needed to reduce downstream pollutant
loads and reduce erosion at the outlet while at the same time preventing
overflows within the pond. To account for uncertainty in the pollutograph
forecast, the control strategy is combined with an Extended Kalman Fil-
ter, which adaptively estimates the internal contaminant concentration in
the pond based on simulated turbidity sensor data. Finally, the MPC-based
control strategy is evaluated against two rule-based control strategies, ac-
counting for uncertainty in both the pollutograph forecast and the measured
contaminant concentration in the pond.



2.1. Study area

Our study focuses on an urban watershed located in Ann Arbor, Michigan
(Fig. [1). This watershed and its stormwater infrastructure are the subject
of a long-term monitoring project (Bartos et al., 2018), and the catchment
has been previously investigated in multiple studies on real-time sensing and
control of urban drainage infrastructure (Wong and Kerkez, 2018; Bartos and|
. The watershed is approximately 4 km? in area and consists
of multiple stormwater basins that receive runoff from mostly urbanized,
impervious sub-catchments. We concentrate specifically on the central basin,
which is the largest basin in the network and the location where the two major
tributaries merge.
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Figure 1: Overview of study area and stormwater system with subcatchments and network
topology of the case study.

2.2. Hydraulic model

A hydraulic model is derived to simulate the dynamics of the water within
the detention pond under free-flowing inlet conditions and orifice control at



the outlet. The hydraulic model for the stormwater pond is based on a mass
balance, where the change in storage is equal to the difference between inflow
(¢in) and outflow (geu:). The surface area of the basin at each time step (A)
is computed using the storage curve based on the basin water depth (h). It
is assumed that precipitation, evaporation, and infiltration within the basin
are negligible.

dh
A— = in — Qou 1
dt q Qout (1)
At the outlet of the pond, a controllable orifice is installed to regulate the
outflow rate, such that ¢, = 0C3A4v/2gh; where 0 is the orifice opening
ratio (from 0 to 1), Cy is the orifice discharge coefficient, A, is the orifice
area, and ¢ is the gravitational acceleration.

2.3. Water quality model

Drawing on the hydraulic model developed in the previous section, a cou-
pled water quality model is derived to model contaminant fate and transport
within the pond. The water quality model, formulated here for TSS, can be
expressed as a pollutant mass balance considering sedimentation as a first-
order reaction (Krajewski et al., 2017). It is assumed that the pond itself
behaves as a CSTR, which means the efluent concentration is equal to the
concentration in the pond:

VO U = Gt — Ot — ROV 2)
where C' is the concentration in the efluent and in the pond, and k is the
first-order rate constant. The treatment constant, &, of the stormwater pond
is assumed to be 90% as specified in the Storm Water Management Guide-
book of the Michigan Department of Environmental Quality Land and Water
Management Division (Menerey, 1999).

The catchment’s runoff quantity and TSS concentration are simulated
using a pre-calibrated SWMM model with build-up and wash-off processes.
The build-up of TSS on subcatchments defined as:

B = (C)(1 — e %) (3)

where (' is the maximum build-up possible (mass per unit area), C5 is the
build-up rate constant, and t,; is antecedent dry days.
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The subcatchment wash-off function is based on the event mean concen-
tration (EMC):

W = EMC (4)

where EMC refers to a flow-weighted average concentration during a rainfall-
runoff event. The EMC is calculated by dividing the entire mass of the
pollutant load by the total volume of the runoff (McCarthy et al., [2018).

Parameters for the build-up/washoff model are taken from a calibrated
model described in a previous study (Wong and Kerkez, 2018; (CDM Smith,
2015). Parameters for each land use are listed in Table

Build-up Wash-off
Cy Oy EMC
Commercial 12 5 25
Industrial 27 0.5 21
Residential 21 0.3 29

Land uses

Table 1: Parameters for build-up and wash-off used in the SWMM model.

