REFERENCES
Agostinelli, C., & Lund, U. (2017). Circular Statistics. R
package version 0.4-93. Retrieved from
https://r-forge.r-project.org/projects/circular.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear
mixed-effects models using lme4. Journal of Statistical Software,67 , 1– 48. https://doi.org/10.18637/jss.v067.i01
Bell, A. M., Hankison, S. J., & Laskowski, K. L. (2009). The
repeatability of behaviour: a meta-analysis. Animal Behaviour,77 , 771– 783. https://doi.org/10.1016/j.anbehav.2008.12.022
Berdahl, A., Westley, P. A. H., Levin, S. A., Couzin, I. D., & Quinn,
T. P. (2016). A collective navigation hypothesis for homeward migration
in anadromous salmonids. Fish and Fisheries, 17 , 525–
542. https://doi.org/10.1111/faf.12084
Bett, N. N., & Hinch, S. G. (2015). Attraction of migrating adult
sockeye salmon to conspecifics in the absence of natal chemical cues.Behavioral Ecology, 26 , 1180– 1187.
https://doi.org/10.1093/beheco/arv062.
Biro, P. A., & Adriaenssens, B. (2013). Predictability as a personality
trait: consistent differences in intraindividual behavioral variation.The American Naturalist, 182 , 621– 629.
https://doi.org/10.1086/673213
Briedis, M., & Bauer, S. (2018). Migratory connectivity in the context
of differential migration. Biology. Letters, 14 ,
20180679. https://doi.org/10.1098/rsbl.2018.0679
Brodersen, J., Nilsson, P. A., Chapman, B. B., Skov, C., Hansson, L. A.,
& Brönmark, C. (2012). Variable individual consistency in timing and
destination of winter migrating fish. Biology. Letters,8 , 21– 23. https://doi.org/10.1098/rsbl.2011.0634
Brönmark, C., Hulthén, K., Nilsson, P. A., Skov, C., Hansson, L. A.,
Brodersen, J., & Chapman, B. B. (2013). There and back again: migration
in freshwater fishes. Canadian. Journal of Zoology, 91 ,
1– 13. https://doi.org/10.1139/cjz-2012-0277
Couzin, I. D. (2009). Collective cognition in animal groups.Trends in Cognitive Sciences, 13 , 36– 43.
https://doi.org/10.1016/j.tics.2008.10.002
Dahl, J., Dannewitz, J., Karlsson, L., Petersson, E., Löf, A., &
Ragnarsson, B. (2004). The timing of spawning migration: implications of
environmental variation, life history, and sex. Canadian Journal
of Fisheries and Aquatic Sciences, 82 , 1864– 1870.
https://doi.org/10.1139/z04-184
Eriksson, L. O., & Lundqvist, H. (1982). Circannual rhythms and
photoperiod regulation of growth and smolting in Baltic salmon
(Salmo salar L.) parr. Aquaculture, 28 , 113–
121. https://doi.org/10.1016/0044-8486(82)90014-X
Ferguson, A., Reed, T. E., Cross, T. F., McGinnity, P., & Prodöhl, P.
(2019). Anadromy, potamodromy and residency in brown trout Salmo
trutta : the role of genes and the environment. Journal of Fish
Biology, 95 , 692– 718. https://doi.org/10.1111/jfb.14005
Finlay, R. W., Poole, R., French, A. S., Phillips, K. P., Kaufmann, J.,
Doogan, A., Cotter, D., McGinnity, P., & Reed, T. E. (2020).
Spawning-related movements in a salmonid appear timed to reduce exposure
to visually oriented predators. Animal Behaviour, 170 ,
65– 79. https://doi.org/10.1016/j.anbehav.2020.10.004
Fleming, I. A. (1996). Reproductive strategies of Atlantic salmon:
ecology and evolution. Reviews in Fish Biology and Fisheries,6 , 379– 416.
