Conflict of interest
Authors declare no conflict of interest
References:
Abrams, M. D. (1990). Adaptations and responses to drought inQuercus species of North America. Tree Physiology ,7 (1-2-3–4), 227–238.
https://doi.org/10.1093/treephys/7.1-2-3-4.227
Aphalo, P. J., & Jarvis, P. G. (1991). Do stomata respond to relative
humidity? Plant, Cell and Environment , 14 (1), 127–132.
https://doi.org/10.1111/j.1365-3040.1991.tb01379.x
Arneth, A., Lloyd, J., Šantrůčková, H., Bird, M., Grigoryev, S.,
Kalaschnikov, Y. N., Gleixner, G., & Schulze, E.-D. (2002). Response of
central Siberian Scots pine to soil water deficit and long-term trends
in atmospheric CO 2 concentration: LONG-TERM13 C IN SIBERIAN SCOTS PINE. Global
Biogeochemical Cycles , 16 (1), 5-1-5–13.
https://doi.org/10.1029/2000GB001374
Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic
and abiotic stresses: From genes to the field. Journal of
Experimental Botany , 63 (10), 3523–3543.
https://doi.org/10.1093/jxb/ers100
Ball, J. T., Woodrow, I. E., & Berry, J. A. (1987). A Model Predicting
Stomatal Conductance and its Contribution to the Control of
Photosynthesis under Different Environmental Conditions. In J. Biggins
(Ed.), Progress in Photosynthesis Research: Volume 4 Proceedings
of the VIIth International Congress on Photosynthesis Providence, Rhode
Island, USA, August 10–15, 1986 (pp. 221–224). Springer Netherlands.
https://doi.org/10.1007/978-94-017-0519-6_48
Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis Jr, A. R., &
Long, S. P. (2001). Improved temperature response functions for models
of Rubisco-limited photosynthesis: In vivo Rubisco enzyme
kinetics. Plant, Cell & Environment , 24 (2), 253–259.
https://doi.org/10.1111/j.1365-3040.2001.00668.x
Cowan, Ian, Farqhuar Graham. (1977). Stomatal function in relation
to leaf metabolism and environment.
Damour, G., Simonneau, T., Cochard, H., & Urban, L. (2010). An overview
of models of stomatal conductance at the leaf level: Models of stomatal
conductance. Plant, Cell & Environment , no-no.
https://doi.org/10.1111/j.1365-3040.2010.02181.x
De Kauwe, M. G., Kala, J., Lin, Y.-S., Pitman, A. J., Medlyn, B. E.,
Duursma, R. A., Abramowitz, G., Wang, Y.-P., & Miralles, D. G. (2015).
A test of an optimal stomatal conductance scheme within the CABLE land
surface model. Geoscientific Model Development , 8 (2),
431–452. https://doi.org/10.5194/gmd-8-431-2015
Duursma, R. A. (2015). Plantecophys—An R Package for Analysing and
Modelling Leaf Gas Exchange Data. PLOS ONE , 10 (11),
e0143346. https://doi.org/10.1371/journal.pone.0143346
Duursma, R. A., Blackman, C. J., Lopéz, R., Martin‐StPaul, N. K.,
Cochard, H., & Medlyn, B. E. (2019). On the minimum leaf conductance:
Its role in models of plant water use, and ecological and environmental
controls. New Phytologist , 221 (2), 693–705.
https://doi.org/10.1111/nph.15395
Duursma, R. A., Payton, P., Bange, M. P., Broughton, K. J., Smith, R.
