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Abstract: By using the basic principle of the continuous damage mechanics as a reference, together with the statistical strength theory based on the Weibull distribution, a new constitutive model of fractured rock masses for deep underground engineering is proposed. In this model, a new definition of the fracture degree Ft has been proposed for the first time, which can quantitatively describe the fracturing process of a fractured rock mass. Based on the results of laboratory tests and numerical simulations for fractured rock mass specimens, the constitutive model with different fracture degrees are verified. Moreover, the applicability of two yield criteria (the M-C and D-P criteria) for describing the mesoscopic strength of rocks is analyzed. Finally, the effects of the random distribution parameters on the constitutive model are discussed in detail. The results show that the theoretical results agree well with the experimental and numerical results, and the constitutive model with the D-P criterion is better than the model with the M-C criterion.
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1. Introduction
[bookmark: MTBlankEqn]For deep underground engineering, the surrounding rock mass can be divided into three partitions: the fractured zone, plastic zone and elastic zone (Park et al. 2008), which approximately correspond to the postpeak phase, plastic phase and elastic phase of a complete stress-strain curve of rock (Fig. 1) (Read 2004; Carranza-Torres and Fairhurst 2000).
[image: ]
Fig. 1 Three zones of the surrounding rock of deep tunnels
The fractured zones of surrounding rock refer to the zones where macrofracture initiation, propagation and falling rock blocks occur due to excavation (Feng et al. 2018). These are common engineering geological phenomena that are caused by the redistribution of geostatic stress during excavation (Li et al. 2020). Moreover, a large amount of surrounding rock displacement takes place in the fractured zone (Zhou et al. 2017). The determination of the supporting design is seriously affected by the mechanical behavior of the fractured rock mass in the fracture zone (Khani et al. 2013). Therefore, a comprehensive understanding of the mechanical behavior of fractured rock masses is urgent for dealing with the stability of deep underground engineering. Currently, there are three methods used to study the mechanical behavior of fractured rock masses, including laboratory experiments, numerical simulations and theoretical analyses. These three research methods are analyzed in detail as follows.
Experimental research on fractured rock masses can reveal the common mechanical behavior under different modes of loading, such as uniaxial or triaxial conditions. Zong (2013) carried out reloading tests on postpeak fractured rock under different confining pressures and studied the creep mechanical behavior of fractured rock samples under different stress states and stress paths. Han et al. (2009) applied the lateral constraint testing method to study refracturing and deformation characteristics of fractured rock masses. Ranjith et al. (2004) conducted uniaxial compression tests on intact, samples with a single fracture and multiple fractures based on acoustic emission techniques and analyzed the compressive strength differences among them. Li et al. (2019) discussed the relationships between rock failure and energy release, rock strength and energy dissipation of fractured rock subjected to cyclic loading. Although these studies have revealed some of the mechanical properties of fractured rock masses, it is difficult to obtain fractured rock samples without disturbances (Laghaei et al. 2018). Generally, the mechanical behavior and deformability of fractured rock masses are affected by the fracture degree, but the control of the fracture degree for fractured rock samples is hard to realize in laboratory tests.
Several studies have employed numerical methods to obtain different fracture degrees of fractured rock masses. There are two main numerical methods: the finite element method (FEM) and the discrete element method (DEM). The FEM was used to determine the deformability and strength of fractured rock masses (Chen et al. 2011; Yang et al. 2015), and the compressive strength of fractured rock masses under different scales was studied. However, the FEM has considerable limitations in simulating the large displacements that frequently occur in fractured rock masses. The DEM, which was proposed by Cundall and Strack (1979), is a better approach that can describe complex geometries for fracture networks in fractured rock masses. For instance, Harthong et al. (2012) proposed a discrete fracture network based on the fractal distribution and analyzed the mechanical behavior of fractured rock masses with different fracture intensities. Laghaei et al. (2018) analyzed the deformability and strength of fractured rock masses for different fracture degrees using hybrid discrete fracture network-discrete element method (DFN-DEM) modeling. In particular, the bonded-particle model (BMP) (Potyondy and Cundall 2004), in which the rock is represented by a statistically generated assembly of particles that are bonded together at their contact points, is an increasing focus in studying fractured rock masses (Yang and Huang 2014; Yang et al. 2016). Whittles et al. (2006) investigated the relationship between the fracture degree, energy efficiencies of fracturing rock masses, strain rate and impact energy using the bonded-particle method. However, the calibration of the mesoscopic parameters is very difficult, and it relies heavily on relevant experiments, which limits the application of the DEM for simulating fractured rock masses.
[bookmark: _Hlk5023642][bookmark: _Hlk5027313][bookmark: _Hlk5027365][bookmark: _Hlk5092095]An appropriate constitutive model is a key aspect in the theory development and numerical analysis of fractured rock masses. Considering that the fractures are statistically distributed in a rock mass, statistical approaches can be utilized to model the behavior of fractured rock masses. Thus, the statistical strength theory used to construct the damage constitutive model of rock provides a good approach to investigate the mechanical behavior of rock materials (Cao et al. 2007 & 2010; Li et al. 2012). However, these studies were conducted on intact rock, and they did not attempt to apply the theory to fractured rock masses. 
[bookmark: _Hlk5030820]Based on the above analysis, in this study, a new constitutive model for fractured rock masses based on statistical strength theory is proposed. Its performance is comprehensively verified by experimental studies for simple conditions with a single failure surface in the rock and numerical studies for specimens with multiple fracture surfaces that cannot be conducted by laboratory tests. Finally, the effect of the major factors on the performance of the new constitutive model is discussed.
2. Model construction
2.1. Determination of the fracture degree Ft
The fractured rock mass can be abstractly divided into two parts, i.e., the broken part and unbroken part (Fig. 2). In this model, the fracture planes are randomly distributed. Therefore, the proportions of broken parts in each cube are also randomly distributed. Assuming that the cube size is sufficiently small, the proportion of broken parts in each cube will be a value that varies continuously. The broken part, interweaving with the unbroken part in the cube, will reduce the cube strength. Therefore, an appropriate distribution of the stress state for the fractured rock mass can be used to represent the fracture degree of the fractured rock mass. 
[image: ]
Fig. 2 Conceptual model of a fractured rock mass
If the whole fractured rock mass is divided into Q cubes and the number of broken cubes is Qc under a certain stress state, the fracture degree (Ft) can be defined as follows (the broken part mentioned is caused by the loading process and does not contain the initial fracture state of the fractured rock mass)

