Conflict of interest
Authors declare no conflict of interest
References:
Abrams, M. D. (1990). Adaptations and responses to drought inQuercus species of North America. Tree Physiology ,7 (1-2-3–4), 227–238. https://doi.org/10.1093/treephys/7.1-2-3-4.227
Aphalo, P. J., & Jarvis, P. G. (1991). Do stomata respond to relative humidity? Plant, Cell and Environment , 14 (1), 127–132. https://doi.org/10.1111/j.1365-3040.1991.tb01379.x
Arneth, A., Lloyd, J., Šantrůčková, H., Bird, M., Grigoryev, S., Kalaschnikov, Y. N., Gleixner, G., & Schulze, E.-D. (2002). Response of central Siberian Scots pine to soil water deficit and long-term trends in atmospheric CO 2 concentration: LONG-TERM13 C IN SIBERIAN SCOTS PINE. Global Biogeochemical Cycles , 16 (1), 5-1-5–13. https://doi.org/10.1029/2000GB001374
Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: From genes to the field. Journal of Experimental Botany , 63 (10), 3523–3543. https://doi.org/10.1093/jxb/ers100
Ball, J. T., Woodrow, I. E., & Berry, J. A. (1987). A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions. In J. Biggins (Ed.), Progress in Photosynthesis Research: Volume 4 Proceedings of the VIIth International Congress on Photosynthesis Providence, Rhode Island, USA, August 10–15, 1986 (pp. 221–224). Springer Netherlands. https://doi.org/10.1007/978-94-017-0519-6_48
Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis Jr, A. R., & Long, S. P. (2001). Improved temperature response functions for models of Rubisco-limited photosynthesis: In vivo Rubisco enzyme kinetics. Plant, Cell & Environment , 24 (2), 253–259. https://doi.org/10.1111/j.1365-3040.2001.00668.x
Cowan, Ian, Farqhuar Graham. (1977). Stomatal function in relation to leaf metabolism and environment.
Damour, G., Simonneau, T., Cochard, H., & Urban, L. (2010). An overview of models of stomatal conductance at the leaf level: Models of stomatal conductance. Plant, Cell & Environment , no-no. https://doi.org/10.1111/j.1365-3040.2010.02181.x
De Kauwe, M. G., Kala, J., Lin, Y.-S., Pitman, A. J., Medlyn, B. E., Duursma, R. A., Abramowitz, G., Wang, Y.-P., & Miralles, D. G. (2015). A test of an optimal stomatal conductance scheme within the CABLE land surface model. Geoscientific Model Development , 8 (2), 431–452. https://doi.org/10.5194/gmd-8-431-2015
Duursma, R. A. (2015). Plantecophys—An R Package for Analysing and Modelling Leaf Gas Exchange Data. PLOS ONE , 10 (11), e0143346. https://doi.org/10.1371/journal.pone.0143346
Duursma, R. A., Blackman, C. J., Lopéz, R., Martin‐StPaul, N. K., Cochard, H., & Medlyn, B. E. (2019). On the minimum leaf conductance: Its role in models of plant water use, and ecological and environmental controls. New Phytologist , 221 (2), 693–705. https://doi.org/10.1111/nph.15395
Duursma, R. A., Payton, P., Bange, M. P., Broughton, K. J., Smith, R. A., Medlyn, B. E., & Tissue, D. T. (2013). Near-optimal response of instantaneous transpiration efficiency to vapour pressure deficit, temperature and [CO2] in cotton (Gossypium hirsutum L.).Agricultural and Forest Meteorology , 168 , 168–176. https://doi.org/10.1016/j.agrformet.2012.09.005
Eamus, D., Taylor, D. T., Macinnis-Ng, C. M. O., Shanahan, S., & De Silva, L. (2008). Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: Feedback mechanisms are able to account for all observations. Plant, Cell & Environment , 31 (3), 269–277. https://doi.org/10.1111/j.1365-3040.2007.01771.x
Ehleringer, J. R. (2005). The Influence of Atmospheric CO2, Temperature, and Water on the Abundance of C3/C4 Taxa. In I. T. Baldwin, M. M. Caldwell, G. Heldmaier, R. B. Jackson, O. L. Lange, H. A. Mooney, E.-D. Schulze, U. Sommer, J. R. Ehleringer, M. Denise Dearing, & T. E. Cerling (Eds.), A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems (pp. 214–231). Springer. https://doi.org/10.1007/0-387-27048-5_10
Franks, P. J., Berry, J. A., Lombardozzi, D. L., & Bonan, G. B. (2017). Stomatal Function across Temporal and Spatial Scales: Deep-Time Trends, Land-Atmosphere Coupling and Global Models. Plant Physiology ,174 (2), 583–602. https://doi.org/10.1104/pp.17.00287