A., Medlyn, B. E., & Tissue, D. T. (2013). Near-optimal response of
instantaneous transpiration efficiency to vapour pressure deficit,
temperature and [CO2] in cotton (Gossypium hirsutum L.).Agricultural and Forest Meteorology , 168 , 168–176.
https://doi.org/10.1016/j.agrformet.2012.09.005
Eamus, D., Taylor, D. T., Macinnis-Ng, C. M. O., Shanahan, S., & De
Silva, L. (2008). Comparing model predictions and experimental data for
the response of stomatal conductance and guard cell turgor to
manipulations of cuticular conductance, leaf-to-air vapour pressure
difference and temperature: Feedback mechanisms are able to account for
all observations. Plant, Cell & Environment , 31 (3),
269–277. https://doi.org/10.1111/j.1365-3040.2007.01771.x
Ehleringer, J. R. (2005). The Influence of Atmospheric CO2, Temperature,
and Water on the Abundance of C3/C4 Taxa. In I. T. Baldwin, M. M.
Caldwell, G. Heldmaier, R. B. Jackson, O. L. Lange, H. A. Mooney, E.-D.
Schulze, U. Sommer, J. R. Ehleringer, M. Denise Dearing, & T. E.
Cerling (Eds.), A History of Atmospheric CO2 and Its Effects on
Plants, Animals, and Ecosystems (pp. 214–231). Springer.
https://doi.org/10.1007/0-387-27048-5_10
Franks, P. J., Berry, J. A., Lombardozzi, D. L., & Bonan, G. B. (2017).
Stomatal Function across Temporal and Spatial Scales: Deep-Time Trends,
Land-Atmosphere Coupling and Global Models. Plant Physiology ,174 (2), 583–602. https://doi.org/10.1104/pp.17.00287
Gimeno, T. E., Crous, K. Y., Cooke, J., O’Grady, A. P., Ósvaldsson, A.,
Medlyn, B. E., & Ellsworth, D. S. (2016). Conserved stomatal behaviour
under elevated CO 2 and varying water availability in a
mature woodland. Functional Ecology , 30 (5), 700–709.
https://doi.org/10.1111/1365-2435.12532
Greenwood, S., Ruiz-Benito, P., Martínez-Vilalta, J., Lloret, F.,
Kitzberger, T., Allen, C. D., Fensham, R., Laughlin, D. C., Kattge, J.,
Bönisch, G., Kraft, N. J. B., & Jump, A. S. (2017). Tree mortality
across biomes is promoted by drought intensity, lower wood density and
higher specific leaf area. Ecology Letters , 20 (4),
539–553. https://doi.org/10.1111/ele.12748
Héroult, A., Lin, Y.-S., Bourne, A., Medlyn, B. E., & Ellsworth, D. S.
(2013). Optimal stomatal conductance in relation to photosynthesis in
climatically contrasting Eucalyptus species under drought:
Stomatal responses of eucalyptus under drought. Plant, Cell &
Environment , 36 (2), 262–274.
https://doi.org/10.1111/j.1365-3040.2012.02570.x
Lin, Y.-S., Medlyn, B. E., Duursma, R. A., Prentice, I. C., Wang, H.,
Baig, S., Eamus, D., de Dios, V. R., Mitchell, P., Ellsworth, D. S., de
Beeck, M. O., Wallin, G., Uddling, J., Tarvainen, L., Linderson, M.-L.,
Cernusak, L. A., Nippert, J. B., Ocheltree, T. W., Tissue, D. T.,
… Wingate, L. (2015). Optimal stomatal behaviour around the
world. Nature Climate Change , 5 (5), 459–464.
https://doi.org/10.1038/nclimate2550
Lu, Y., Duursma, R. A., & Medlyn, B. E. (2016). Optimal stomatal
behaviour under stochastic rainfall. Journal of Theoretical
Biology , 394 , 160–171.
https://doi.org/10.1016/j.jtbi.2016.01.003
Manzoni, S., Vico, G., Palmroth, S., Porporato, A., & Katul, G. (2013).
Optimization of stomatal conductance for maximum carbon gain under
dynamic soil moisture. Advances in Water Resources , 62 ,
90–105. https://doi.org/10.1016/j.advwatres.2013.09.020
McCulloh, K. A., Petitmermet, J., Stefanski, A., Rice, K. E., Rich, R.
