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I. INTRODUCTION

The ejection of blood from the heart is influenced by its filling, physiologic status, and the receiving arterial system (load), aspects recognized since [Roy; 1870]. Furthermore, the contractile properties of the ventricle represent  good diagnostic tools for many heart diseases [Bozkurt; 2019, Curcio et. al ;2021]. Consequently, hemodynamic variables, such as ventricular pressure and flow, are outcomes of the pump properties [Abutaleb et. al; 1984, Abutaleb et. al; 1986, Abutaleb and Melbin; 2010]. Over the years several models were developed that describe the ventricular properties; this is described next.
Time Domain Models:
The Guyton, Coleman, and Granger model [Guyton et. al; 1973], is arguably the most popular and comprehensive circulatory-system model. Guyton’s very extensive model has been in some sense the pioneer of the whole investigation into mathematical modeling of the circulation. It consists of many equations addressing most relevant aspects of total-body cardiocirculatory compensation by concentrating on specific subsystems (renal, haemopoietic, thirst, cardiac pump, etc.). In this report, the focus is on the modeling and estimation of the cardiac pump time-varying parameters.

Two compliances were utilized by [Warner; 1959] to model a simple ventricle: one compliance for diastole and a lesser value for systole. More recently, time-varying compliance was estimated from a parametric model [Zhong et. al; 2005]. Time-varying heart (myocardial) properties were also estimated using mechanical models [Karam and Abche; 2006]. These studies demonstrated that both a time-variant compliance and a time-variant resistance are manifested during the cardiac cycle. The theory proposed by [Suga and Sagawa; 1974] encompassing the concepts of ‘time-varying elastance’, ‘pressure-volume area’ and ‘isoefficiency’, has been widely applied in cardiac research. Recently it has been criticized from the point of view of metabolic balance [Loiselle et. al; 2021].

Approximate, closed form relations between left ventricular time-varying resistance, compliance, and pressure and volume were derived using optimality principle [Abutaleb et. al; 1981]. Inertial properties as well as losses of both the blood and ventricle are often ignored on the assumption that at particular sites or conditions either may represent only small fractions of total energy. Although kinetic energy may constitute a small part of myocardium mechanical energy, flow and its derivative may achieve appreciable values particularly during systole where blood accelerated at the onset of ejection is appreciable. Consequently, a comprehensive study of myocardial behavior during ejection suggests inclusion of all time-varying parameters [Abutaleb et. al; 1981, Abutaleb et. al; 1982,  Abutaleb and Melbin; 2010]. These may be related as [Noordergraaf and Melbin; 1982]:
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where 
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 denote time-varying inertance, resistance, and compliance, respectively, 
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 are ventricular volume and pressure at time t.   

In [Abutaleb and Melbin; 2010] a polynomial in time model was assumed for each unknown time-varying parameter. The coefficients of the polynomials were estimated using methods of the Ito calculus. The estimated time-varying parameters describing the cardiac properties seemed to be in line with what we know from Physiology. A problem with this approach is that we have assumed a shape (polynomial in time) for the time-varying parameters. One could argue that another polynomial shape such as Hermite or Laguerre polynomials might be more representative. In the current work we drop these assumptions about the shape and estimate the parameters as time-varying functions. The only constraints we impose are that the cardiac parameters 
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 are nonnegative and slowly varying over time. The technique we use is based on the Malliavin calculus [Nualart; 1995, Abutaleb and Papaioannou; 2021] and the martingale optimality principle [Ocone, Karatzas; 1991]. We utilize the Malliavin calculus to estimate the time-varying cardiac parameters 
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 during the ejection phase of the cardiac cycle. We use the Malliavin calculus based method because it has proven its superior performance, with minimum assumptions, in the estimation of time-varying regression coefficients [Abutaleb and Papaioannou; 2007, Bjork; 2009].
 Estimation Methods of Time-Varying Parameters:
The problem of the estimation of time-varying parameters has, in general, four different ways of solving it:

(1) Assuming that the system coefficients are varying sufficiently slowly, they can be tracked using the localized (weighted or windowed) versions of the least squares or maximum likelihood estimators [Niedzwiecki; 1984, 1990, 2000].

