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27 Abstract page

s Abstract

oNOYTULT D WN =

9

10 29 Empirical studies often attribute population dynamics to direct effects of environmental changes on species
11

12 30 demography. However, environmental changes can also indirectly influence population dynamics through
13

14 31 interspecific interactions, referred to as Environment-Species Interaction (ESI). While ESl is likely crucial for
15
16
17
18 . .. . . . .
19 33 To overcome this challenge, we explicitly quantified both the direct influence of climate and land-cover

20

71 34 changes on bird population growth over a 20-year period in France, and their indirect influence through
22

23 35 competition via ESI. We demonstrated that accounting for interspecific competition improved the
24

25 36 predictability of population variations, and that ESI significantly influenced the responses of common bird
26
27
28
29 . . . .. . . . . .
30 38 importance of incorporating species interactions into dynamic response models to disentangle environmental

31

32 39 and biotic effects on species dynamics, and to better understand community responses to global changes.
33
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32 predicting species and communities in a changing world, it remains largely overlooked in large-scale studies.

37 species to global changes, with varying effects along environmental gradients. This study highlights the
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42 Main text

s Introduction

oNOYTULT D WN =

44 Predictive ecology aims to understand and predict the dynamics of ecological communities, including

9

10 45 the identification and attribution of population declines and prediction of future biodiversity loss (Mouquet et
11

12 46 al. 2015). Yet, current efforts to understand the causes of biodiversity change rarely quantify the direct effects
13

:‘5‘ 47 of environmental change and the indirect effects of species interactions from dynamic data. Hence, the
16
17
18 . . . . . .
19 49 unresolved puzzle for many ecological systems. In this study, we overcome this challenge using multi-species

20

21 50 dynamic modeling that accounts for both the direct effects of the environment and the effects of intra and
22

23 51 interspecific competition on bird species dynamics.

24

;2 52 The fate of bird populations facing global changes has been the topic of many published studies (Inger et
27
28
29
30 54 data is available (Europe and North America), several patterns have emerged. The combined effect of climate

31

32 55 and land-use changes tend to favor ‘generalist’ species with broad ecological niches, leading to decline in more
33

34 56 specialized species, particularly those adapted to farmlands and cold climates (Julliard et al. 2003; Donald et al.
35

g? 57 2006; Galizére et al. 2015). Moreover, common species may also be experiencing rapid declines, while certain
38
39
40
41 59 noteworthy, as they significantly impact ecosystems processes (Lohbeck et al. 2015) and hold significant

42
43 60 cultural values for human societies (Schuetz & Johnston 2019).

44

45 61 Our understanding of bird responses to global change generally comes from modeling approaches that
46

j; 62 assume direct environmental effects on species distributions (Hitch & Leberg 2007) and demography (Julliard

48 influence of interspecific competition on the population's response to environmental change remains an

53 al. 2015; Stephens et al. 2016; Rosenberg et al. 2019; Rigal et al. 2023). In the temperate zone, where extensive

58 rare species are showing an increase (Inger et al. 2015). The dynamics of common species are particularly

gg 63 et al. 2003). However, birds -like other taxonomic groups- are not passive responders to their environment.
5, 64 Instead, they live within communities of interacting species. This coexistence involves complex interactions,
53

54 65 such as (regarding birds) competition for resources, mating opportunities, nesting sites, cooperative resource
55
56 66 sharing, and predation, which likely shape species distributions and community dynamics (Wisz et al. 2013;
57
gg 67 Tang et al. 2023). The influence of these interactions on species dynamics may vary depending on the

60 ¢s environmental context. For example, two species may intensely compete for resources where the
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; 69 environment is the most suitable, but they may not compete or even facilitate each other when environmental
i 70 conditions are stressful and resources limited (Bimler et al. 2018).

Z 71 While the direct influence of environmental conditions on species population densities is
g 72 well-recognized, the indirect effect of environmental conditions on population dynamics through species
1

1(1) 73 interactions, known as Environment-Species Interactions (ESI), are less explored (Clark et al. 2020; Roberts et

1; 74 al. 2022). Understanding ESI is crucial as it can impact species responses to environmental variations under
14
15 75 diverse contexts (Figure 1). However, if not explicitly considered in analyses, ESI may be confounded with the
16

17 76 direct effects of the environment on species. Thus, understanding the influence of the environment on
18

19 77 population dynamics through interspecific interactions is essential to reach a better mechanistic
20

;; 78 understanding and more reliable predictions of species population and community responses to global
23
24
25
26 80

27

28 Fundamental niche response Realized niche response
29
30
31
32
33 Temperature Temperature
34
35
36
37
38
39
40
41
42
43
2: 83 represent species responses to environmental gradients. On the left side, we consider the fundamental niche as a result of density
46 84 independent processes, i.e., the direct effect of the abiotic environment on species abundance. On the right side, density dependent
47

48 85 processes (here, species interactions) affect the response of species to environmental gradients. The apparent difference in observed

49
50 86 species responses is the result of Species-Environment-Interactions (ESI).
51
52
53 . . . . . . . .