Fleming, I. A. (1998). Pattern and variability in the breeding system of
Atlantic salmon (Salmo salar ), with comparisons to other
salmonids. Canadian Journal of Fisheries and Aquatic Sciences,55 (Suppl 1), 59– 76. https://doi.org/10.1139/d98-009
Forsythe, P. S., Crossman, J. A., Bello, N. M., Baker, E. A., &
Scribner, K. T. (2012). Individual-based analyses reveal high
repeatability in timing and location of reproduction in lake sturgeon
(Acipenser fulvescens ). Canadian Journal of Fisheries and
Aquatic Sciences, 69 , 60– 72.
https://doi.org/10.1139/f2011-132
Franklin, K. A., Nicoll, M. A., Butler, S. J., Norris, K., Ratcliffe,
N., Nakagawa, S., & Gill, J. A. (2022). Individual repeatability of
avian migration phenology: A systematic review and meta-analysis.Journal of Animal Ecology, 91 , 1416– 1430.
https://doi.org/10.1111/1365-2656.13697
Fraser, D. J., Duchesne, P., & Bernatchez, L. (2005). Migratory charr
schools exhibit population and kin associations beyond juvenile stages.Molecular Ecology, 14 , 3133– 3146.
https://doi.org/10.1111/j.1365-294X.2005.02657.x
Fukushima M., Harada, C., Yamakawa, A., & Iizuka, T. (2019). Anadromy
sustained in the artificially land-locked population of Sakhalin taimen
in northern Japan. Environmental Biology of Fishes, 102 ,
1219– 1230. https://doi.org/10.1007/s10641-019-00904-4
Fukushima, M., Quin, T. J., &
Smoker, W. W. (1998). Estimation of eggs lost from superimposed pink
salmon (Oncorhynchus gorbuscha ) redds. Canadian Journal of
Fisheries and Aquatic Sciences, 55 , 618– 625.
https://doi.org/10.1139/f97-260
Fukushima, M., & Rand, P. S. (2021). High rates of consecutive spawning
and precise homing in Sakhalin taimen (Parahucho perryi ).Environmental Biology of Fishes, 104 , 1– 12.
https://doi.org/10.1007/s10641-021-01052-4
Gauld, N. R., Campbell, R. N. B., & Lucas, M. C. (2016). Salmon and sea
trout spawning migration in the River Tweed: telemetry-derived insights
for management. Hydrobiologia, 767 , 111– 123.
https://doi.org/10.1007/s10750-015-2481-0
Gil, M. A., Hein, A. M., Spiegel, O., Baskett, M. L., & Sih, A. (2018).
Social information links individual behavior to population and community
dynamics. Trends in Ecology & Evolution, 33 , 535– 548.
https://doi.org/10.1016/j.tree.2018.04.010
Gilsenan, C., Valcu, M., & Kempenaers, B. (2020). Timing of arrival in
the breeding area is repeatable and affects reproductive success in a
non-migratory population of blue tits. Journal of Animal Ecology,89 , 1017– 1031. https://doi.org/10.1111/1365-2656.13160
Groot, C., & Margolis, L. (1991). Pacific Salmon Life Histories.
University of British Columbia Press.
Harrison, P. M., Gutowsky, L. F. G., Martins, E. G., Patterson, D. A.,
Cooke, S. J., & Power, M. (2017). Partial diel migration: A facultative
migration underpinned by long-term inter-individual variation.Journal of Animal Ecology, 86 , 1246– 1256.
https://doi.org/10.1111/1365-2656.12716
Hay, D. E., & McKinnell, S. M. (2002). Tagging along: association among
individual Pacific herring (Clupea pallasi ) revealed by tagging.Canadian Journal of Fisheries and Aquatic Sciences, 59 ,
1960– 1968. https://doi.org/10.1139/F02-141
Herbert-Read, J. E. (2016).
