Author Contributions:
Conceptualization, Hou Jingbo. and Liu Qi; methodology, Wang Xuedong and Huang Xingtao.; software, Yang Mengyue; validation, Zhang Lu and Zhang Ruoxi.; formal analysis, Yang Mengyue.; writing—original draft preparation, Wang Xuedong and Huang Xingtao.; writing—review and editing, Du Wenjuan.; visualization, Liu Qi.; supervision, Hou Jingbo; All authors have read and agreed to the published version of the manuscript.
Funding: This research was funded by the National Natural Science Foundation of China, Grant No. 81970297 to Jingbo Hou, No. 81900309 to Qi Liu, and No. 82000330 to Xuedong Wang; the China Postdoctoral Science Foundation, Grant No. 2019M661306 to Qi Liu and No. 2018M640310 to Xingtao Huang; the Heilongjiang Postdoctoral Foundation, Grant No. LBH-Z18217 to Qi Liu and No. LBH-Z19032 to Xingtao Huang; and the Key Laboratory of Myocardial Ischemia Mechanism and Treatment (Harbin Medical University), Ministry of Education, Grant No. KF202017 to Qi Liu.
Data Availability Statement: The data used to support the findings of this study are available from the corresponding author upon request.
Conflicts of Interest: The authors declare no conflict of interest.
References
  1. Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis.Nat Rev Dis Primers 2019, 5 , 56.
  2. Libby, P. Inflammation during the life cycle of the atherosclerotic plaque. Cardiovasc Res 2021, 17 , 2525–2536.
  3. Lin, J.; Li, H.; Yang, M.; Ren, J.; Huang, Z.; Han, F.; Huang, J.; Ma, J.; Zhang, D.; Zhang, Z.; Wu, J.; Huang, D.; Qiao, M.; Jin, G.; Wu, Q.; Huang, Y.; Du, J.; Han, J. A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep2013, 3, 200–210.
  4. Karunakaran, D.; Geoffrion, M.; Wei, L.; Gan, W.; Richards, L.; Shangari, P.; DeKemp, E.M.; Beanlands, R.A.; Perisic, L.; Maegdefessel, L.; Hedin, U.; Sad, S.; Guo, L.; Kolodgie, F.D.; Virmani, R.; Ruddy, T.; Rayner, K.J. Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis.Sci Adv 2016, 2, e1600224.
  5. Gupta, K.; Phan, N.; Wang, Q.; Liu, B. Necroptosis in cardiovascular disease - a new therapeutic target. J Mol Cell Cardiol2018, 118 , 26–35.
  6. Wang, Y.; Nanda, V.; Direnzo, D.; Ye, J.; Xiao, S.; Kojima, Y.; Howe, K.L.; Jarr, K.U.; Flores, A.M.; Tsantilas, P.; Tsao, N.; Rao, A.; Newman, A.A.C.; Eberhard, A.V.; Priest, J.R.; Ruusalepp, A.; Pasterkamp, G.; Maegdefessel, L.; Miller, C.L.; Lind, L.; Koplev, S.; Björkegren, J.L.M.; Owens, G.K.; Ingelsson, E.; Weissman, I.L.; Leeper, N.J. Clonally expanding smooth muscle cells promote atherosclerosis by escaping efferocytosis and activating the complement cascade. Proc Natl Acad Sci U S A 2020,117 , 15818–15826.
  7. Chappell, J.; Harman, J.L.; Narasimhan, V.M.; Yu, H.; Foote, K.; Simons, B.D.; Bennett, M.R.; Jørgensen, H.F. Extensive Proliferation of a subset of differentiated, yet plastic, medial vascular smooth muscle cells contributes to neointimal formation in mouse injury and atherosclerosis models. Circ Res 2016, 119 , 1313–1323.
  8. Que, X.; Hung, M.Y.; Yeang, C.; Gonen, A.; Prohaska, T.A.; Sun, X.; Diehl, C.; Määttä, A.; Gaddis, D.E.; Bowden, K.; Pattison, J.; MacDonald, J.G.; Ylä-Herttuala, S.; Mellon, P.L.; Hedrick, C.C.; Ley, K.; Miller, Y.I.; Glass, C.K.; Peterson, K.L.; Binder, C.J.; Tsimikas, S.; Witztum, J.L. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature2018, 558 , 301–306.
  9. Zhang, Y.; Su, S.S.; Zhao, S.; Yang, Z.; Zhong, C.Q.; Chen, X.; Cai, Q.; Yang, Z.H.; Huang, D.; Wu, R.; Han, J. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun 2017, 8 , 14329.