2.4. Model Predictive Control

Using the models described in the previous section, a model predictive
control algorithm is derived to determine the optimal valve control strategy
needed to minimize the total pollutant mass delivered downstream while at
the same time reducing peak outflow and preventing the pond from over-
flowing. In general terms, given a dynamical model of the detention pond
along with forecasts of the incoming hydrograph and influent concentration,
the MPC algorithm determines the valve control strategy needed to optimize
an objective function over a future prediction horizon. At each control time
step, the optimal control action is determined over the prediction horizon
(here T = 24 hours) based on the current state of the system and future
inputs into the system. Once the optimal control action at the current time
step is applied, the prediction and optimal control computations are recal-
culated recursively as the prediction horizon moves one step forward. The



MPC optimization problem is defined formally as follows:

min J(x,u,d)

s.t. (T +1) = f(x(r),u(r),d(r)) (5)
z(r)eX, T=t,...,t+T
uw(r)yeld, Tv=t,....,t+T -1
z(0) = xg

where J is the objective function, xz(7) € R" is the states of the system at
time step 7, which represent both the water level and T'SS concentration of
the pond; u € R™ is the vector of manipulated variables, which represent
the controlled valve opening ratio; d € R™ is the sequence of disturbances
including incoming runoff and T'SS concentration of the runoff. The function
f(-) denotes the system dynamics which are Eqs. and . X and U are
linear constraints in the states and the inputs. Here, physical constraints are
imposed on both the maximum allowable water height (0 < h < hyay), and
the valve opening ratio (0 <6 < 1).

In this study, we formulate the objective function to enhance the two
main functions of stormwater ponds: (i) slowing and reducing stormwater
discharges, and (ii) lowering pollutant loads. The objective function of the
NMPC optimization is formulated as follows:

t+T t+T

T = w1 Y Gout(T) = Goua) I* + w2 Y 11e(T)dous (7| + wsl|h(r + T)|* (6)

where the constant parameter g,,, is the average outflow over the prediction
horizon, w1y, ws, w3 are tuning weights that reflect the priority among con-
flicting objectives and can be adjusted to meet the importance set by the
system operators.

The first objective term minimizes the peak outflow rate from the pond.
The peak outflow is reduced by minimizing the difference between the out-
flow and the average outflow over the prediction horizon. The second term
minimizes the cumulative pollutant load over the horizon. The last term
minimizes the water level at the end of the horizon, which provides a driving
force to encourage the pond to fully drain.

2.5. Data assimilation with Extended Kalman Filtering
The MPC control strategy described in the previous section is combined
with an Extended Kalman Filter to estimate the contaminant concentra-



tion within the pond and ensure that control remains robust in the face of
measurement and forecast uncertainty in real-world applications. Effective
control of water quality requires knowledge of the contaminant concentration
within the stormwater pond. In real-world situations, however, this contami-
nant concentration is difficult to know with certainty. Pollutograph forecasts
based on build-up and wash-off models are highly uncertain. Turbidity sen-
sors deployed in the stormwater pond may provide real-time estimates of T'SS
concentration, but these estimates are based on site-specific correlations and
are thus also uncertain. To overcome these problems and enable real-world
implementation, we derive a state estimation scheme that uses an Extended
Kalman Filter to continuously estimate the TSS concentration within the
pond from noisy turbidity sensor data.

The Extended Kalman Filter (EKF) recursively estimates the T'SS con-
centration within the pond by combining estimates from a process model
together with estimates obtained from sensor data. This procedure ensures
that the process model stays ‘up-to-date’ with the true behavior of the sys-
tem. The EKF estimates the state of a nonlinear system based on a suc-
cessive linearization of the system with respect to previous estimates of the
state (Julier and Uhlmann, 2004; Lee and Ricker, 1994). For sensor fusion,
the Extended Kalman filter has two stages: prediction and update. The sys-
tem model, Eqs. , , and the observation model can be expressed as the
difference equation with additive white process noise, wy, and measurement
noise, vg:

Ty = f(@n, ug) + wy (7)
yr = h(zy) + vy, (8)

The filter is initialized with the initial state 2oy = E[zo] and covariance
Pojo = E[(zg — &0)(wo — Z9)7]. Based on the previous state estimate @y,
its covariance matrix Py, and the input u;, we compute the estimate of the
new state Tpyqx and its covariance matrix Py, respectively:

f%k+1|k = f(fkuc,uk) (9>
Peiape = FuPur B + Qu (10)
where the Jacobian matrix Fj, = % g and @)y is the covariance matrix

of the process noise.
Once a sensor measurement is obtained, it is used to adjust the latest
estimate of the system state. First, we compute the measurement residual g
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and its covariance matrix S:

Ukt1 = Y1 — P(Tryajr) (11)
Ski1 = Hip1 Py Hiy + Ri (12)

where the Jacobian matrix Hy,, = oh and Ry, is the covariance matrix

Bx }jk-l»l\k
of the measurement noise.