L., Montgomery, R. A., & Reich, P. B. (2016). Is it getting hot in
here? Adjustment of hydraulic parameters in six boreal and temperate
tree species after 5 years of warming. Global Change Biology ,22 (12), 4124–4133. https://doi.org/10.1111/gcb.13323
Medlyn, B. E., De Kauwe, M. G., Zaehle, S., Walker, A. P., Duursma, R.
A., Luus, K., Mishurov, M., Pak, B., Smith, B., Wang, Y.-P., Yang, X.,
Crous, K. Y., Drake, J. E., Gimeno, T. E., Macdonald, C. A., Norby, R.
J., Power, S. A., Tjoelker, M. G., & Ellsworth, D. S. (2016). Using
models to guide field experiments: A priori predictions for the
CO 2 response of a nutrient- and water-limited native
Eucalypt woodland. Global Change Biology , 22 (8),
2834–2851. https://doi.org/10.1111/gcb.13268
Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I.
C., Barton, C. V. M., Crous, K. Y., De Angelis, P., Freeman, M., &
Wingate, L. (2011). Reconciling the optimal and empirical approaches to
modelling stomatal conductance. Global Change Biology ,17 (6), 2134–2144.
https://doi.org/10.1111/j.1365-2486.2010.02375.x
Mott, K. A., & Parkhurst, D. F. (1991). Stomatal responses to humidity
in air and helox. Plant, Cell and Environment , 14 (5),
509–515. https://doi.org/10.1111/j.1365-3040.1991.tb01521.x
Mrad, A., Sevanto, S., Domec, J.-C., Liu, Y., Nakad, M., & Katul, G.
(2019). A Dynamic Optimality Principle for Water Use Strategies Explains
Isohydric to Anisohydric Plant Responses to Drought. Frontiers in
Forests and Global Change , 2 , 49.
https://doi.org/10.3389/ffgc.2019.00049
Niinemets, Ü., & Valladares, F. (2006). TOLERANCE TO SHADE, DROUGHT,
AND WATERLOGGING OF TEMPERATE NORTHERN HEMISPHERE TREES AND SHRUBS.Ecological Monographs , 76 (4), 521–547.
https://doi.org/10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2
Nijs, I., Ferris, R., Blum, H., Hendrey, G., & Impens, I. (1997).
Stomatal regulation in a changing climate: A field study using Free Air
Temperature Increase (FATI) and Free Air CO2 Enrichment (FACE).Plant, Cell and Environment , 20 (8), 1041–1050.
https://doi.org/10.1111/j.1365-3040.1997.tb00680.x
Outlaw, W. H., & De Vlieghere-He, X. (2001). Transpiration Rate. An
Important Factor Controlling the Sucrose Content of the Guard Cell
Apoplast of Broad Bean. Plant Physiology , 126 (4),
1716–1724. https://doi.org/10.1104/pp.126.4.1716
Outlaw, W. H., Manchester, J., DiCamelli, C. A., Randall, D. D., Rapp,
B., & Veith, G. M. (1979). Photosynthetic carbon reduction pathway is
absent in chloroplasts of Vicia faba guard cells. Proceedings of
the National Academy of Sciences , 76 (12), 6371–6375.
https://doi.org/10.1073/pnas.76.12.6371
Reich, P. B., Sendall, K. M., Rice, K., Rich, R. L., Stefanski, A.,
Hobbie, S. E., & Montgomery, R. A. (2015). Geographic range predicts
photosynthetic and growth response to warming in co-occurring tree
species. Nature Climate Change , 5 (2), 148–152.
https://doi.org/10.1038/nclimate2497
Reich, P. B., Sendall, K. M., Stefanski, A., Rich, R. L., Hobbie, S. E.,
& Montgomery, R. A. (2018). Effects of climate warming on
photosynthesis in boreal tree species depend on soil moisture.Nature , 562 (7726), 263–267.