54 88 Quantifying the effects of interaction on community responses to global change via ESI is challenging.
55

56 89 First, biotic interactions are structured into complex networks of many species potentially interacting directly
57

58 9¢ and indirectly with each other (Soliveres et al. 2015). This makes the identification and the validation of
59
60

79 changes.

ESI ¥ ESl %

81 Agricultural land cover Agricultural land cover

82 Figure 1. Environment - Species Interaction (ESI) influences on population responses to global changes. Colored density distributions

87

91 community-wide interaction networks difficult. Second, we often lack the time-series data needed to quantify
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92 effects of species densities on the growth rates of others (lves et al. 2003). Third, analytical tools used to study
93 biodiversity responses to global changes often lack explicit modeling of ESI using observational data.
94 Theoretical approaches are often based on process-based models with differential equations resolved
95 through analytical analyses or numerical simulations. They are useful to understand the effect of well-defined

0 96 processes on species dynamics in communities, for example when relying on Generalized Lotka Volterra

_ =2 0O NOOULTD WN =
N

1; 97 models (GLV, (Barabas et al. 2016). However, fitting these models to large scale empirical observations is often

14
15 98 unfeasible. Empirical approaches rely mostly on statistical models like Species Distribution Models (SDMs)
16
17 99 and their multi-species extensions (MSDMs and JSDMs) which are fitted to observational data (Guisan &
18
19100 Thuiller 2005; Thuiller et al. 2013; Ovaskainen et al. 2017). Although SDMs and JSDMs incorporate real-world
20

21101 observations with broad spatial and taxonomic coverage, they cannot explicitly infer ESI due to their
22

23

54192 incapacity to separate the direct effect of the environment and its effect through interaction with other

;2103 species (Clark et al. 2014; Poggiato et al. 2021). Consequently, the influence of ESI on the dynamics of species
3573104 and communities under global change remains poorly documented. A third approach to address this gapis to
53105 combine process-based and statistical approaches by fitting equation parameters to observational data. Such
31

ggme hybrid models (e.g., with GLV-based approaches, (Chalmandrier et al. 2022) offer a way to explicitly integrate

22107 abiotic and biotic processes as they can model the direct effects of environment and the effect of species

36

37108 interactions from observational data, thereby modeling ESI (Clark et al. 2020; Thuiller et al. 2023).

38

39109

40

41110 In this study, we used such a hybrid model, a multi-species Bayesian GLV dynamic model called
42

43111 GjamTime (Clark et al. 2020), parameterized on time-series abundance data from the French Breeding Bird
44

22112 Survey for 23 common bird species. Leveraging this recent bayesian modeling framework and this

47
48113 high-resolution, standardized bird monitoring scheme in France (Jiguet et al. 2012), we explored the impact of

49
50114 explicitly modeling ESI on long-term estimates of bird population and community responses to climate and
51
52115 land-use changes. We estimated a multi-species dynamic model accounting for the direct effects of the
53

54116 environment and the effects of intra and interspecific competition on species dynamics. To assess the
55
56

57117 influence of ESI on bird species and community responses to global changes, we compared long-term

58 . . . . . . .
5ol18 community dynamics scenarios when only considering environmental effects on population growth to those
60
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; 119 that incorporated both direct and indirect effects through ESI. More specifically, we sought to answer the
3 . .

4 120 three following question:

5

6 121 - Q1: Does explicitly considering interspecific interactions in community dynamic models improve their
7

8 122 predictability ?

9

10123 - Q2: Which species dynamics are most influenced by interspecific competition, and how is the competitive
11

1§124 network of common bird species structured ?

14 .

15125 - Q3: How much and under which abiotic conditions interspecific competition influences species responses to
16

17126 global changes ?

18

19

20127

21

22

23 .