(2) Approximation of the time-varying coefficients by a weighted combination of a certain number of known functions (basis functions). If the unknown weights are assumed to be constants, a number of the well known identification techniques could be used [Grenier; 1983, Van Trees; 1968].

(3) Assumption that the time-varying coefficients evolve as Markov processes. In this case, the Kalman filter technique and its modifications could be used for the estimation of the time-varying parameters [Chow; 1987, Abutaleb and Papaioannou; 2000].

(4) The time-varying coefficients could be treated as unknown controllers to be estimated to track the observed data. The method of Pontryagin maximum principle could be used to find the desired values [Abutaleb; 1986, Chen et al; 1998].

 
In this report we introduce another method that is based on the stochastic and the Malliavin calcului [Abutaleb and Papaiouannou; 2007, 2010]. A model is developed for each of the measured ventricular volume, cardiac flow, and the derivative of the cardiac flow. The Ornstein-Uhlenbeck (OU) process is used to model each of the measured variables. The reason for using the OU process because these OU models have wide range of applications [Barndorff-Nielsen; 2001] and are also easy to manipulate. Assuming nonnegative and slowly time-varying cardiac parameters 
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, we estimate their values using a method based on the Black-Scholes model used in financial engineering [Black and Scholes; 1973, Oksendal; 1996, Bermin; 1998, Abutaleb and Papaioannou; 2007]. The approach is to setup the problem such that the Clark-Ocone formula [Ocone and Karatzas; 1991] can be used along with the Malliavin calculus [Nualart; 1995] to estimate the unknown time-varying parameters. The estimated time-varying parameters were compared to that estimated in [Abutaleb and Melbin; 2010]. It was found that the differences between both estimates lie within 20%. Thus, it is argued that assuming time polynomial shape for the cardiac parameters is not far from reality. 
In section II, existing methods are described for the estimation of time-varying parameters 
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. In section III, we introduce the proposed method that is based on the stochastic calculus of variations (Malliavin calculus). In section IV, the equations for the estimates of the time-varying parameters 
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 are described and a summary of the estimation algorithm is given. Finally in section V, results, summary and conclusions are presented. The derivations of the methods are shown in Appendix A and Appendix B. 
II. Problem Formulation:
The measured pressure at the root of the Aorta, 
[image: image22.wmf])

(

t

p

v

, is composed of the weighted sum of (d-1), where d=4, stochastic processes where the weights are the unknown parameters 
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. To solve the problem, we imbed the sum of the processes (the observations) into another signal; 
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, termed the augmented observations. The augmented observations consist of the original observations plus a deterministic component. The addition of the known deterministic component is needed to facilitate the analysis as shown in the appendix.

The augmented observed signal, 
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, i>1, is the ith unknown time-varying coefficients they are defined as:
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We also define the stochastic processes or signals as: 
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where 
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 close to zero such that it has minor or no effect on the results.
II. a, Commonly Used Models of the Signals:

Several models are commonly used that represent different physical situations [Barndoff-Nielsen and Shephard; 2001]. 

The signal 
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 could be modeled as an Ornstein-Uhlenbeck (OU) process with no trend:
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i.e.
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Or an OU form that has a stochastic differential equation (SDE):
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i.e.
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Or as the form that has a stochastic differential equation (SDE) [Benth; 2005]:

(3)
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where the trend, 
[image: image57.wmf])

(

t

a

i

, and the diffusion parameter 
[image: image58.wmf])

(

t

e

i

could be modeled as a sum of frequencies i.e.



[image: image59.wmf]å

+

+

+

=

j

ij

ij

ij

i

t

f

t

t

a

)

2

sin(

)

(

1

0

f

p

b

a

a





(II. 6)

and
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Using the Ito formula [Oksendal; 1998], the explicit solution is given as:
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Or as Geometric Brownian motion which has the stochastic differential equation (SDE):

(4)
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which has a solution:
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In this paper each signal (the ventricular volume and its derivatives) is modeled as an OU process with a time-varying trend. We will consider the circumstances where each unknown time-varying parameter 
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One could find, via the Malliavin calculus, a closed form expression for the SDE  of p(t) as clarified in section III. First we describe conventional methods for the estimation of the unknown time-varying parameters  
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II. b, Conventional Method for Time-Varying Parameter Estimation:
Chow's Method:

The familiar scalar regression format with time-varying coefficients is:
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Where T represents transpose, the mx1 vector 
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could have the lagged values of p(k), the exogenous variables and their lagged values. 
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is an mx1 vector of the unknown time-varying coefficients.
The most common method to estimate the coefficients 
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 is Chow’s method, which is based on a maximum likelihood approach.
The key is to assume a Markov model for the time-varying parameters. That is, the set of unknown parameters, 
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, could be modeled as a vector autoregressive (VAR) process as follows [Chow; 1987]:



[image: image76.wmf])

(

)

1

(

)

(

k

k

M

k

x

h

h

+

-

=







(II. 12)

Where 
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 is a column vector of m unknown values, M is an unknown matrix of dimensions m x m, and 
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Note that when M=I and 
[image: image81.wmf]X

=0, this model is reduced to the standard constant coefficient model. When M=0 and 
[image: image82.wmf]X


[image: image83.wmf]¹

0, we have a pure random model. When M=I, and 
[image: image84.wmf]X


[image: image85.wmf]¹

0, we have the random walk model.


Chow’s method begins by assuming that M is diagonal and with initial estimated entries 
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The values of 
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 are updated, for example by means of the gradient method, where one seeks to minimize the squared difference between the estimated observations, 
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Polynomial Model for the Time-Varying Coefficients/Amplitudes [Abutaleb and Melbin; 2010]:

Each of the unknown time-varying parameters can also be modeled as a polynomial in time. For example:
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Thus, the estimated time-varying coefficients become:



[image: image95.wmf]å

D

=

i

i

ji

j

k

k

)

(

ˆ

)

(

ˆ

a

h








(II. 16)
where 
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An SDE is developed for the pump equation (I. 1) and the values of 
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 are found through the maximum likelihood method and the stochastic calculus techniques.

III. Malliavin Calculus and the Generalized Clark-Ocone Formula for the Estimation of the Unknown Time-Varying Coefficients/Amplitudes:


In this section we introduce the Malliavin calculus and its use to determine the estimates of the time-varying parameters 
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. We first consider the general case of the sum of several signals without restrictions on the shape of the stochastic differential equation (SDE) that generates each signal. The only requirement is that the time-varying parameters vary slowly with time. The Clark-Ocone formula is used to find the unknown quantities. A general form for the augmented signal p(T), at the terminal time T, is then assumed with some unknown parameters. A derived SDE for the augmented observed signal p(t) is obtained after some approximations. A closed form expression is then obtained for each of the unknown time-varying amplitudes.
III. 2, Sum of Signals with slowly time varying parameters; the General Case:

We shall first consider the estimation of time-varying parameters for a general model of the observations. We then specialize the results to the cardiac parameters. Let the augmented signal 
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where 
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or more precisely 
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(III. 3) 
Where 
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 are to be determined according to the signal model and the physical situation under study [see Section IV]. 
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(III. 5)

In such an analysis, the presence of a deterministic component makes it easier for the analysis. In this case the component is 
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 and it is known. This component acts as a reference signal or numeraire. Thus, the original problem is embedded into a larger problem. The observed signal does not usually come with a known deterministic component but in this case we add a known deterministic component and proceed to the analysis. We now attempt to find an expression for the SDE that describes the evolution of 
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, and using the generalized Clark-Ocone formula we will be able to find a closed form expression for the time-varying parameters, 
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Following the derivations shown in Appendix A we find the closed form expression for the estimates of the unknown time-varying parameters as: 
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(A. 27) 
where
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(A. 14)
and E{} stands for the expectation operation.