Then, we can compute the Kalman gain:
_ T o-1
Kir1 = PryajpH 1550 (13)

Using the Kalman gain, we can update the state estimate and its covari-
ance matrix, respectively:

Thy1kr1 = Thrak T Krr1Urs1 (14)
Priakrr = [ — Kpp1 Hya] Prgagr (15)

This procedure yields near-optimal estimates of the TSS concentration
in the pond, both of which are subsequently used as inputs to the MPC
algorithm. Together, these two steps form a combined estimation and control
scheme (MPC-EKF).

2.6. Control strategies

This study compares three control strategies, including two rule-based
control strategies, and a MPC-based approach. Here, we adopt two rule-
based control schemes; one is outflow regulated control (RBC-Outflow) and
the other is concentration based control (RBC-Conc). RBC-Outflow is a
control algorithm that keeps the valve closed and only opens it if the wa-
ter height exceeds the maximum allowable water level to prevent the pond
from overflowing. While discharging water, the valve is adjusted to ensure
that outflows do not exceed the desired outflow rate in order to prevent
downstream erosion (Mullapudi et al., 2017). RBC-Conc is based on the
pollutant concentration. Under this scheme, the valve is closed to retain
stormwater longer and allow for additional treatment by settling if the con-
centration is above a threshold. Otherwise, the valve is opened, allowing
the water to drain. RBC-Conc also prevents the pond from overflowing by
opening the valve when the maximum depth is reached (Sharior et al., |2019;
Bowes et al., 2022).
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12



In addition to the rule-based control strategies, we also present three dif-
ferent model predictive control schemes. The first two MPC cases are based
on different influent water quality information. MPC-True determines its
control actions under perfect influent forecasts, i.e. the MPC controller has
access to perfect information about incoming pollutant loads. In contrast,
MPC-False simulates control actions under an inaccurate forecast, i.e. the
MPC controller does not have access to perfect information about incoming
pollutant loads. Finally, MPC-EKF determines its control actions under
inaccurate influent forecasts, but continuously calibrates its process model
by assimilating sensor measurements (i.e. the true behavior of the pond)
at each time step using EKF. Note that MPC-EKF represents our primary
result, while MPC-True and MPC-False are presented for reference. The im-
plementation of these strategies is discussed in further detail in the following
section.

2.7. Implementation and evaluation of MPC with EKF

To test the viability of MPC under real-world uncertainty, we assess
its performance under three uncertainty scenarios corresponding to a per-
fect pollutograph forecast (MPC-True), an inaccurate pollutograph forecast
(MPC-False), and an inaccurate pollutograph forecast with real-time data
assimilation (MPC-EKF), as described in the previous section. Briefly, this
procedure uses a pollutograph forecast based on a ‘de-calibrated’” model run,
along with artificial sensor data based on a ‘ground-truth’ model run with
added noise to simulate how the MPC-EKF strategy will perform in practice
when the forecast model is imperfect and the sensor data is noisy.

To generate a ‘de-calibrated’ pollutograph forecast that either overesti-
mates or underestimates T'SS runoff concentrations from the sub-catchments,
we use constant EMC values that deviate from the true dynamics. Using
EMC values has two main advantages: (1) they have simple dynamics com-
pared to build-up and wash-off models, and (2) EMC monitoring data are
available for BMPs nationally (Clary et al., 2002). Then, we run the MPC
for the first control time step under the ‘de-calibrated’ forecast. In parallel,
we also simulate the system under a ‘ground truth’ pollutograph forecast,
which yields the true behavior of the pond. The MPC-True strategy com-
putes its control action sequence using the ground-truth pollutograph fore-
cast. The MPC-False strategy computes its control action sequence using the
de-calibrated forecast. The MPC-EKF strategy also uses the de-calibrated
forecast, but continuously updates the estimated contaminant concentration
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in the pond from synthetic turbidity sensor data. Synthetic sensor data is
generated by adding random noise to the output of this ‘ground truth’ simu-
lation. Given the accuracy of commercial turbidity meters, the measurement
sensor noise is assumed to be about £2% of the reading (YSI Inc., 2022).
This sensor data is then fused into the system using EKF, updating the
model’s states to rectify disparities between the forecast and reality. This
procedure repeats recursively at each optimization time step based on the
control action from the false forecast, and filtered measurements from the
true forecast. This procedure shows how our framework performs under the
uncertainty in water quality predictions (Fig. .