Gimeno, T. E., Crous, K. Y., Cooke, J., O’Grady, A. P., Ósvaldsson, A., Medlyn, B. E., & Ellsworth, D. S. (2016). Conserved stomatal behaviour under elevated CO 2 and varying water availability in a mature woodland. Functional Ecology , 30 (5), 700–709. https://doi.org/10.1111/1365-2435.12532
Greenwood, S., Ruiz-Benito, P., Martínez-Vilalta, J., Lloret, F., Kitzberger, T., Allen, C. D., Fensham, R., Laughlin, D. C., Kattge, J., Bönisch, G., Kraft, N. J. B., & Jump, A. S. (2017). Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letters , 20 (4), 539–553. https://doi.org/10.1111/ele.12748
Héroult, A., Lin, Y.-S., Bourne, A., Medlyn, B. E., & Ellsworth, D. S. (2013). Optimal stomatal conductance in relation to photosynthesis in climatically contrasting Eucalyptus species under drought: Stomatal responses of eucalyptus under drought. Plant, Cell & Environment , 36 (2), 262–274. https://doi.org/10.1111/j.1365-3040.2012.02570.x
Lin, Y.-S., Medlyn, B. E., Duursma, R. A., Prentice, I. C., Wang, H., Baig, S., Eamus, D., de Dios, V. R., Mitchell, P., Ellsworth, D. S., de Beeck, M. O., Wallin, G., Uddling, J., Tarvainen, L., Linderson, M.-L., Cernusak, L. A., Nippert, J. B., Ocheltree, T. W., Tissue, D. T., … Wingate, L. (2015). Optimal stomatal behaviour around the world. Nature Climate Change , 5 (5), 459–464. https://doi.org/10.1038/nclimate2550
Lu, Y., Duursma, R. A., & Medlyn, B. E. (2016). Optimal stomatal behaviour under stochastic rainfall. Journal of Theoretical Biology , 394 , 160–171. https://doi.org/10.1016/j.jtbi.2016.01.003
Manzoni, S., Vico, G., Palmroth, S., Porporato, A., & Katul, G. (2013). Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture. Advances in Water Resources , 62 , 90–105. https://doi.org/10.1016/j.advwatres.2013.09.020
McCulloh, K. A., Petitmermet, J., Stefanski, A., Rice, K. E., Rich, R. L., Montgomery, R. A., & Reich, P. B. (2016). Is it getting hot in here? Adjustment of hydraulic parameters in six boreal and temperate tree species after 5 years of warming. Global Change Biology ,22 (12), 4124–4133. https://doi.org/10.1111/gcb.13323
Medlyn, B. E., De Kauwe, M. G., Zaehle, S., Walker, A. P., Duursma, R. A., Luus, K., Mishurov, M., Pak, B., Smith, B., Wang, Y.-P., Yang, X., Crous, K. Y., Drake, J. E., Gimeno, T. E., Macdonald, C. A., Norby, R. J., Power, S. A., Tjoelker, M. G., & Ellsworth, D. S. (2016). Using models to guide field experiments: A priori predictions for the CO 2 response of a nutrient- and water-limited native Eucalypt woodland. Global Change Biology , 22 (8), 2834–2851. https://doi.org/10.1111/gcb.13268
Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., Crous, K. Y., De Angelis, P., Freeman, M., & Wingate, L. (2011). Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology ,17 (6), 2134–2144. https://doi.org/10.1111/j.1365-2486.2010.02375.x
Mott, K. A., & Parkhurst, D. F. (1991). Stomatal responses to humidity in air and helox. Plant, Cell and Environment , 14 (5), 509–515. https://doi.org/10.1111/j.1365-3040.1991.tb01521.x
Mrad, A., Sevanto, S., Domec, J.-C., Liu, Y., Nakad, M., & Katul, G. (2019). A Dynamic Optimality Principle for Water Use Strategies Explains Isohydric to Anisohydric Plant Responses to Drought. Frontiers in Forests and Global Change , 2 , 49. https://doi.org/10.3389/ffgc.2019.00049
Niinemets, Ü., & Valladares, F. (2006). TOLERANCE TO SHADE, DROUGHT, AND WATERLOGGING OF TEMPERATE NORTHERN HEMISPHERE TREES AND SHRUBS.Ecological Monographs , 76 (4), 521–547. https://doi.org/10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2
Nijs, I., Ferris, R., Blum, H., Hendrey, G., & Impens, I. (1997). Stomatal regulation in a changing climate: A field study using Free Air Temperature Increase (FATI) and Free Air CO2 Enrichment (FACE).Plant, Cell and Environment , 20 (8), 1041–1050. https://doi.org/10.1111/j.1365-3040.1997.tb00680.x
Outlaw, W. H., & De Vlieghere-He, X. (2001). Transpiration Rate. An Important Factor Controlling the Sucrose Content of the Guard Cell Apoplast of Broad Bean. Plant Physiology , 126 (4), 1716–1724. https://doi.org/10.1104/pp.126.4.1716