-z Material and methods

25

26

27

Y Data

29

30130 Bird population trends were extracted from the French Breeding Bird Survey (FBBS) over the 2001-2019
31

§§131 period. The French breeding bird survey was designed to monitor population dynamics of common passerine

34 . . . . . .
35132 bird species in France. In this survey, skilled volunteer ornithologists count birds at a given site, following a
36

37133 standardized protocol, at the same site, year after year (Jiguet et al. 2012). Species abundances are recorded

38
39134 across 2792 sites, each covering a 4km?® area. Volunteers provide their home locality to the national
40

41135 coordinator, and a 2x2 km site is randomly selected from within a 10 km radius (out of 80 possible sites) by the
42

22136 coordinator. Each spring, volunteers carry out 10 point counts separated by at least 300 m within the selected

45 . . . .
46137 site, for a fixed period of five minutes. Two sampling sessions are carried out from 1 April to 8 May, and then

47

48138 from 9 May to the end of June, to detect both early and late breeders, with a gap of 4-6 weeks between
49

50139 sessions. Counts are repeated annually on approximately the same date (7 days) and at dawn (1-4 h after
51

52140 sunrise) by the same observer, in the same order. The highest count from these two sessions is used as the
53

ggml measure of point-level species abundance. We sub-selected sites that were followed by at least five years of

56 . . .
57142 monitoring between 2001 and 2019. We only kept species that were the most common in space and time (i.e.,

58
59143 present in more than 50% of site/years pairs, i.e,, 6751 site/years pairs), and the most abundant (i.e.,
60

144 representing more than 10% of the total number of occurrence in the dataset, 28282 individuals). This set of

6
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145 23 species encompasses 70.6% of the total numbers of individuals and represents common, abundant, and
146 well monitored species which are likely to interact within many sites at the scale considered (2x2km). We

1
2
3
4
5
6 147 finally winsorized abundance data to the 99th percentile (abundance values > 32 were capped to 32) to limit
7

8 148 the influence of very large flocks of birds appearing during a point count.

9

10149

11

12150 Climatic data were extracted from CHELSA (https://chelsa-climate.org/, v.2.1) for each site and each sampling

12151 year. We computed the average daily temperature and precipitation during the bird breeding season (April -

15152 August).
16
17153

18

19154 Land cover data were extracted from CORINE Land Cover (European Environment Agency 2010). Percentage

20
51155 land covers within FBBS site were computed by taking the habitat class area (in square meters) and dividing it

22
23156 by the total area of the site. Because CLC data were available only for 2000, 2006, 2012 and 2018, some FBBS
24
25157 site-year combinations were not covered by the dataset. In this case, we attributed site land cover for the
26

;;158 uncovered year to the last year for which we had CLC data available (for example, sites monitored in 2001

29

30t59 were attributed land cover from CLC 2000). More specifically, we focused on three aggregated CLC classes:

31
3p160 artificial surfaces, agricultural areas, and forests for three reasons. First, these classes have large coverage
33
34161 across the study sites. Second, they are highly relevant for explaining the population dynamics of our 23 bird
35
36162 species (Guetté et al. 2017; Rigal et al. 2023). Third, by removing “wetlands”, “water body”, and “little or no
37

22163 vegetation” classes (which are marginal in most sites), we reduced the number of parameters in the model and

40

4164 avoided the variable to be compositional (i.e., all land cover classes summing to 100%). See supporting

42 . . I
43165 information - Environmental data description.
44

45166

46 . . .
47167 Modeling dynamic community responses

48
40168 GjamTime is a generalized joint attribute model for dynamics data that allows us to quantify density
50
51169 independent and dependent effects of climate and land cover change on species population growth rate. The
52
53170 model is based on the Generalized Lotka-Volterra equation for S species, here expanded to include interaction
54

55171 with the environment,
56

57
172

58

59 dWS L} 1

60l73 Tz = (W XxXDp + (W XWDa + € (1)
174
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175 This equation expresses the rate of change in the abundance of species w in terms of the density-independent
176 rate p, A vector of coefficients describing the response to environment variables X', and the
177 density-dependent rate a,a vector of coefficients describing the response to the density of other S species W"

178 . There is one equation for each of S species, so coefficient vectors become matrices p, and o, each with S rows.
0

1

1
2
3
4
5
6
7
8
9
1
12179 This equation is then discretized and reorganized in order to be combined with data as in the GJAM model