2.8. Performance evaluation metrics

The metrics used in this paper to evaluate the control performance are (a)
overflow volume, (b) peak outflow rate, (c) downstream T'SS load, (d) control
effort, and (e) outflow flashiness. These metrics are defined mathematically

in Table [2|

Performance criteria  Quantitative performance measure

Overflow > A(hmax) - max(0, b — Rpay)
Peak outflow max(qout)
Cumulative TSS load Y(C - gout)
Control effort R
Outflow flashiness > N Gout — Tous)|l?

Table 2: Performance evaluation metrics and quantitative performance measures. The
italic bold font is used for vectors, scalars are denoted by lowercase italic letters.

3. Results

We evaluate the performance of the MPC algorithm in terms of preventing
overflow, reducing peak outflow, and minimizing pollutant loads. Compared
to conventional rule-based controls, MPC shows better performance in not
only preventing the risk of overflows but also in reducing flashy outflows and
pollutant loads. Crucially, we show that data fusion via EKF enables MPC
to achieve these goals under measurement noise and uncertainty in influent
quality predictions that are characteristic of real-world conditions.

14



[—Passive =—MPC — - RBC-Conc - RBC-Outflow]
05

4
. (@) NI (d)
a3 7
E /5 04
s2 25 %
3 —
E1 £ @
£ s 2 03
0 5 £
(] H
330 <15 o
E" 'g £02
o
[2]
4 0.1
210 05
=]
£

G o
o
o

N
o
S
S

n
=]
o
)

o
o
)

=)

o
~
ummulative Load (kg)

Valve opening ratio (%)

TSS concentration (mg/L)
o
N

o

N L/

0 — S —— 0 L I 0
0 24 48 72 96 120 144 168 192 0 24 48 72 96 120 144 168 192 0 24 48 72 96 120 144 168 192
Time (h)

Figure 3: Pond dynamics for the passive system (black), RBC-Conc (yellow), RBC-
Outflow (red), MPC (blue) cases, showing (a) inflow, (b) inflow concentration, (c¢) pond
water height, (d) outflow, (e) TSS concentration in the pond, (f) valve opening ratio, and
(g) cumulative TSS loads exiting the pond.

3.1. Control performance

Fig. |3| shows how the passive system, RBCs, and MPC respond to a 10-
year, 24-hr design storm event. Compared to the passive system, all three
real-time control strategies utilize the pond’s capacity more effectively by
allowing the pond to fill to its maximum height. However, rule-based controls
struggle to reduce the outflow rate and minimize valve control effort.

These limitations are clear for the case of concentration-based control
(RBC-Conc). Because the valve is opened above the concentration thresh-
old and closed below, the valve oscillates rapdily between the closed and
open positions, with the potential to cause wear-and-tear under real-world
operations (Fig. [3f). Moreover, when the valve is opened at a high water
level, water is released at a high flow rate—higher even than in the passive
system—because the outflow rate is proportional to the water level (Fig. )
While RBC-Conc achieves lower TSS loads downstream compared to other
control strategies, this performance depends on the concentration threshold.
In this example, the threshold is set to achieve a 90% reduction in influ-
ent EMC. However, a higher threshold may not allow sufficient treatment,
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whereas a lower threshold may maximize treatment but at the same time
increase the risk of overflow.

In the case of RBC-Outflow, water is released at a constant rate when the
water level reaches a user-specified limit. As such, the high outflow rate seen
in RBC-Conc is prevented. However, even in this scenario, the issue of how
to set the flow rate remains an open question. For the experiment shown in
Fig. B, the specified outflow rate is set to the same value as the maximum
flow rate of MPC. If the maximum outflow rate is set to a smaller value, T'SS
removal may be improved due to a longer retention time. However, at the
same time, this strategy prevents the pond from draining quickly, making it
vulnerable to future stormwater events and flooding. As with RBC-Conc,
RBC-Outflow may lead to significant flooding due to overflow of the pond.

MPC simultaneously reduces the peak flow and TSS load, while also pre-
venting overflow. Dynamic control by MPC results in a TSS load reduction of
86.3% (from 450 kg to 50 kg) as compared to the passive system. Intuitively,
MPC improves pollutant removal by releasing more flow when the pond’s
TSS concentration is low and decreasing the discharge when the concentra-
tion is high. Additionally, MPC shows a 30% reduction in the magnitude of
peak flow from 0.34 m3/s to 0.24 m3/s. The outflow of stormwater volume
is efficiently spread across the event duration and outside of the rainfall time
window according to the dynamically controlled outlet valve, resulting in a
longer detention time and further treated pollutants in the effluent.