All the components are defined  in Appendix A for the general case and is, next, defined for the estimation of the Cardiac parameters. 
IV. Estimation Equations for the Cardiac Parameters :

We now specialize the previous general results to the case under study; the estimation of the ventricular parameters. We shall use the Ornstein-Uhlenbeck process as a model for the ventricular volume and its derivatives. Specifically we have:


[image: image125.wmf][

]

)

(

)

(

)

(

)

(

t

dW

e

dt

t

S

t

a

c

t

dS

i

i

i

i

i

i

+

-

=

,
i>1


(II. 4)

Which has the solution
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The Malliavin derivative of 
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(IV. 1) 
The augmented observations of the pressure, p(t), are given by the equation:
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(IV. 2)
and we need to find an estimate for each 
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then
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(IV. 4)
where
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(IV. 6)
After some manipulations the equation for 
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(IV. 7)
And
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(IV. 8)
Substituting the different variables in the general equation of the estimates (A. 27) we get:
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(IV. 9)
Where 
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Recall that 
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Equation (IV. 9) is a closed form expression for the estimate of the ith time-varying cardiac parameter 
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Approximate Solution:

As explained in the Appendix A, 
[image: image153.wmf])

(

t

i

h

is in general a function of 
[image: image154.wmf])

(

T

W

and could be represented by the SDE:



[image: image155.wmf](

)

(

)

(

)

å

+

=

j

j

ij

i

i

t

dW

t

t

W

dt

t

t

W

t

d

)

(

),

(

),

(

k

m

h

, i,j=2,3,4

(IV. 10) 
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and
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(IV. 7)
The unknown parameters, 
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(A. 35)
Where 
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is the observed pressure.

Summary of the Algorithm:
(1) Find the parameters of the OU describing the SDE for each of the  observed values 
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(2) Equations (IV. 10),  (A. 33a), (A. 33b) and (A. 34) are utilized as parametric model for each unknown time-varying cardiac parameter 
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(3) By minimizing the sum of squared error of equation (A. 35), one can find an estimate for the parameters 
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V.  RESULTS AND DISCUSSION

Figure 1 shows the raw data with duration  0.2 seconds and the sampling interval is 0.004 second. Using the proposed Malliavin calculus based method we were able to find estimates for the cardiac parameters. The estimates using the Malliavin calculus and the stochastic calculus-based approach [Abutaleb and Melbin; 2010] are shown in Figs. 2-4. The jaggedness in the estimates using the Malliavin calculus approach is due to the presence of the Wiener process in the estimation equations. 
The advantage of the proposed approach is that no initial shape (polynomial in time or Hermite polynomial or other polynomials) was assumed for the cardiac parameters. The only assumptions used were that the cardiac parameters are nonnegative and slowly varying over time. The resultant estimates were within 20% from the estimates obtained in [Abutaleb and Melbin; 2010]. The following comments are applicable:
1) The Left Ventricle 
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 as estimated for the ejection period agrees, both in magnitude and in its general time course, with compliance derived by other methods, specifically, with instantaneous 
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2) Similar to 
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, the resistive parameter, 
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, agrees with the lower values reported elsewhere [Hunter; 1982, Suga et. al; 1980, Schroff; 1981]. [Vaartjes; 1983] reported higher values for the resistance parameter, but concludes that the resistance values agree with those reported previously, a conclusion based on differences of ventricular chamber  volumes between dogs (lower 
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 values) and rabbits (higher 
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 values.
3) The jaggedness in the estimates of the time-varying parameters is due to the noisy data. We expect the estimates to be smoother.
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Appendix A: Derivation of the Estimates:

Let the augmented signal p(t) be defined as:
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where 
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or more precisely 
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The signals, 
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, each has the general form of the SDE as:
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(A. 3) 
which has a solution:
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also
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Using Ito's lemma, the SDE for 
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which has the form:
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where
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With the assumption of slowly varying parameters we have: 
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Substituting for 
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and since

[image: image205.wmf])

(

)]

(

[

)

(

)

(

)

(

1

1

1

t

S

t

S

y

t

t

p

t

i

i

i

i

å

>

-

=

h

h





(A. 11)

then

[image: image206.wmf]å

å

>

>

+

+

þ

ý

ü

î

í

ì

-

=

1

1

1

1

1

1

1

1

)

(

))

(

,

(

)

(

)

(

))

(

,

(

)

(

 

  

          

 

)]

(

[

)

(

))

(

,

(

))

(

,

(

)

(

)

(

i

i

i

i

i

i

i

i

i

i

i

t

dW

t

S

t

b

t

dt

t

S

t

S

t

a

t

p

dt

t

S

y

t

S

t

S

t

a

t

S

t

a

t

t

dp

h

h




(A. 12)
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and define the new probability measure: 
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where P is the old probability measure and Q is the new probability measure.