13 .
14180 (Clark et al. 2017). In the model, the S equations are additionally linked by an S x S covariance matrix X for the

15
16181 error € . In addition to time t and species S there will usually be a location i subscript that is omitted here to
17
18
19

182 reduce clutter. The Model is fitted in a state-space hierarchical Bayesian framework. All details about the

20
51183 model construction and use can be found in (Clark et al. 2020), at https://rpubs.com/jimclark/551105, and at

22
23184 https://rpubs.com/jimclark/631209. Parameters were fitted from empirical data by Markov chain Monte
24
25185 Carlo for 20000 iterations with a burn-in period of 5000 using the function ‘gjam’ from the R package gjam
26

;;186 (Clark et al. 2017). We bounded P, by setting priors values between -0.2 and 0.2 based on minimum and

29
30187 long-term maximum population trends previously observed for french breeding birds (Jiguet & Moussus
31

32188 2009). For model incorporating intra- and interspecific interaction, a priors were all set between-1and Oto
33

34
35189 allow the model to estimate interaction coefficients for all species pairs. By doing so, we considered that all

23190 pairs of species can potentially interact within a 2x2km site. For model incorporating intraspecific interaction,
§§191 only a priors in the diagonal matrix were set to between -1 and 0O, to allow the model to estimate intraspecific
2;192 interaction coefficient for all species. Models convergence were confirmed by visual assessment of the mixing
22193 of chains as well as model-fit diagnostic. We checked each chain run separately via trace plots and posterior
45

46194 density, and used running means plot and potential scale reduction factor to assess model convergence.
47

22195 Almost all parameters showed good convergence. Parameters showing the influence of land cover on p were

50

51196 correlated due to some degree of multicollinearity across the three land cover classes. To see all diagnostic
52

53197 plots in detail, see supporting information - Model Validation.

54

35198
6
57
58
59
60
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1 . . .

, 199 Measuring model predictability (Q1)

3

4 200 In order to answer Q1, we compared the model incorporating both environmental change (climate + land
5

? 201 cover) and interactions (intra and interspecific competition) with the model incorporating environmental

g 202 change only using the difference in deviance information criterion (DIC). DIC is a hierarchical modeling
10
11203 generalization of the Akaike information criterion particularly relevant in Bayesian model selection. For each
12
13204 model, we also computed the r? as the coefficient of determination as the squared Pearson correlation
14

15205 coefficient between the observed values (abundance for each species at each site/year) and the predicted
16

1;206 values. We also reported the Root Mean Square Percentage Error (RMSPE) and the proportion of total

19 . .

20207 variance explained by interactions and environment effects calculated in the gjam R package (Clark et al.
21

22208 2017).

23
24209

25

26210 Building the emergent competition network (Q2)

27
28211 We used the density-dependent rates estimates to construct the resulting competition network, represented

29
30212 as an adjacency matrix, and visualized this network using the igraph and ggraph R packages. To maintain a
31

32713 conservative approach in representing interactions, we focused our interpretation on the 0.975 confidence
33

22214 interval value of the posterior distribution rather than the mean value. For each species, we calculated the

36 « . . . « .- . »” .
37215 total competition applied” as the row wise sum of a and the “total competition received” as the column wise

38

3916 sum of a and used these values to position each species in the y and x axes of the network shown in Figure 4b.
40

41
42217

43

44518 Estimating species abundance index (Q3)

45

46219 To transform observations of the dynamic process into a reference state for the system under specific
47

jgzze environmental conditions, we predicted the probabilistic index of species abundance by numerical integration

§?221 of modeled parameter estimates P, and a along climate and land cover gradients (Clark et al. 2020). While

52

53222 these abundance indices are often referred to as equilibrium abundance or steady-state abundance (Collins et
54

§2223 al. 2022), it is crucial to acknowledge that they may not necessarily represent a stable coexistence or exist in

;224 reality (Clark et al. 2020). Instead, the abundance index should be interpreted as a reference point for

59 . . . .. . . . .
60225 assessing the relative abundance of a given species in a community under varying environmental conditions.
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226 The abundance index was derived by solving the model equation for all species with their growth rates
227 set to zero (equation 1), and different combinations of predictor values. To manage computation time, we
228 estimated the species' abundance index for all combinations of average daily temperature, percent of artificial
229 surfaces, and percent of agricultural areas, each at 10 values, resulting in 10° discrete combinations. For each

0230 of the 10° discrete predictor combinations, we ran 100 simulations and calculated both the mean and the

_ =2 0O NOOULTD WN =
N

1§231 standard deviation of the abundance index. To predict the abundance index in the absence of interspecific

14 .. . . . . . .
15232 competition, we set all interspecific pairwise interaction parameters to O by replacing all chain values of

16
17233 interspecific interactions in the model output object by 0, as detailed in the code and data. In order to quantify
18
19234 the effect of interspecific interactions on the abundance index for each predictor combination, we computed
20
;;235 the difference between the abundance index obtained with the model fit including interspecific competition

32236 and the model omitting interspecific competition.