https://doi.org/10.1038/s41586-018-0582-4
Reich, P. B., Sendall, K. M., Stefanski, A., Wei, X., Rich, R. L., &
Montgomery, R. A. (2016). Boreal and temperate trees show strong
acclimation of respiration to warming. Nature , 531 (7596),
633–636. https://doi.org/10.1038/nature17142
Rich, R. L., Stefanski, A., Montgomery, R. A., Hobbie, S. E., Kimball,
B. A., & Reich, P. B. (2015). Design and performance of combined
infrared canopy and belowground warming in the B4WarmED (Boreal Forest
Warming at an Ecotone in Danger) experiment. Global Change
Biology , 21 (6), 2334–2348. https://doi.org/10.1111/gcb.12855
Seager, R., Neelin, D., Simpson, I., Liu, H., Henderson, N., Shaw, T.,
Kushnir, Y., Ting, M., & Cook, B. (2014). Dynamical and Thermodynamical
Causes of Large-Scale Changes in the Hydrological Cycle over North
America in Response to Global Warming*. Journal of Climate ,27 (20), 7921–7948. https://doi.org/10.1175/JCLI-D-14-00153.1
Sendall, K. M., Reich, P. B., Zhao, C., Jihua, H., Wei, X., Stefanski,
A., Rice, K., Rich, R. L., & Montgomery, R. A. (2015). Acclimation of
photosynthetic temperature optima of temperate and boreal tree species
in response to experimental forest warming. Global Change
Biology , 21 (3), 1342–1357. https://doi.org/10.1111/gcb.12781
Shimazaki, K. (1989). Ribulosebisphosphate Carboxylase Activity and
Photosynthetic O2 Evolution Rate in Vicia Guard-Cell Protoplasts 1.Plant Physiology , 91 (2), 459–463.
https://doi.org/10.1104/pp.91.2.459
Stefanski, A., Bermudez, R., Sendall, K. M., Montgomery, R. A., &
Reich, P. B. (2020). Surprising lack of sensitivity of biochemical
limitation of photosynthesis of nine tree species to open‐air
experimental warming and reduced rainfall in a southern boreal forest.Global Change Biology , 26 (2), 746–759.
https://doi.org/10.1111/gcb.14805
Wang, Y., Hogg, E. H., Price, D. T., Edwards, J., & Williamson, T.
(2014). Past and projected future changes in moisture conditions in the
Canadian boreal forest. The Forestry Chronicle , 90 (05),
678–691. https://doi.org/10.5558/tfc2014-134
Wolf, A., Anderegg, W. R. L., & Pacala, S. W. (2016). Optimal stomatal
behavior with competition for water and risk of hydraulic impairment.Proceedings of the National Academy of Sciences , 113 (46),
E7222–E7230. https://doi.org/10.1073/pnas.1615144113
Zhou, S., Duursma, R. A., Medlyn, B. E., Kelly, J. W. G., & Prentice,
I. C. (2013). How should we model plant responses to drought? An
analysis of stomatal and non-stomatal responses to water stress.Agricultural and Forest Meteorology , 182–183 , 204–214.
https://doi.org/10.1016/j.agrformet.2013.05.009
Table 1. Summary of the aboveground and belowground warming and
summer rainfall reduction treatments for both research sites (Cloquet
Forestry Center – in Cloquet, MN and Hubachek Wilderness Research
Center – Ely, MN). The comparison summaries represent means for each
treatment based on hourly records for each experimental plot and
averaged for the period from June 1st – September
30th (as that is the period when rainfall removal
occurred and represents the main part of the growing season when theAne t measurements were conducted)
for all years combined. For the comparison of the rainfall removal, we
show the summary of precipitation for the years when treatment was
active in contrast to 40 years means for the same period. Standard
deviation of the mean calculated for all years and all units of
replication (i.e., all plots in each treatment combination) is shown in
parentheses.