A comparison of relative performance for each stormwater control strategy
including the passive system is shown in Fig. [Th. Each control strategy is
evaluated in terms of the following metrics: (1) overflow volume, (2) peak
outflow rate, (3) downstream TSS load, (4) control effort, and (5) outflow
flashiness. All values are calculated as a relative percentage based on the
maximum value for each metric. Note that a smaller area represents better
performance.

Only MPC outperforms in every aspect compared to the passive system
with minimum control effort. Even though RBC-Conc shows the highest per-
formance in TSS load reduction, this outcome comes at the cost of increasing
peak outflow and control effort. On the other hand, RBC-Outflow shows bet-
ter performance in peak flow and control by compensating the detention time
and downstream TSS load, but performs poorly at reducing T'SS load. Unlike
the rule-based control strategies, MPC is able to effectively balance between
multiple competing objectives.
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3.2. MPC-EKF under uncertainty

To assess its robustness to uncertainty, the MPC-EKF strategy is tested
under forecast and measurement uncertainty—both of which are character-
istic of real-world stormwater control applications. Fig. M| shows the per-
formance of MPC-EKF under the uncertainty of both noisy measurements
and imperfect forecasts—with influent concentration predicted as a constant
value (18.8mg/L). Grey lines represent 100 trials with measurement noise.
Even with poor predictions of influent TSS concentrations and the introduc-
tion of measurement noise, the performance of MPC-EKF remains robust
by fusing the sensor measurements and reorganizing the control strategy at
each time step.
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Figure 4: Pond dynamics for MPC-True based on true pollutograph (blue), MPC-False
based on false pollutograph (green), MPC-EKF based on false pollutograph but fused
sensor data (sky blue), and MPC-EKF with measurement noise (grey).

Although EMC is an important analytical parameter for rainfall-runoff
events and can be used to assess water quality impacts from stormwater
runoff, it is still based on post-hoc analysis from previous rainfall events.
Therefore, there is no guarantee that the same EMC will hold true for every
different rainfall event. MPC-EKF is thus tested under different EMC levels.
A total of eight scenarios are considered, each with the same conditions as in
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the previous example (Fig. , but with EMCs between 25% and 200% of the
previous case. As shown in Fig. 5| no matter what level of EMC is predicted,
the pond can be properly controlled through real-time data assimilation.
In the beginning, the valve control trajectories of each MPC-EKF are the
same as the corresponding MPCs since both have the same predictions. As
MPC-EKF assimilates the sensor measurements at each time step, however,
the valve control trajectories evolve to be similar to the original EMC level
(100%) (Fig. [Bb). This result is more explicit in the case of 25% EMC.
In this case, the valve opening ratio starts near the level of 0.06 resulting
from the predictied concentration, but converges to the level of the 100%
EMC case through online state estimation. In other words, real-time data
assimilation allows for successful control even with faulty predictions, but
faster convergence and better performance can be expected with more precise
predictions.
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Figure 5: Pond dynamics under imperfect influent T'SS concentrations as various constant
EMCs scenarios. Dashed lines represent the system performance of MPC without online
state estimation and solid lines show the performance of MPC-EKF. Each color corre-
sponds to different EMC scenarios.

3.3. Performance under real-world conditions: a case study

We also apply the MPC-EKF strategy to a real-world storm event recorded
between September 6 and September 7, 2021. Precipitation intensity data
are collected from a weather station from Weather Underground in our study
catchment. This rain event is considered (i) in order to see the behavior of the
pond under real-world weather events, and (ii) to evaluate the performance
under the back-to-back rainfall events.

Fig. [0] illustrates the pond dynamics for the three control scenarios from
the real-world rainfall events, and Table |3| provides a summary of the perfor-
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Figure 6: Pond dynamics simulated from September 6 to September 7, 2021. It is assumed
that we have imperfect influent TSS concentrations as a constant EMC (12mg/L).

mance for each case. The control strategies and thresholds for RBCs are the
same as the previous cases.