Notice that for a random variable x, 
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Where 
[image: image231.wmf][]

Q

E

the expected value with respect to the new probability measure Q, 
[image: image232.wmf][]

[]

E

E

P

=

 is the expected value with respect to the old probability measure P, and 
[image: image233.wmf]t

F

 is the accompanying filtration.
Girsanov's theorem states that 
[image: image234.wmf])

(

~

t

W

j

is a Wiener process with respect to the probability measure Q. In addition 
[image: image235.wmf])

(

~

t

W

j

 is an 
[image: image236.wmf]t

F

 martingale with respect to Q [Oksendal; 1998]. We choose 
[image: image237.wmf])

(

t

i

q

such that the drift coefficient is function only of V(t). Other options or shapes could  also be used. Thus, let


[image: image238.wmf]))

(

,

(

]

),

(

[

)

(

))

(

,

(

))

(

,

(

)

(

1

1

1

t

S

t

b

t

t

S

y

t

S

t

S

t

a

t

S

t

a

t

i

i

i

i

i

i

i

-

=

q

,                          
[image: image239.wmf]1

>

i


(A. 16a)
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Substitute equations (A. 13) and (A. 16) into equation (A. 12) we get:
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this has the form
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where 
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(A. 19) 
The Estimates for the Stochastic time-varying coefficients; 
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Or equivalently
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Define the random variable
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(A. 22)

The generalized Clark-Ocone formula represents the random variable F as:
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(A. 23)

where 
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(A. 24)

Equating the coefficients of 
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(A. 25a)

Hence
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(A. 25b)

Recall that 
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(A. 26)

Or using the probability measure P:
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(A. 27)

Equation (A. 26) when solved yields an estimate for the unknown time-varying coefficient 
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is required. These models are problem dependent. Solving equation (A. 27) is usually a difficult task and one has to resort to numerical or approximate solutions. We next present an approximate solution.

Approximate Solution: 
In the case under study of the estimation of the Cardiac parameters we have [see section IV]:
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(IV. 5)
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(IV. 6)
After some manipulations the equation for 
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And
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(IV. 8)
Substituting in eqn. (A. 26) 
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(A. 28)

Since 
[image: image284.wmf])

(

t

i

h

is in general a function of 
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 and 
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could be represented by the SDE:
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(A. 30a)

Which has the integral form: 
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(A. 30b)
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(A. 31)

The Clark-Ocone formula for the vector case under the probability measure Q is given by [Nualart; 1995]: 
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where we have used 
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Equating equations (A. 30b) and (A. 32) we get:
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An expression for 
[image: image297.wmf]))

(

,

(

t

W

t

ij

f

 is required to solve for the unknowns 
[image: image298.wmf])

(

t

i

h

. An exact expression is difficult to obtain. Instead we assume a polynomial shape with unknown parameters 
[image: image299.wmf]ij

d

, 
[image: image300.wmf]ij

k

g

, 
[image: image301.wmf]ij

kl

l

; Viz:


 
[image: image302.wmf]...

)

(

)

(

)

(

))

(

,

(

+

+

+

=

å

å

å

k

l

l

k

ij

kl

k

k

ij

k

ij

ij

t

W

t

W

t

W

t

W

t

l

g

d

f



(A. 34)
The unknown parameters, 
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(A. 35)
Where 
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is the observed pressure and each 
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Appendix B: The Martingale Optimality Principle for a Closed Form Solution for The Estimates for the Stochastic time-varying coefficients; 
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From Appendix A, we defined the random variable F=F(T) as:
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(A. 22)

The generalized Clark-Ocone formula represents the random variable F as:
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(A. 23) 
And the estimates for the time-varying coefficients satsisfy:



[image: image312.wmf]ï

þ

ï

ý

ü

ï

î

ï

í

ì

ú

û

ù

ê

ë

é

¶

¶

-

=

ò

t

T

t

i

i

t

i

i

i

t

Q

i

i

t

i

s

W

d

s

S

D

s

S

s

F

F

D

E

t

S

t

b

e

t

F

/

)

(

~

)

(

)

(

)

(

))

(

,

(

)