Understanding how animal groups achieve coordinated movement.Journal of Experimental Biology, 219 , 2971– 2983.
https://doi.org/10.1242/jeb.129411
Herbert-Read, J. E., Rosén, E., Szorkovszky, A., Ioannou, C. C., Rogell,
B., Perna, A., Ramnarine, I. W., Kotrschal, A., Kolm, N., Krause, J., &
Sumpter, D. J. T. (2017). How predation shapes the social interaction
rules of shoaling fish. Proceedings of the Royal Society B:
Biological Sciences, 284 , 20171126.
https://doi.org/10.1098/rspb.2017.1126
Jonsson, B., & Jonsson, N. (1993). Partial migration: niche shift
versus sexual maturation in fishes. Reviews in Fish Biology and
Fisheries, 3 , 348– 365. https://doi.org/10.1007/BF00043384
Jonsson, B., Jonsson, N., & Jonsson, M. (2018). Water level influences
migratory patterns of anadromous brown trout in small streams.Ecology of Freshwater Fish, 2018 , 1– 10.
https://doi.org/10.1111/eff12415
Jonsson, N., Hansen, L. P., &
Jonsson, B. (1991). Variation in age, size and repeat spawning of
Atlantic salmon in relation to river discharge. Journal of Animal
Ecology, 60 , 937– 947. https://doi.org/10.2307/5423
Keefer, M. L., Caudill, C. C., Peery, C. A., & Lee, S. R. (2008).
Transporting juvenile salmonids around dams impairs adult migration.Ecological Applications, 18 , 1888– 1900.
https://doi.org/10.1890/07-0710.1
Kentie, R., Marquez-Ferrando, R., Figuerola, J., Gangoso, L.,
Hooijmeijer, J. C. E. W., Loonstra, A. H. J., Robin, F., Sarasa, M.,
Senner, N., Valkema, H., Verhoeven, M. A., & Piersma, T. (2017). Does
wintering north or south of the Sahara correlate with timing and
breeding performance in black-tailed godwits? Ecology and
Evolution, 7 , 2812– 2820. https://doi.org/10.1002/ece3.2879
Klimley, A. P., & Holloway, C. F. (1999). School fidelity and homing
synchronicity of yellowfin tuna, Thunnus albacares . Marine
Biology, 133 , 307– 317. https://doi.org/10.1007/s002270050469
Kuznetsova, A., Brockhoff, P. B., Christensen, R. H. B., & Jensen, S.
P. (2020). lmerTest: Tests in Linear Mixed Effects Models.R package version 3.1-3. Retrieved from
https://CRAN.R-project.org/package=lmerTest.
Leider, S. A., Chilcote, M. W., & Loch, J. J. (1986). Comparative life
history characteristics of hatchery and wild steelhead trout
(Salmo gairdneri ) of summer and winter races in the Kalama River,
Washington. Canadian Journal of Fisheries and Aquatic Sciences,43 , 1398– 1409. https://doi.org/10.1139/f86-173
MacCall, A. D., Francis, T. B., Punt, A. E., Siple, M. C., Armitage, D.
R., Cleary, J. S., Dressel, S. C., Jones, R. R., Kitka, H., Lee, L. C.,
Levin, P. S., McIsaac, J., Okamoto, D. K., Poe, M., Reifenstuhl, S.,
Schmidt, J. O., Shelton, A. O., Silver, J. J., Thornton, T. F., Voss,
R., & Woodruff, J. (2019). A heuristic model of socially learned
migration behaviour exhibits distinctive spatial and reproductive
dynamics. ICES Journal of Marine Science, 76 , 598– 608.
https://doi.org/10.1093/icesjms/fsy091
McKinnell, S., Pella, J. J., & Dahlberg, M. L. (1997).
Population-specific aggregations of steelhead trout (Oncorhynchus
mykiss ) in the North Pacific Ocean. Canadian Journal of Fisheries
and Aquatic Sciences, 54 , 2368– 2376.
https://doi.org/10.1139/f97-143
Morbey, Y. E., & Ydenberg, R. C. (2001). Protandrous arrival timing to
breeding areas: a review. Ecology Letters, 4 , 663– 673.
https://doi.org/10.1046/j.1461-0248.2001.00265.x
Nilsson, J. -Å., Brönmark, C., Hansson, L. -A., & Chapman, B. B.
(2014). Individuality in movement: the role of animal personality. In L.