  10. Liu, Q.; Zhang, H.; Lin, J.; Zhang, R.; Chen, S.; Liu, W.; Sun, M.; Du, W.; Hou, J.; Yu, B. C1q/TNF-related protein 9 inhibits the cholesterol-induced Vascular smooth muscle cell phenotype switch and cell dysfunction by activating AMP-dependent kinase. J Cell Mol Med 2017, 21 , 2823–2836.
  11. Zeng, X.; Yang, J.; Hu, O.; Huang, J.; Ran, L.; Chen, M.; Zhang, Y.; Zhou, X.; Zhu, J.; Zhang, Q.; Yi, L.; Mi, M. Dihydromyricetin ameliorates nonalcoholic fatty liver disease by improving mitochondrial respiratory capacity and redox homeostasis through modulation of SIRT3 signaling. Antioxid Redox Signal2019, 30 , 163–183.
  12. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 2001, 25 , 402–408.
  13. Baines, C.P.; Kaiser, R.A.; Purcell, N.H.; Blair, N.S.; Osinska, H.; Hambleton, M.A.; Brunskill, E.W.; Sayen, M.R.; Gottlieb, R.A.; Dorn, G.W.; Robbins, J.; Molkentin, J.D. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death.Nature 2005, 434 , 658–662.
  14. Nakagawa, T.; Shimizu, S.; Watanabe, T.; Yamaguchi, O.; Otsu, K.; Yamagata, H.; Inohara, H.; Kubo, T.; Tsujimoto, Y. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 2005,434 , 652–658.
  15. Hartley, A.; Haskard, D.; Khamis, R. Oxidized LDL and anti-oxidized LDL antibodies in atherosclerosis - Novel insights and future directions in diagnosis and therapy. Trends Cardiovasc Med2019, 29 , 22–26.
  16. Rasheed, A.; Robichaud, S.; Nguyen, M.A.; Geoffrion, M.; Wyatt, H.; Cottee, M.L.; Dennison, T.; Pietrangelo, A.; Lee, R.; Lagace, T.A.; Ouimet, M.; Rayner, K.J. Loss of MLKL (mixed lineage kinase domain-like protein) decreases necrotic core but increases macrophage lipid accumulation in atherosclerosis. Arterioscler Thromb Vasc Biol 2020, 40 , 1155–1167.
  17. Kojima, Y.; Volkmer, J.P.; McKenna, K.; Civelek, M.; Lusis, A.J.; Miller, C.L.; Direnzo, D.; Nanda, V.; Ye, J.; Connolly, A.J.; Schadt, E.E.; Quertermous, T.; Betancur, P.; Maegdefessel, L.; Matic, L.P.; Hedin, U.; Weissman, I.L.; Leeper, N.J. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature2016, 536 , 86–90.
  18. Cui, S.; Lv, X.; Li, W.; Li, Z.; Liu, H.; Gao, Y.; Huang, G. Folic acid modulates VPO1 DNA methylation levels and alleviates oxidative stress-induced apoptosis in vivo and in vitro. RedoxBiol 2018, 19 , 81–91.
  19. Xin, T.; Lu, C.; Zhang, J.; Wen, J.; Yan, S.; Li, C.; Zhang, F.; Zhang, J. Oxidized LDL disrupts metabolism and inhibits macrophage survival by activating a miR-9/Drp1/mitochondrial fission signaling pathway. Oxid Med Cell Longev 2020, 2020 , 8848930.
  20. Yang, Z.; Wang, Y.; Zhang, Y.; He, X.; Zhong, C.Q.; Ni, H.; Chen, X.; Liang, Y.; Wu, J.; Zhao, S.; Zhou, D.; Han, J. RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis. Nat Cell Biol 2018, 20 , 186-197.
  21. Zuo, A.; Li, J.; Zhao, X.; Li, T.; Lei, S.; Chen, J.; Xu, D.; Song, C.; Li, N.; Ruan, S.; Lyu, L; Guo, Y. Globular CTRP9 protects cardiomyocytes from palmitic acid-induced oxidative stress by enhancing autophagic flux. Chem-Biol Interact 2020,329 , 109094.
  22. Meng, L.; Jin, W.; Wang, X. RIP3-mediated necrotic cell death accelerates systematic inflammation and mortality. Proc Natl Acad Sci U S A 2015, 112 , 11007–11012.
  23. Wang, Q.; Liu, Z.; Ren, J.; Morgan, S.; Assa, C.; Liu, B. Receptor-interacting protein kinase 3 contributes to abdominal aortic aneurysms via smooth muscle cell necrosis and inflammation.Circ Res 2015, 116 , 600–611.