Outlaw, W. H., Manchester, J., DiCamelli, C. A., Randall, D. D., Rapp, B., & Veith, G. M. (1979). Photosynthetic carbon reduction pathway is absent in chloroplasts of Vicia faba guard cells. Proceedings of the National Academy of Sciences , 76 (12), 6371–6375. https://doi.org/10.1073/pnas.76.12.6371
Reich, P. B., Sendall, K. M., Rice, K., Rich, R. L., Stefanski, A., Hobbie, S. E., & Montgomery, R. A. (2015). Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nature Climate Change , 5 (2), 148–152. https://doi.org/10.1038/nclimate2497
Reich, P. B., Sendall, K. M., Stefanski, A., Rich, R. L., Hobbie, S. E., & Montgomery, R. A. (2018). Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture.Nature , 562 (7726), 263–267. https://doi.org/10.1038/s41586-018-0582-4
Reich, P. B., Sendall, K. M., Stefanski, A., Wei, X., Rich, R. L., & Montgomery, R. A. (2016). Boreal and temperate trees show strong acclimation of respiration to warming. Nature , 531 (7596), 633–636. https://doi.org/10.1038/nature17142
Rich, R. L., Stefanski, A., Montgomery, R. A., Hobbie, S. E., Kimball, B. A., & Reich, P. B. (2015). Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment. Global Change Biology , 21 (6), 2334–2348. https://doi.org/10.1111/gcb.12855
Seager, R., Neelin, D., Simpson, I., Liu, H., Henderson, N., Shaw, T., Kushnir, Y., Ting, M., & Cook, B. (2014). Dynamical and Thermodynamical Causes of Large-Scale Changes in the Hydrological Cycle over North America in Response to Global Warming*. Journal of Climate ,27 (20), 7921–7948. https://doi.org/10.1175/JCLI-D-14-00153.1
Sendall, K. M., Reich, P. B., Zhao, C., Jihua, H., Wei, X., Stefanski, A., Rice, K., Rich, R. L., & Montgomery, R. A. (2015). Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. Global Change Biology , 21 (3), 1342–1357. https://doi.org/10.1111/gcb.12781
Shimazaki, K. (1989). Ribulosebisphosphate Carboxylase Activity and Photosynthetic O2 Evolution Rate in Vicia Guard-Cell Protoplasts 1.Plant Physiology , 91 (2), 459–463. https://doi.org/10.1104/pp.91.2.459
Stefanski, A., Bermudez, R., Sendall, K. M., Montgomery, R. A., & Reich, P. B. (2020). Surprising lack of sensitivity of biochemical limitation of photosynthesis of nine tree species to open‐air experimental warming and reduced rainfall in a southern boreal forest.Global Change Biology , 26 (2), 746–759. https://doi.org/10.1111/gcb.14805
Wang, Y., Hogg, E. H., Price, D. T., Edwards, J., & Williamson, T. (2014). Past and projected future changes in moisture conditions in the Canadian boreal forest. The Forestry Chronicle , 90 (05), 678–691. https://doi.org/10.5558/tfc2014-134
Wolf, A., Anderegg, W. R. L., & Pacala, S. W. (2016). Optimal stomatal behavior with competition for water and risk of hydraulic impairment.Proceedings of the National Academy of Sciences , 113 (46), E7222–E7230. https://doi.org/10.1073/pnas.1615144113
Zhou, S., Duursma, R. A., Medlyn, B. E., Kelly, J. W. G., & Prentice, I. C. (2013). How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress.Agricultural and Forest Meteorology , 182–183 , 204–214. https://doi.org/10.1016/j.agrformet.2013.05.009
Table 1. Summary of the aboveground and belowground warming and summer rainfall reduction treatments for both research sites (Cloquet Forestry Center – in Cloquet, MN and Hubachek Wilderness Research Center – Ely, MN). The comparison summaries represent means for each treatment based on hourly records for each experimental plot and averaged for the period from June 1st – September 30th (as that is the period when rainfall removal occurred and represents the main part of the growing season when theAne t measurements were conducted) for all years combined. For the comparison of the rainfall removal, we show the summary of precipitation for the years when treatment was active in contrast to 40 years means for the same period. Standard deviation of the mean calculated for all years and all units of replication (i.e., all plots in each treatment combination) is shown in parentheses.