25
26237

27
2:: Results
29
30
25239 Q1 - Interspecific interactions contribute to species dynamics.
33

34240 Accounting for intra- and interspecific interactions into the modeling of species responses to climate and
35

23241 land-cover changes improved the overall model fit (ADIC = 1168452). The R? of the model considering the

§§242 direct effects of climate and land cover change alone was high (R* = 0.77), and this value increased further

40
41243 when integrating both the direct effects of climate and land cover change and species interactions into the

42
43244 model (R*> = 0.85). The degree of improvement in model fit varied across different species (Figure 2). This
44

45245 improvement was attributed to the fact that predicted abundances were generally less dispersed from the
46

173246 observed values when accounting for species interactions (Figure 2). In other words, explicitly including

33247 interspecific interactions tended to reduce outlier predictions (when compared to the model with intraspecific

51
5,248 interactions only), especially for highly abundant species like Sturnus vulgaris and Columba palumbus (Figure 3).

53
54
55
56
57
58
59
60

10
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38
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40

41251
42

22252 Figure 2. Predicted abundances against observed abundance for each species. Red line shows 1:1 line, colored cells (yellow to blue)

22253 show abundance values from models incorporating interactions, purple cells in the background show abundance values from models
47254 without interactions.

48

49255

50

51256 Climate and land cover change (density independent processes) in combination with intra and interspecific

52
53257 competition (density dependent processes) collectively accounted for up to 30% of population dynamics. The

ggzss influence of competition was notably significant, explaining more than 10% of the total variation, particularly

56259 for several species such as Passer domesticus and Corvus corone, among others (Figure 3). In contrast, Parus
57

58260 major dynamics were only driven by density independent processes. For other species like Alauda arvensis and
59

60261 Sturnus vulgaris, their dynamics were primarily, though not entirely, explained by independent processes, with

262 alimited contribution from density dependent processes.

11
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281 Q2 - Strong competitors structure the competition network of common French breeding birds

282 Out of the 529 species pairs, 77% of them, showed 95% of the posterior distribution of interaction
283 coefficients that did not include zero (Figure 4). In line with results from figure 2, populations of Columba

284 palumbus, Sylvia communis, Turdus merula and Corvus corone appeared to be particularly impacted by negative

W oONOOULID WN =

10 . . .
11285 interactions from other species (indicated by the dark cells in the columns). Conversely, species like Alauda

12
13286 arvensis, Sylvia communis, Pica pica, and Chloris chloris emerged as strong competitors (evident by dark cells in
14
15287 the rows), playing a notable role in shaping the interaction network of France’s most common breeding birds.
16

17388 In particular, Alauda arvensis showed a moderate (~ -0.1) but consistent negative effect on most species.
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
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55
56
57
58
59
60
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51

52393 gjamTime model. In order to stay conservative, we here showed 0.975 confidence interval value of the posterior distribution. B:

53
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55

56295 the sum of row in A), the position of the species in x shows the total competition received by the species (as the sum of column in A).
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298 Q3 - Environment - Species Interactions influence response of birds to global change

299 The interaction network shown in Figure 4 summarizes the interaction and their strengths among species

300 pairs. However, our study aims to reveal whether these interspecific interactions truly impact species

oNOYTULT D WN =

301 responses to climate and land cover changes via ESI. To evaluate the effect of ESI on species’ responses, we
10
11302 thus computed differences in the abundance index when predicted with only intraspecific interactions (from
12
13303 the diagonal of the interaction matrix), or with both intra and interspecific interactions (Figure 5a) along
14

15304 different combinations of spring temperature and agricultural, artificial and forest land cover. Irrespective of
16

1;305 temperature or agricultural cover, the majority of species exhibited negative differences in abundance index,

e}

19 T, . . . . .
20306 indicating that interspecific competition negatively affects local species abundances. However, for some

21
22307 species in specific contexts, the net effect of interspecific competition led to an increase in abundance index
23

24308 (positive difference in abundance index, in blue Figure 5). Examining these differences across various climate
25

26399 and land cover values reveals how ESI might affect species coexistence along interacting environmental
27
28

293.10 gradients. These differences in the abundance index displayed distinct patterns within the environmental

30
31311 space (Figure 5b). For instance, Fringilla coelebs exhibited substantial variation in the influence of ESI along the

32

33312 agricultural cover gradient, with differences ranging from negative under high agricultural cover to positive
34

35313 under low agricultural cover and high temperatures (Figure 5b).

