5. References
[1] Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., et al. , Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 2021, 71 , 209-249.
[2] Tomasetti, C., Li, L., Vogelstein, B., Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention.Science 2017, 355 , 1330-1334.
[3] Pavlova, N. N., Thompson, C. B., The emerging hallmarks of cancer metabolism. Cell Metab 2016, 23 , 27-47.
[4] Cairns, R. A., Harris, I. S., Mak, T. W., Regulation of cancer cell metabolism. Nat Rev Cancer 2011, 11 , 85-95.
[5] Patra, K. C., Wang, Q., Bhaskar, P. T., Miller, L., et al. , Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer.Cancer Cell 2013, 24 , 213-228.
[6] Spinelli, J. B., Yoon, H., Ringel, A. E., Jeanfavre, S., et al. , Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science 2017, 358 , 941-946.
[7] Gong, Y., Liu, Z., Yuan, Y., Yang, Z., et al. , PUMILIO proteins promote colorectal cancer growth via suppressing p21. Nat Commun 2022, 13 , 1-17.
[8] Wang, T.-H., Wu, C.-C., Huang, K.-Y., Leu, Y.-L., et al. , Integrated Omics Analysis of Non-Small-Cell Lung Cancer Cells Harboring the EGFR C797S Mutation Reveals the Potential of AXL as a Novel Therapeutic Target in TKI-Resistant Lung Cancer. Cancers 2020,13 , 111.
[9] Lubes, G., Goodarzi, M., GC–MS based metabolomics used for the identification of cancer volatile organic compounds as biomarkers.J Pharmaceut Biomed Analysis 2018, 147 , 313-322.
[10] Mayers, J. R., Wu, C., Clish, C. B., Kraft, P., et al. , Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med 2014,20 , 1193-1198.
[11] Mayers, J. R., Torrence, M. E., Danai, L. V., Papagiannakopoulos, T., et al. , Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers.Science 2016, 353 , 1161-1165.
[12] do Valle, Í. F., Menichetti, G., Simonetti, G., Bruno, S., et al. , Network integration of multi-tumour omics data suggests novel targeting strategies. Nat Commun 2018, 9 , 1-10.
[13] Jain, M., Nilsson, R., Sharma, S., Madhusudhan, N., et al. , Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 2012, 336 , 1040-1044.
[14] Newman, A. C., Maddocks, O. D., Serine and functional metabolites in cancer. Trends Cell Biol 2017, 27 , 645-657.
[15] Tao, L., Zhou, J., Yuan, C., Zhang, L., et al. , Metabolomics identifies serum and exosomes metabolite markers of pancreatic cancer. Metabolomics 2019, 15 , 1-11.
[16] Garcia-Bermudez, J., Baudrier, L., La, K., Zhu, X. G., et al. , Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nat Cell Biol 2018, 20 , 775-781.
[17] León, Z., García‐Cañaveras, J. C., Donato, M. T., Lahoz, A., Mammalian cell metabolomics: experimental design and sample preparation.Electrophoresis 2013, 34 , 2762-2775.
[18] Dettmer, K., Nurnberger, N., Kaspar, H., Gruber, M. A., et al. , Metabolite extraction from adherently growing mammalian cells for metabolomics studies: optimization of harvesting and extraction protocols. Anal Bioanal Chem 2011, 399 , 1127-1139.
[19] Bi, H., Krausz, K. W., Manna, S. K., Li, F., et al. , Optimization of harvesting, extraction, and analytical protocols for UPLC-ESI-MS-based metabolomic analysis of adherent mammalian cancer cells. Anal Bioanal Chem 2013, 405 , 5279-5289.
[20] Fritsche-Guenther, R., Bauer, A., Gloaguen, Y., Lorenz, M., Kirwan, J. A., Modified Protocol of Harvesting, Extraction, and Normalization Approaches for Gas Chromatography Mass Spectrometry-Based Metabolomics Analysis of Adherent Cells Grown Under High Fetal Calf Serum Conditions. Metabolites 2019, 10 , 2.
