References
[1] Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I., Koonin, E. V., A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 2006, 1 , 7.
[2] Jansen, R., Embden, J. D., Gaastra, W., Schouls, L. M., Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 2002, 43 , 1565-1575.
[3] Bolotin, A., Quinquis, B., Sorokin, A., Ehrlich, S. D., Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading) 2005,151 , 2551-2561.
[4] Pourcel, C., Salvignol, G., Vergnaud, G., CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology (Reading) 2005, 151 , 653-663.
[5] Khanzadi, M. N., Khan, A. A., CRISPR/Cas9: Nature’s gift to prokaryotes and an auspicious tool in genome editing. J Basic Microbiol 2020, 60 , 91-102.
[6] Kumar, M., Maiti, S., Chakraborty, D., Capturing nucleic acid variants with precision using CRISPR diagnostics. Biosens Bioelectron 2022, 217 , 114712.
[7] Salman, A., Kantor, A., McClements, M. E., Marfany, G., et al. , Non-Viral Delivery of CRISPR/Cas Cargo to the Retina Using Nanoparticles: Current Possibilities, Challenges, and Limitations.Pharmaceutics 2022, 14 .
[8] Suh, S., Choi, E. H., Raguram, A., Liu, D. R., Palczewski, K., Precision genome editing in the eye. Proceedings of the National Academy of Sciences of the United States of America 2022, 119 , e2210104119.
[9] Zhang, X., Tian, Y., Xu, L., Fan, Z., et al. , CRISPR/Cas13-assisted hepatitis B virus covalently closed circular DNA detection. Hepatol Int 2022, 16 , 306-315.
[10] Jinek, M., East, A., Cheng, A., Lin, S., et al. , RNA-programmed genome editing in human cells. Elife 2013,2 , e00471.
[11] Haapaniemi, E., Botla, S., Persson, J., Schmierer, B., Taipale, J., CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nature Medicine 2018, 24 , 927-930.
[12] Jackson, A. L., Linsley, P. S., Noise amidst the silence: off-target effects of siRNAs? Trends in Genetics 2004, 20 , 521-524.
[13] Cox, D. B. T., Gootenberg, J. S., Abudayyeh, O. O., Franklin, B., et al. , RNA editing with CRISPR-Cas13. Science 2017,358 , 1019-1027.
[14] Abudayyeh, O. O., Gootenberg, J. S., Essletzbichler, P., Han, S., et al. , RNA targeting with CRISPR–Cas13. Nature 2017,550 , 280-284.
[15] Abudayyeh, O. O., Gootenberg, J. S., Konermann, S., Joung, J., et al. , C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016, 353 , aaf5573.
[16] Konermann, S., Lotfy, P., Brideau, N. J., Oki, J., et al. , Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell 2018, 173 , 665-676.e614.
[17] Koonin, E. V., Makarova, K. S., Zhang, F., Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology 2017, 37 , 67-78.
[18] Shmakov, S., Smargon, A., Scott, D., Cox, D., et al. , Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 2017, 15 , 169-182.
[19] Smargon, A. A., Cox, D. B. T., Pyzocha, N. K., Zheng, K., et al. , Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28.Molecular Cell 2017, 65 , 618-630.e617.
[20] Zhang, B., Ye, Y., Ye, W., Perčulija, V., et al. , Two HEPN domains dictate CRISPR RNA maturation and target cleavage in Cas13d. Nature Communications 2019, 10 , 2544.
[21] Yan, W. X., Chong, S., Zhang, H., Makarova, K. S., et al. , Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein.Mol Cell 2018, 70 , 327-339 e325.
[22] O’Connell, M. R., Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR–Cas Systems. Journal of Molecular Biology 2019, 431 , 66-87.
[23] Zhang, C., Konermann, S., Brideau, N. J., Lotfy, P., et al. , Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d. Cell 2018, 175 , 212-223 e217.
[24] Mahas, A., Aman, R., Mahfouz, M., CRISPR-Cas13d mediates robust RNA virus interference in plants. Genome Biology 2019, 20 .
[25] Kushawah, G., Abugattas-Nuñez del Prado, J., Martinez-Morales, J. R., DeVore, M., et al. , 2020.