36

;73314 In some cases, the reduction in abundance due to interspecific competition might be solely responsible for the

33315 absence of the species. To exemplify this possibility, we identified cases where the abundance index fell below

41
4316 0.05 due to interspecific interaction (indicated by the red circle and squares in figure 5). For example, this

43
44317 occurred for Phylloscopus collybita under specific combinations of agricultural cover and temperature, under
45
46318 low spring temperatures for Turdus merula, and under low agricultural cover for Sylvia atricapilla and Erithacus
47
22319 rubecula, among others (in red, Figure 5b). Note that we used the arbitrary threshold of 0.05 to illustrate the

g??,ze potential for absence due to interspecific competition, but this finding does not provide definite evidence for

52 . . . . -
53321 the absence of a given species under a given climate and land cover condition.

54
55
56
57
58
59
60
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Figure 5. ESl influences abundance
index differently across the
environmental space. (a) abundance
index from models run with full matrix
plotted against the abundance index of
model with intraspecific interaction
only. Point colors show abundance
differences. Red circles indicate that
the species abundance index drops
below 0.05 because of interspecific
interactions. (b) Abundance index
differences are displayed within a 2
dimensional environmental space
(Agricultural cover in y-axis and Spring
temperature in x-axis) for each species.
The values are shown for low artificial

cover.
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1 [ ] [ ]

2 32 Discussion

3

4

Z 343 Species responses to global changes have typically been examined and reported as a direct result of
7

g 344 environmental influences on population dynamics, often overlooking the potential indirect effects stemming
9

10345 from the the responses of other species via interspecific interactions. With a limited number of explicit
11

12346 methods for considering species interactions in the analysis of observational data, the field of ecology has
13

14347 encountered challenges in uncovering the indirect impact of ESI on species responses to global changes. In
15

:?348 this study, we employed a dynamic framework and used data collected by the French Breeding Bird Survey

18 . . . . . .
19349 since 2001 to elucidate both the direct effect of environment (climate and land-cover change) on species
20

21350 dynamics and its indirect effect through interactions with competitors. Our research reveals that
22

23351 interspecific interactions play a significant role in shaping bird population responses to climate and land cover
24

;2352 changes in France through ESI. This underscores the importance of adequately quantifying how ESI governs

2573353 population dynamics and species distribution. Without such quantification, predicting the future of

29 . e . . . .. . ..

30354 biodiversity status under changing environmental conditions would miss key processes and remain biased.

31

32355

33

34356 (Q1) First, we showed that incorporating interspecific competition via dynamic community modeling
35

36357 enhanced the explanatory power of the model when examining the temporal responses of common breeding
37

38358 bird populations to climate and land use changes. We also found that interspecific competitive interactions

39

2(1)359 significantly influenced the probabilistic estimates of abundance for most species, with a few species showing
jgse.e only marginal effects from interspecific interactions (e.g Parus major).

2115361 (Q2) Second, we provided insights into the competitive interaction network that shapes multispecies
22362 population dynamics and contributes to the coexistence of the most common birds in France during the

33363 breeding season. Our results revealed that negative interspecific interactions were predominantly

51 . . . . . . . .
55364 asymmetric, with approximately half of the species consistently influenced by competition from other species.