-A. Hansson & S. Åkesson (Eds.), Animal Movement Across Scales,Chapter 6 (pp. 90–109). Oxford University Press.
Penny, Z. L., & Moffitt, C. M. (2013). Histological assessment of
organs in sexually mature and post-spawning steelhead trout and insights
into iteroparity. Reviews in Fish Biology and Fisheries,24 , 781– 801. https://doi.org/10.1007/s11160-013-9338-2
Porlier, M., Charmantier, A., Bourgault, P., Perret, P., Blondel, J., &
Garant, D. (2012). Variation in phenotypic plasticity and selection
patterns in blue tit breeding time: between- and within-population
comparisons. Journal of Animal Ecology, 81 , 1041– 1051.
https://doi.org/10.1111/j.1365-2656.2012.01996.x
Pulido, F., Berthold, P., Mohr, G., & Querner, U. (2001). Heritability
of the timing of autumn migration in a natural bird population.Proceedings of the Royal Society B: Biological Sciences,268 , 953– 959. https://doi.org/10.1098/rspb.2001.1602
Quinn, T. P., Hodgson, S., & Peven C. (1997). Temperature, flow, and
the migration of adult sockeye salmon (Oncorhynchus nerka ) in the
Columbia River. Canadian Journal of Fisheries and Aquatic
Sciences, 54 , 1349– 1360. https://doi.org/10.1139/f97-038
Quinn, T. P., Unwin, M. J., & Kinnison, M. T. (2000). Evolution of
temporal isolation in the wild: genetic divergence in timing of
migration and breeding by introduced chinook salmon population.Evolution, 54 , 1372– 1385.
https://doi.org/10.1111/j.0014-3820.2000.tb00569.x
R Development Core Team. (2017). R: A language and environment for
statistical computing. R Foundation for Statistical Computing.
Retrieved from https://www.R-project.org.
Rand, P. S. (2006). Sakhalin taimen: The IUCN Red List of
Threatened Species. Retrieved from
https://www.iucnredlist.org/species/61333/12462795.
Rand, P. S., & Fukushima, M. (2014). Estimating the size of the
spawning population and evaluating environmental controls on migration
for a critically endangered Asian salmonid, Sakhalin taimen.Global Ecology and Conservation, 2 , 214– 225.
https://doi.org/10.1016/j.gecco.2014.09.007
Rand, P. S., Hinch, S. G., Morrison, J., Foreman, M. G. G., MacNutt, M.
J., Macdonald, J. S., Healey, M. C., Farrell, A. P., & Higgs, D. A.
(2006). Effects of river discharge, temperature, and future climates on
energetics and mortality of adult migrating Fraser River sockeye salmon.Transactions of the American Fisheries Society, 135 ,
655– 667. https://doi.org/10.1577/T05-023.1
Simmons, O. M., Gregory, S. D., Gillingham, P. K., Riley, W. D., Scott,
L. J., & Britton, J. R. (2021). Biological and environmental influences
on the migration phenology of Atlantic salmon Salmo salar smolts
in a chalk stream in southern England. Freshwater Biology,66 , 1581– 1594. https://doi.org/10.1111/fwb.13776
Sinnatamby, R. N., Pinto, M. C., Johnston, F. D., Paul, A. J., Mushens,
C. J., Stelfox, J. D., Ward, H. G. M., & Post, J. R. (2018). Seasonal
timing of reproductive migrations in adfluvial bull trout: an assessment
of sex, spawning experience, population density, and environmental
factors. Canadian Journal of Fisheries and Aquatic Sciences,75 , 2172– 2183. https://doi.org/10.1139/cjfas-2017-0542
Šmejkal, M., Ricard, D., Vejřík, L., Mrkvička, T., Vebrová, L., Baran,
R., Blabolil, P., Sajdlová, Z., Vejříková, I., Prchalová, M., &
Kubečka, J. (2017). Seasonal and daily protandry in a cyprinids fish.Scientific Reports, 7 , 4737.
https://doi.org/10.1038/s41598-017-04827-x
Styrsky, J. D., Berthold, P., & Robinson, D. (2004). Endogenous control
of migration and calendar effects in an intratropical migrant, the
yellow-green vireo. Animal Behaviour, 67 , 1141– 1149.
https://doi.org/10.1016/j.anbehav.2003.07.012
Tamario, C., Sunde, J., Petersson, E., Tibblin, P., & Forsman, A.