(

1

q

h

a


(A. 26)
In this appendix we derive a closed form solution for the estimates of the unknown time-varying coefficients not using the generalized Clark-Ocone formula. Instead we use the martingale optimality principle [Bjork; 2009, Abutaleb and Papaioannou; 2021].
Let 
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(B.1)

i.e.
U(T)=F(T)

 Then from eqn. (A.18):
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Or equivalently

[image: image315.wmf]ò

-

+

=

t

T

s

s

W

d

s

v

e

U

t

U

0

)

(

~

)

(

)

0

(

)

(

1

a




(B.2b)
Since U(t) is a martingale under the measure Q, we get:
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(B.3)
This is the first equation in the unknowns 
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. The second equation is obtained through the optimization process.

Using eqns. (B.2b) we get:
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(B.5)
This is a constraint on the value U(t).

The Optimization Problem: 

The objective is to minimize the log of the squared difference between the pressure p(t) and the observed pressure 
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For constrained optimization, we use the method of the Lagrange multipliers. Thus, 

Find 
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(B.5)

Taking the derivative w.r.t. U(t) we get:
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i.e.
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where 
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is the optimal value of U(t).
Since 1/Z(t) is a martingale under the measure Q, then 
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(B.7)

This is the second equation in the unknowns.

Recall from equation (B.3) that: 
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i.e.
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Equating equations (B.8) and (B.7), we get:
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(B.9)
Then 
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(B.10)
From eqn. (A.14c), we know that: 
[image: image339.wmf])

(

~

)

(

)

(

1

)

(

1

t

W

d

t

t

Z

t

Z

d

T

q

=

÷

÷

ø

ö

ç

ç

è

æ



Since

[image: image340.wmf][

]

)

(

1

2

)

(

)

(

*

t

Z

t

U

t

U

o

÷

ø

ö

ç

è

æ

=

-

l


then 
[image: image341.wmf][

]

)

(

)

(

2

)

(

1

*

t

U

t

U

t

Z

o

-

÷

ø

ö

ç

è

æ

=

l


Thus, 

[image: image342.wmf][

]

)

(

~

)

(

)

(

)

(

2

)

(

~

)

(

)

(

1

)

(

1

*

t

W

d

t

t

U

t

U

t

W

d

t

t

Z

t

Z

d

T

o

T

q

l

q

-

÷

ø

ö

ç

è

æ

=

=

÷

÷

ø

ö

ç

ç

è

æ


(B.11)

Comparing eqns. (B.10) and A(B.11), we get:
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For small values of 
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This is an equation in the unknowns 
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which is reduced to:
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(B.14)
In order to find and SDE for 
[image: image353.wmf])

(

t

i

h

, we need to find an SDE for 
[image: image354.wmf][

]

)

(

)

(

*

t

U

t

U

o

-


An SDE for the estimated 
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(B.15)

The SDE of 
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In eqn. (B.16) we used 
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(B.17)
From eqn. (B.15) and using Ito lemma we get an SDE for 
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(B.18)

Where 
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If the mathematical models for the signals are all having a polynomial in time drift term and constant diffusion coefficient, then eqn. (B.18) is reduced to:
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Collecting terms and substituting for 
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This is a closed loop estimate i.e. the cardiac parameters are estimated as function of the observed pressure, the estimated pressure, and the flow models.

Substitute eqn. (B.14) into eqn. (B.19), we get:
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Which is reduced to:
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Substitute 
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Which is reduced to:
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This the desired SDE for the unknown parameters with unknown initial conditions, 
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, i>1. Equation  (B.21) is an open loop estimate of the cardiac parameters. Recall that:
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(A. 1)

We numerically solve eqn. (B.19) and find the initial values , 
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is the observed pressure and T is the observation period.

Unfortunately, the different observed signals do not have a polynomial in time drift. Actually we have: 
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Thus,
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Substituting eqn. (B.22) and (B.16) into eqn. (B.18) we get:
 It is this quantity that we use to find:
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which is reduced to:
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Collecting the drift and diffusion terms we get:
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Recall that 
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Equation (B.23) is a closed form solution for the estimate of the ith parameter 
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 when the observed signals follow Ornstein-Uhlenbeck processes.
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