[21] Weibel, K. E., Mor, J.-R., Fiechter, A., Rapid sampling of yeast cells and automated assays of adenylate, citrate, pyruvate and glucose-6-phosphate pools. Anal Biochem 1974, 58 , 208-216.
[22] Liu, X., Wang, T., Sun, X., Wang, Z., et al. , Optimized sampling protocol for mass spectrometry-based metabolomics in Streptomyces. Bioresourc Bioprocess 2019, 6 , 1-12.
[23] Garcia-Canaveras, J. C., Lopez, S., Castell, J. V., Donato, M. T., Lahoz, A., Extending metabolome coverage for untargeted metabolite profiling of adherent cultured hepatic cells. Anal Bioanal Chem2016, 408 , 1217-1230.
[24] Sellick, C. A., Hansen, R., Maqsood, A. R., Dunn, W. B., et al. , Effective quenching processes for physiologically valid metabolite profiling of suspension cultured mammalian cells. Anal Chem 2009, 81 , 174-183.
[25] Jang, C., Chen, L., Rabinowitz, J. D., Metabolomics and isotope tracing. Cell 2018, 173 , 822-837.
[26] Sellick, C. A., Knight, D., Croxford, A. S., Maqsood, A. R., et al. , Evaluation of extraction processes for intracellular metabolite profiling of mammalian cells: matching extraction approaches to cell type and metabolite targets. Metabolomics 2010, 6 , 427-438.
[27] Wamelink, M. M., Struys, E. A., Huck, J. H., Roos, B., et al. , Quantification of sugar phosphate intermediates of the pentose phosphate pathway by LC–MS/MS: application to two new inherited defects of metabolism. J Chromat B 2005, 823 , 18-25.
[28] Liu, X., Sun, X., Wang, T., Zhang, X., et al. , Enhancing candicidin biosynthesis by medium optimization and pH stepwise control strategy with process metabolomics analysis of Streptomyces ZYJ-6.Bioprocess Biosyst Eng 2018, 41 , 1743-1755.
[29] Kapoore, R. V., Coyle, R., Staton, C. A., Brown, N. J., Vaidyanathan, S., Influence of washing and quenching in profiling the metabolome of adherent mammalian cells: a case study with the metastatic breast cancer cell line MDA-MB-231. Analyst 2017, 142 , 2038-2049.
[30] Varga, E., Glauner, T., Berthiller, F., Krska, R., et al. , Development and validation of a (semi-) quantitative UHPLC-MS/MS method for the determination of 191 mycotoxins and other fungal metabolites in almonds, hazelnuts, peanuts and pistachios. Anal Bioanal Chem 2013, 405 , 5087-5104.
[31] Buescher, J. M., Moco, S., Sauer, U., Zamboni, N., Ultrahigh performance liquid chromatography− tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites.Anal Chem 2010, 82 , 4403-4412.
[32] Mashego, M., Wu, L., Van Dam, J., Ras, C., et al. , MIRACLE: mass isotopomer ratio analysis of U‐13C‐labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnol Bioeng 2004, 85 , 620-628.
[33] Wu, L., Mashego, M. R., van Dam, J. C., Proell, A. M., et al. , Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Analy Biochem 2005, 336 , 164-171.
[34] Badea, M. A., Balas, M., Hermenean, A., Ciceu, A., et al. , Influence of Matrigel on Single- and Multiple-Spheroid Cultures in Breast Cancer Research. SLAS Discov 2019, 24 , 563-578.
[35] Lin, R. Z., Chang, H. Y., Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 2008, 3 , 1172-1184.
[36] Hirschhaeuser, F., Menne, H., Dittfeld, C., West, J., et al. , Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 2010, 148 , 3-15.
[37] Mehta, G., Hsiao, A. Y., Ingram, M., Luker, G. D., Takayama, S., Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release 2012,164 , 192-204.