(2019). Ecological and evolutionary consequences of environmental change
and management actions for migrating fish. Frontiers in Ecology
and Evolution, 7 , 271. https://doi.org/10.3389/fevo.2019.00271
Thompson, T. Q., Bellinger, M. R., O’Rourke, S. M., Prince, D. J.,
Stevenson, A. E., Rodrigues, A. T., Sloat, M. R., Speller, C. F, Yang,
D. Y., Butler, V. L., Banks, M. A., & Miller, M. R. (2019).
Anthropogenic habitat alteration leads to rapid loss of adaptive
variation and restoration potential in wild salmon populations.Proceedings of the National Academy of Sciences of the United
States of America, 116 , 177– 186.
https://doi.org/10.1073/pnas.1811559115
Thorsteinsson, V., Pálsson, Ó. K., Tómasson, G. G., Jónsdóttir, I. G.,
& Pampoulie, C. (2012). Consistency in the behaviour types of the
Atlantic cod: repeatability, timing of migration and geo-location.Marine Ecology Progress Series, 462 , 251– 260.
https://doi.org/10.3354/meps09852
Tibblin, P., Forsman, A., Borger, T., & Larsson, P. (2016). Causes and
consequences of repeatability, flexibility and individual fine-tuning of
migratory timing in pike. Journal of Animal Ecology, 85 ,
136– 145. https://doi.org/10.1111/1365-2656.12439
Torniainen, J., Vuorinen, P. J., Jones, R. I., Keinänen, M., Palm, S.,
Vuori, K. A. M., & Kiljunen, M. (2014). Migratory connectivity of two
Baltic Sea salmon populations: retrospective analysis using stable
isotopes of scales. ICES Journal of Marine Science, 71 ,
336– 344. https://doi.org/10.1093/icesjms/fst153
van de Pol, M., Bailey, L. D., McLean, N., Rijsdijk, L., Lawson, C. R.,
& Brouwer, L. (2016). Identifying the best climatic predictors in
ecology and evolution. Methods in Ecology and Evolution,7 , 1246– 1257. https://doi.org/10.1111/2041-210X.12590
van Wijk, R. E., Bauer, S., & Schaub, M. (2016). Repeatability of
individual migration routes, wintering sites, and timing in a
long-distance migrant bird. Ecology and Evolution, 6 ,
8679– 8685. https://doi.org/10.1002/ece3.2578
Webster, M. S., Marra, P. P., Haig, S. M., Bensch, S., & Holmes, R. T.
(2002). Links between worlds: unraveling migratory connectivity.Trends in Ecology & Evolution, 17 , 76– 83.
https://doi.org/10.1016/S0169-5347(01)02380-1
Westley, P. A. H., Berdahl, A. M., Torney, C. J., & Biro, D. (2018).
Collective movement in ecology: from emerging technologies to
conservation and management. Philosophical Transactions of the
Royal Society B: Biological Sciences, 373 , 20170004.
https://doi.org/10.1098/rstb.2017.0004
Winkler, D. W., Jorgensen, C., Both, C., Houston, A. I., McNamara, J.
M., Levey, D. J., Partecke, J., Fudickar, A., Kacelnik, A., Roshier, D.,
& Piersma, T. (2014). Cues, strategies, and outcomes: how migrating
vertebrates track environmental change. Movement Ecology,2 , 10. https://doi.org/10.1186/2051-3933-2-10
Zimmerman, C. E., Rand, P. S., Fukushima, M., & Zolotukhin, S. F.
(2012). Migration of Sakhalin taimen (Parahucho perryi ): evidence
of freshwater resident life history types. Environmental Biology
of Fishes, 93 , 223– 232.
https://doi.org/10.1007/s10641-011-9908-x