Compared to the 10-year, 24-hr design storm event, Fig. [6] clearly shows
the drawbacks of reactive control. In the case of rule-based controls, flooding
cannot be avoided because the control strategy is reactive, and the valve
cannot pre-emptively release water to make room for the anticipated inflow.
During the first rainfall event, both RBCs close the valve because the water
level in the pond has not reached the threshold (Fig. [6k). However, once the

Passive MPC-EKF RTC-Conc RTC-Outflow

Overflow volume (m?) 0 0 2204.2 5994.5
Peak Outflow (m3/s)  0.35 0.25 0.47 0.25
TSS load (kg) 6317 1388 272.9 1434
Control effort 0 0.99 24 1.22
Outflow flashiness 10.15 5.03 16.47 9.15

Table 3: Performance comparisons among passive, MPC-EKF, and RBC cases for overflow,
peak outflow, T'SS load, control effort, and outflow flashiness.
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second back-to-back rainfall event starts, the water depth reaches the limit
and starts to drain water. However, this control action comes too late to
handle the inflow, so the water depth exceeds the limit, resulting in overflow
and system failure. RBC-Outflow is much worse; a larger amount of overflow
occurs because the flow rate that can be discharged is limited (Fig. [6{).
Such unwanted spills and control failures also lead to poorer results than the
previous design storm event in terms of TSS attenuation, because overflow
allows the spill volume to remain untreated (Fig. [6f).

In contrast, MPC-EKF adapts and copes with various hydrological inputs
using forecasts. Here, even though the height does not reach the maximum
height during the first rainfall event, MPC-EKF decides to intentionally dis-
charge water to secure capacity to cope with the second rainfall event. Even
when discharge is unavoidable, the amount of discharge is increased when
the concentration is low so that the downstream load is minimized. When
the height limit is reached, the valve is slowly opened to release water while
maximizing the benefits of water treatment. In this way, MPC-EKF can
adaptively maximize the capacity of the pond for both flood and pollution
control.

(a) (b)

Peak outflow Peak outflow

TSS Load TSS Load
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Overflow Dverflow

Control effort Control effort

—&— Passive

—8— MPC
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Figure 7: Relative performance (%) comparisons among passive, RBC cases, and MPC for
overflow, peak outflow, TSS load, control effort, and outflow flashiness under (a) 10-year,
24-hr design storm event and (b) real-world storm event recorded between September 6
and September 7, 2021.

Fig. [7] summarizes the performance of the pond under (a) design storms
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and (b) a continuous real-world rainfall event. MPC shows the most bal-
anced performance in both cases, while the RBCs result in large outflows
and struggle to balance between multiple objectives. This result indicates
that rule-based control is disadvantageous in cases where multiple competing
benefits are required, while MPC provides a more flexible framework that can
be adapted to meet multiple stormwater objectives.

4. Discussion

With climate change, urbanization, population growth, and aging infras-
tructure placing increasing stresses on urban water systems, deployment of
real-time stormwater control systems will help to manage flooding and pol-
lutant loads while at the same time reducing the need for new stormwater
infrastructure expansion. The model predictive control and real-time data
assimilation strategy developed in this study provides an adaptive measure
to substantially enhance the performance of existing stormwater detention
basins through real-time control retrofits. By determining the outlet valve
control strategy that optimizes both water quality and quantity goals over
a receding time horizon, our approach provides an explicit and adaptable
framework that attenuates the total peak flow to the stream and improves
water quality through sedimentation. In addition, our approach handles
both sensor measurement error and pollutant forecast uncertainty by fusing
real-time turbidity data into the process model, thereby demonstrating ap-
plicability to real-world stormwater systems where both model and forecast
uncertainty are large.

The results of this study show that model predictive control substantially
outperforms rule-based control strategies at meeting both water quality and
water quantity objectives. Many existing studies focus on rule-based control
(either reactive or predictive) which requires operators to establish specific
desired thresholds on states such as the pond depth or contaminant con-
centration. The main drawbacks of RBC in real-world settings with diverse
inputs are that (i) good thresholds are specifically tuned to one particular
storm and study site and thus fail to generalize, and (ii) RBC struggles
to balance between multiple competing objectives. While avoiding building
complicated if-else conditions for multiple possible scenarios and objectives,
our approach provides a simple control logic and explicit control goal, but at
the same time remains adaptable to diverse hydrologic scenarios and regula-
tory goals.
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This study also shows that when paired with state estimation techniques
(i.e. EKF'), model predictive control is robust to uncertainty in pollutant fore-
casts. This finding is significant, because it shows that our technique can be
readily applied to real-world stormwater systems where pollutant dynamics
are poorly characterized. Given the uncertainties inherent in runoff pollutant
dynamics, precise forecasts of future pollutant inflows are difficult to achieve
in practice. However, the findings of this study show that when combined
with real-time sensor data (i.e. turbidity measurements within a stormwater
pond), our MPC-EKF approach is able to achieve near-optimal flood reduc-
tion and pollutant removal benefits, even when initial pollutograph forecasts
are inaccurate. This result highlights that combining real-time control with
state estimation significantly enhances the viability of real-time stormwater
control strategies under real-world conditions.