[26] Özcan, A., Krajeski, R., Ioannidi, E., Lee, B., et al. , Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature 2021, 597 , 720-725.
[27] Sun, R., Brogan, D., Buchman, A., Yang, T., Akbari, O. S., Ubiquitous and Tissue-specific RNA Targeting in Drosophila Melanogaster using CRISPR/CasRx. J Vis Exp 2021.
[28] Yang, L. Z., Wang, Y., Li, S. Q., Yao, R. W., et al. , Dynamic Imaging of RNA in Living Cells by CRISPR-Cas13 Systems.Mol Cell 2019, 76 , 981-997.e987.
[29] Li, J., Chen, Z., Chen, F., Xie, G., et al. , Targeted mRNA demethylation using an engineered dCas13b-ALKBH5 fusion protein.Nucleic Acids Res 2020, 48 , 5684-5694.
[30] Wilson, C., Chen, P. J., Miao, Z., Liu, D. R., Programmable m(6)A modification of cellular RNAs with a Cas13-directed methyltransferase. Nat Biotechnol 2020, 38 , 1431-1440.
[31] Granados-Riveron, J. T., Aquino-Jarquin, G., CRISPR/Cas13-Based Approaches for Ultrasensitive and Specific Detection of microRNAs.Cells 2021, 10 .
[32] Wessels, H.-H., Méndez-Mancilla, A., Guo, X., Legut, M., et al. , Massively parallel Cas13 screens reveal principles for guide RNA design. Nature Biotechnology 2020, 38 , 722-727.
[33] Krohannon, A., Srivastava, M., Rauch, S., Srivastava, R., et al. , CASowary: CRISPR-Cas13 guide RNA predictor for transcript depletion. BMC Genomics 2022, 23 , 172.
[34] Yang, C., Zhu, Y., Ding, Y., Huang, Z., et al. , Identifying the key genes and functional enrichment pathways associated with feed efficiency in cattle. Gene 2022, 807 , 145934.
[35] Tilahun, A. Y., Theuer, J. E., Patel, R., David, C. S., Rajagopalan, G., Detrimental effect of the proteasome inhibitor, bortezomib in bacterial superantigen- and lipopolysaccharide-induced systemic inflammation. Mol Ther 2010, 18 , 1143-1154.
[36] Wu, Z., Kong, X., Zhang, T., Ye, J., et al. , Pseudoephedrine/ephedrine shows potent anti-inflammatory activity against TNF-α-mediated acute liver failure induced by lipopolysaccharide/D-galactosamine. Eur J Pharmacol 2014,724 , 112-121.
[37] Granados-Riveron, J. T., Aquino-Jarquin, G., CRISPR–Cas13 Precision Transcriptome Engineering in Cancer. Cancer Research2018, 78 , 4107-4113.
[38] Tang, Y., Fu, Y., Class 2 CRISPR/Cas: an expanding biotechnology toolbox for and beyond genome editing. Cell Biosci2018, 8 , 59.
[39] Mao, S., Liu, Y., Huang, S., Huang, X., Chi, T., Site-directed RNA editing (SDRE): Off-target effects and their countermeasures.J Genet Genomics 2019, 46 , 531-535.
[40] Field-deployable viral diagnostics using CRISPR-Cas13.
[41] Gootenberg, J. S., Abudayyeh, O. O., Kellner, M. J., Joung, J., et al. , Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 2018, 360 , 439-444.
[42] Ackerman, C. M., Myhrvold, C., Thakku, S. G., Freije, C. A., et al. , Massively multiplexed nucleic acid detection with Cas13. Nature 2020, 582 , 277-282.
[43] Freije, C. A., Myhrvold, C., Boehm, C. K., Lin, A. E., et al. , Programmable Inhibition and Detection of RNA Viruses Using Cas13.Mol Cell 2019, 76 , 826-837.e811.
[44] Arizti-Sanz, J., Freije, C. A., Stanton, A. C., Petros, B. A., et al. , Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nature Communications 2020,11 , 5921.
[45] Patchsung, M., Jantarug, K., Pattama, A., Aphicho, K., et al. , Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nature Biomedical Engineering 2020, 4 , 1140-1149.