53
54365 Interpreting these results on the light of community assembly theory (Kraft et al. 2015), the structure of the

55
56366 competition network suggests that interspecific interactions among common birds are characterized by
57

§§367 hierarchical dominance with strong asymmetry, and in some instances, by brood parasitism (e.g Cuculus

6038 canorus). Such biotic processes are commonly described in plant community ecology (Gaudet & Keddy 1988;

17
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369 Mayfield & Levine 2010; Kunstler et al. 2012), and have only been recently assessed for birds (Miller et al.
370 2017; Barrero et al. 2023). Here, estimating the competition network that underlies coexistence among
371 common birds based on dynamic data allows us to illuminate interspecific relationships that are typically not
372 readily observable nor quantifiable from empirical data (Blanchet et al. 2020; Poggiato et al. 2021). However, it

0373 is important to note that these interaction coefficients represent model parameters specific to the context of

_ =2 0O NOOULTD WN =
N

1§374 French breeding birds and the set of 23 species that coexist (or not) in 2x2km squares. Estimated interaction

14 . . . .. . . .
15375 coefficients describe potential pairwise interactions between species across the study, but not all species
16

17376 necesarilly co-occur in all sites every year. Within each site, community composition, environmental
18

19377 conditions, and species responses to the environment interact to ultimately shape species dynamics

20

21378 (Q3) Third, to account for these local interacting processes, we revealed how environmental variations
22

32379 permeate the network of competitors by influencing species abundance. Overall, the abundance index was

;2380 lower when explicitly considering interspecific competition, as expected, given that competition exerts a
3573381 negative impact on population growth. However, species like Alauda arvensis, Cuculus canorus, Fringilla coelebs,
53382 or Parus major exhibited an increase of abundance index in certain contexts where the net effect of
31

§§383 competition on abundance index was positive. Although counterintuitive at first, the positive influence of

22384 interspecific competition might reveal the effect of intransitive interactions where decrease in abundance of

36
37385 species B due to competition from species A can benefit species C if B outcompetes species C (Laird & Schamp

38

39386 2008; Soliveres et al. 2015; Gallien et al. 2017).

40

41387 Our results showed clear variations on the effect of competition along combinations of climatic and
42

43388 land-cover gradients across France. The varying influence of ESI along environmental gradients emerges from
44

22389 the fact that abundance of interacting species also varies along these gradients (Figure 1). More generally,

47 . . . . e . . .

48390 there is evidence to suggest that the influence of interspecific interactions may vary with environmental
49

50391 conditions. This phenomenon is often approached through an environmentally dependent interaction matrix
51

52392 (Bimler et al. 2018). While in the GjamTime framework, the interaction coefficient matrix is fixed, its effects on
53

54393 species dynamics interact with species responses to the environment through Environment - Species
55

§§394 Interactions (ESI). A promising avenue for further development lies in a geographical decomposition of the

58 . . . . .
5395 interaction matrix. For example, fitting model parameters based on data subsets corresponding to

60
396 biogeographical regions or habitats would allow to describe variations in interactions between homogeneous

18
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397 species pools and interaction networks (Dansereau et al. 2023). Pushing further the interpretation of
398 differences in abundance index, we highlighted that under specific combinations of climate and land-cover,
6 399 some species may be outcompeted and excluded from communities. This result underscores the potential
8 400 impact of ESI on local extinctions and, consequently, the dynamics of species distributions under global

10491 changes. It suggests that species distribution modeling could likely enhance accuracy by incorporating
11

1§402 knowledge of species interactions and interdependencies (Poggiato et al. 2022).
14
15403 Nonetheless, the empirical parametrization of dynamical models remains a daunting task. First, gathering

16
17404 high-quality data, with a standardized sampling in space and time and that encompasses a broad taxonomic
18
19405 coverage, is notoriously difficult. Second, when modeling species-rich communities, the number of parameters
20

21406 escalates significantly (scaling with the square number of species considered). This high dimensionality makes
22

32407 empirical model estimation a complex endeavor (Godoy & Levine 2014), especially given the substantial

;2408 computational resources and time required. In particular, these limitations have hindered our ability to
3573409 incorporate less common species, which may be particularly prone to ESI, but modeling interactions with trait
53410 relationships might be a way to overcome the problem (Chalmandrier et al. 2022; Blonder et al. 2023). Third,
31

§§411 these parameters are not straightforward to interpret. In our model, alpha parameters define per capita
3441

3¢ 2 demographic effects of one species on another, with the interaction effect contingent on the density of the

36 . . . .. . .

37413 species, which in turn, depends on its response to the environment. This is why estimating the abundance
38

39414 index of species across environmental gradients with and without interactions proves valuable, as it aids in
40

41415 summarizing and interpreting the impact of density dependent processes on community responses to global
42

22416 changes (Clark et al. 2020).