[38] Stewart, D. J., Mechanisms of resistance to cisplatin and carboplatin. Crit Rev Oncol Hemat 2007, 63 , 12-31.
[39] Costa, E. C., de Melo-Diogo, D., Moreira, A. F., Carvalho, M. P., Correia, I. J., Spheroids Formation on Non-Adhesive Surfaces by Liquid Overlay Technique: Considerations and Practical Approaches.Biotechnol J 2018, 13 , 1700417.
[40] Wang, G., Chu, J., Zhuang, Y., van Gulik, W., Noorman, H., A dynamic model-based preparation of uniformly-13C-labeled internal standards facilitates quantitative metabolomics analysis of Penicillium chrysogenum. J Biotechnol 2019, 299 , 21-31.
[41] Canelas, A. B., ten Pierick, A., Ras, C., Seifar, R. M., et al. , Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics. Anal Chem 2009, 81 , 7379-7389.
[42] Wordofa, G. G., Kristensen, M., Schrubbers, L., McCloskey, D., et al. , Quantifying the metabolome of Pseudomonas taiwanensis VLB120: evaluation of hot and cold combined quenching/extraction approaches. Anal Chem 2017, 89 , 8738-8747.
[43] de Koning, W., van Dam, K., A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 1992, 204 , 118-123.
[44] Canelas, A. B., Ras, C., Ten Pierick, A., van Dam, J. C., et al. , Leakage-free rapid quenching technique for yeast metabolomics.Metabolomics 2008, 4 , 226-239.
[45] Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., et al. , Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites. Anal Chem 2008, 80 , 2939-2948.
[46] Munger, J., Bajad, S. U., Coller, H. A., Shenk, T., Rabinowitz, J. D., Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog 2006, 2 , e132.
[47] Teng, Q., Huang, W., Collette, T. W., Ekman, D. R., Tan, C., A direct cell quenching method for cell-culture based metabolomics.Metabolomics 2009, 5 , 199-208.
[48] Dietmair, S., Timmins, N. E., Gray, P. P., Nielsen, L. K., Kromer, J. O., Towards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocol. Anal Biochem2010, 404 , 155-164.
[49] Lorenz, M. A., Burant, C. F., Kennedy, R. T., Reducing time and increasing sensitivity in sample preparation for adherent mammalian cell metabolomics. Anal Chem 2011, 83 , 3406-3414.
[50] Lane, A. N., Fan, T. W.-M., Quantification and identification of isotopomer distributions of metabolites in crude cell extracts using 1 H TOCSY. Metabolomics 2007, 3 , 79-86.
[51] Rusz, M., Rampler, E., Keppler, B. K., Jakupec, M. A., Koellensperger, G., Single Spheroid Metabolomics: Optimizing Sample Preparation of Three-Dimensional Multicellular Tumor Spheroids.Metabolites 2019, 9 , 304.
[52] Dubuis, S., Baenke, F., Scherbichler, N., Alexander, L. T., et al. , Metabotypes of breast cancer cell lines revealed by non-targeted metabolomics. Metab Eng 2017, 43 , 173-186.
[53] Zhang, K., Zhang, X., Bai, Y., Yang, L., et al. , Optimization of the sample preparation method for adherent cell metabolomics based on ultra-performance liquid chromatography coupled to mass spectrometry. Anal Methods 2019, 11 , 3678-3686.
[54] Kapoore, R. V., Coyle, R., Staton, C. A., Brown, N. J., Vaidyanathan, S., Cell line dependence of metabolite leakage in metabolome analyses of adherent normal and cancer cell lines.Metabolomics 2015, 11 , 1743-1755.
[55] Rushing, B. R., Schroder, M., Sumner, S. C., Comparison of Lysis and Detachment Sample Preparation Methods for Cultured Triple-Negative Breast Cancer Cells Using UHPLC–HRMS-Based Metabolomics. Metabolites 2022, 12 , 168.
[56] de Jonge, L. P., Douma, R. D., Heijnen, J. J., van Gulik, W. M., Optimization of cold methanol quenching for quantitative metabolomics of Penicillium chrysogenum. Metabolomics 2012,8 , 727-735.