4.1. Towards real-world implementation

While this study shows the potential for model predictive control to im-
prove stormwater quality, several research questions must be addressed to
enable application to real-world stormwater systems. In terms of scalability,
future work should consider control of stormwater facilities at the watershed
scale. Optimization of control measures at the local level can yield optimal
performance for individual sites, but does not guarantee maximum perfor-
mance at the system level. Hence, future work should extend the framework
described in this paper to the watershed scale to provide a global solution
for stormwater management. Systematic control of distributed stormwater
facilities can coordinate individual elements to achieve city-scale benefits.
Similarly, future research should investigate how our method can be inte-
grated into a real-time digital twin stormwater model, which can address
the real-world problem of sparsely spaced sensors by estimating the states
for ungauged locations, to achieve system-scale control (Bartos and Kerkez,
2021). Furthermore, investigating sensor placement algorithms may be re-
quired to decide how many sensors are necessary and where they should be
positioned to enhance the performance of stormwater systems (Eulogi et al.,
2021; Bartos and Kerkez, 2019).

Another natural extension of our study is the development of control
strategies for the removal of different pollutants. This work focuses on TSS
as the contaminant of interest. Thus, the stormwater pond is modeled as a
continuously stirred tank reactor with first-order reaction kinetics. However,
contaminant removal is often subject to much more complicated biological
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and physicochemical processes. Recent studies have developed a real-time
toolkit for complex water quality modeling (Mason et al., [2021) and ex-
plored nutrient dynamics in stormwater treatment (Wijesiri et al., [2022; [Ma-
son et al., 2022). Such approaches should be incorporated into our control
framework, thereby enabling enhanced attenuation and treatment of pollu-
tants like nutrients, microbes, metals, as well as contaminants of emerging
concern like microplastics. Such a contribution will enable more complete
smart stormwater management by integrating the fields of control theory,
hydrology, and aquatic chemistry.

In terms of reliability, uncertainty in weather forecasts should be exam-
ined in future work. While uncertainty in water quality measurements and
predictions were considered, our approach assumed full knowledge of hydro-
logic states, mainly to maintain water mass balance to accurately compare
the pollutant load and examine the effect of water quality variable for each
scenario. However, in practice, weather predictions are subject to signifi-
cant uncertainty, which might cause adverse impacts like overflows if not
accounted for. Thus, the impacts of incomplete knowledge and the resulting
compensation of the performance remain to be investigated. Future work
may consider the uncertainty in weather forecasts using a robust model pre-
dictive control approach (Shang et al., 2019), or a hybrid Markov decision
process (Goorden et al., 2021).

5. Conclusion

In this study, we develop a novel approach for active management of
stormwater ponds that combines model predictive control with online data
assimilation to mitigate flooding and improve water quality. Our approach
provides an optimal valve control strategy based on nonlinear model predic-
tive control with a receding horizon window along with an extended Kalman
filtering process that enables the assimilation of real-time turbidity sensor
data. The resulting model predictive control algorithm substantially outper-
forms existing rule-based control schemes at reducing pollutant outflows, lim-
iting erosion, and preventing flooding. This study is the first to integrate wa-
ter quality parameters explicitly into the control objective function and does
not require specification of site-specific control rules or thresholds. Moreover,
by integrating real-time data, our approach shows strong and stable perfor-
mance even under noisy sensor measurements and imperfect knowledge of
influent pollutant dynamics. These features make our methodology readily
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applicable to real-world stormwater ponds without the need for extensive
model or rule calibration. Dynamically controlled stormwater ponds with
MPC-EKF will facilitate environmental restoration, reduce urban flooding,
and enable more sustainable and adaptive urban stormwater management
for smarter future cities.
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