45417
46

47

4418 Harnessing empirically parameterized dynamical models offers a complementary and mechanistic approach
49

50419 to understanding and predicting the influence of interspecific interactions on biodiversity dynamics
51

52420 (Chalmandrier et al. 2021, 2022). In the context where ESI are pervasive and impactful, the response of a given
53

54421 species to climate change will inevitably hinge on the response of species it interacts with. Consequently,
55
564

e 22 predicting a species’ response to future climate will be contingent upon the responses of other species to

58 . . e .
5423 climate change. Yet, while our study advances our understanding of biodiversity responses to global changes,

60
424 it underscores the intricacy of deciphering species coexistence through empirical patterns (Miinkemidiller et al.

19
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; 425 2020; Thuiller et al. 2023). Frameworks that facilitate the modeling of species responses to the environment
2 426 while accounting for their interdependencies are only beginning to emerge (Staniczenko et al. 2017; Ohlmann
6 427 et al. 2023). These models propose the integration of a known (directed) interaction network into a niche
273 428 distribution model to encompass both environmental and species influences, thereby addressing environment
9

1(1)429 - species interactions (Poggiato et al. 2022).

124

30
13

14 .. . . . .
15431 To conclude, our findings support the notion that environment - species interaction relationships play a pivotal

16
17432 role in the context of birds' responses to climate and land cover changes during the period 2001-2019. Given
18
19433 the increasing significance of climate change in the years to come (Calvin et al. 2023), there is an urgent need
20

21434 to predict and mitigate its adverse consequences on biodiversity. We argue that deepening our understanding
22

32435 and improving predictions of these consequences requires a more explicit integration of community assembly

25 T . . . . .
26436 processes into modeling tools. Moreover, the availability of dynamic data for estimating interspecific

3573437 interactions across various contexts is essential. The enhanced predictions and the deeper understanding of
53438 the roles different community assembly processes play within a scrutinized system will serve as a foundation
31

§§439 for effective management strategies aimed at safeguarding species and communities affected by climate and
o

36
37441
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38442 Variation of (log-transformed) abundance values (observed across site and years) with temperature (red lines are smooth fitting curves
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40643 fitted via generalized additive models).
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1647 Variation of (log-transformed) abundance values (observed across site and years) with land-cover, measured as percent of 2x2km cell area
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, 651 Model validation

3

‘5‘ 652 To check chain converge and the reliability of model parameter estimation, we plotted, for each parameter :

g 653 Posterior density plot

8

g 654 - density of rho parameters : https://cloud.univ-grenoble-alpes.fr/s/zJnMcq29r4dHcbN
10

11655 - density of alpha parameters : https://cloud.univ-grenoble-alpes.fr/s/tEB76nK5BAp2Xyk
12

13656

14

15657 Trace plot

16
17
186
19
20659 - trace plot alpha parameters : https://cloud.univ-grenoble-alpes.fr/s/KJcWP5dJZSHFLsS

21

22660

23

24661 Running mean plot
25

;?662 Running mean shows whether the chain slowly or quickly approached its target distribution by plotting the

58 - trace plot rho parameters : https://cloud.univ-grenoble-alpes.fr/s/JNA9TNDX83CpzQé6

53663 running means of each parameter. Using the same scale in the vertical axis allows us to compare convergence

30
31664 between different parameters. Decent convergence is identified when the chain quickly approaches the

32

33665 overall mean, and remains stable along the iterations.

34

35666

36

22667 - running means of rho parameters : https://cloud.univ-grenoble-alpes.fr/s/BSia2nm37JDAb6Ls
23668 - running means of alpha parameters : https://cloud.univ-grenoble-alpes.fr/s/cGbn9YtpXnfwf7B
41

43

44670 Potential Scale Reduction Factor (Rhat).

45

46671 The potential scale reduction factor measures convergence of the chains by measuring the degree to which
47

23672 variance (of the means) between chains exceeds what one would expect if the chains were identically

§?673 distributed. Good convergence is identified when Rhat approches 1, decent convergence when Rhat <1.2.

52

53674 - Rhat for rho parameters https://cloud.univ-grenoble-alpes.fr/s/z2n3A5jgJaaz4DD

54

55675 - Rhat for alpha parameters https://cloud.univ-grenoble-alpes.fr/s/CQWzfg3DDN3sy5z

56
57676
58

59%77 Cross correlation
60

678 - correlation for rho parameters: https://cloud.univ-grenoble-alpes.fr/s/9PHjzM7ZxHLg4t2
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correlation for alpha parameters: https://cloud.univ-grenoble-alpes.fr/s/d7 AopcefHMFFaYa
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