[57] Shin, M. H., Lee, D. Y., Liu, K.-H., Fiehn, O., Kim, K. H., Evaluation of sampling and extraction methodologies for the global metabolic profiling of Saccharophagus degradans. Anal Chem 2010,82 , 6660-6666.
[58] Carnicer, M., Canelas, A. B., Ten Pierick, A., Zeng, Z., et al. , Development of quantitative metabolomics for Pichia pastoris.Metabolomics 2012, 8 , 284-298.
[59] Floch, J., A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem. 1957,226 , 497-509.
[60] Fan, T. W., El-Amouri, S. S., Macedo, J. K. A., Wang, Q. J., et al. , Stable Isotope-Resolved Metabolomics Shows Metabolic Resistance to Anti-Cancer Selenite in 3D Spheroids versus 2D Cell Cultures. Metabolites 2018, 8 , 40.
[61] Vorrink, S. U., Ullah, S., Schmidt, S., Nandania, J., et al. , Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long‐term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics. FASEB J 2017, 31 , 2696-2708.
[62] Roychoudhury, S., Kumar, A., Bhatkar, D., Sharma, N. K., Molecular avenues in targeted doxorubicin cancer therapy. Future Oncol 2020, 16 , 687-700.
[63] Mizutani, H., Tada-Oikawa, S., Hiraku, Y., Kojima, M., Kawanishi, S., Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci 2005, 76 , 1439-1453.
[64] Lorenzo, E., Ruiz-Ruiz, C., Quesada, A. J., Hernández, G., et al. , Doxorubicin induces apoptosis and CD95 gene expression in human primary endothelial cells through a p53-dependent mechanism. J Biol Chem 2002, 277 , 10883-10892.
[65] Jang, M., Kim, S. S., Lee, J., Cancer cell metabolism: implications for therapeutic targets. Exp Mol Med 2013,45 , e45.
[66] Armiñán, A., Palomino-Schätzlein, M., Deladriere, C., Arroyo-Crespo, J. J., et al. , Metabolomics facilitates the discrimination of the specific anti-cancer effects of free-and polymer-conjugated doxorubicin in breast cancer models.Biomaterials 2018, 162 , 144-153.
[67] Yang, Y., Li, C., Nie, X., Feng, X., et al. , Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning 1H NMR spectroscopy in conjunction with multivariate data analysis. J Proteome Res 2007, 6 , 2605-2614.
[68] Mirbahai, L., Wilson, M., Shaw, C. S., McConville, C., et al. , 1H magnetic resonance spectroscopy metabolites as biomarkers for cell cycle arrest and cell death in rat glioma cells. Int J Biochem & Cell Biol 2011, 43 , 990-1001.
[69] DeBerardinis, R. J., Sayed, N., Ditsworth, D., Thompson, C. B., Brick by brick: metabolism and tumor cell growth. Current Opini Genet Develop 2008, 18 , 54-61.
[70] Zeng, J., Liu, J., Yang, G.-Y., Kelly, M. J., et al. , Exogenous ethyl pyruvate versus pyruvate during metabolic recovery after oxidative stress in neonatal rat cerebrocortical slices. Journa American Society of Anesthesiologists 2007, 107 , 630-640.
[71] Klawitter, J., Klawitter, J., Gurshtein, J., Corby, K., et al. , Bezielle (BZL101)‐induced oxidative stress damage followed by redistribution of metabolic fluxes in breast cancer cells: A combined proteomic and metabolomic study. Int J Cancer 2011, 129 , 2945-2957.
[72] Triba, M., Starzec, A., Bouchemal, N., Guenin, E., et al. , Metabolomic profiling with NMR discriminates between biphosphonate and doxorubicin effects on B16 melanoma cells. NMR Biomed 2010,23 , 1009-1016.
Table 1 . Reported sample preparation procedures for metabolomics analysis of cultured mammalian cells.