                                                                         (1)
The failure possibility of a certain cube depends on the stress state S. Assuming that the probability distribution function that describes the failure probability of the cubes is P(S) and the corresponding probability density function is p(S), the number of broken cubes, within a certain range of stress [S, S+dS], can be expressed as

                                                                    (2)
When the stress increases from zero to S, the total number of broken cubes is

                                                             (3)
Eq. (3) is substituted into Eq. (1) to obtain

                                                                        (4)
Eq. (4) describes the relation between the fracture degree and probability distribution function.
According to the assumption that the fractured rock mass is abstractly divided into the unbroken part and the broken part, the total stress of the fractured rock mass can be expressed as

                                                    (5)


where is the stress of the unbroken part,  is the stress of the broken part and σi is the total stress.
Here, the unbroken part is further divided into an elastic matrix and plastic body, as shown in Fig. 3. The elastic matrix and plastic body are regarded as series connections, which means that the two parts bear the same stress. Thus, the following equation can be obtained

                                                                     (6)


where  is the stress of the elastic matrix and  is the stress of the plastic body.
[image: ]
Fig. 3 Mechanical model of a fractured rock mass


According to the deformation compatibility principle (Wu 2017), the relationship of the total strain εi, the strain of the unbroken part  and the strain of the broken part  is

                                                                       (7)
According to the basic theory of elastic-plastic mechanics (Wu 2017), the strain of the unbroken part can be described as

                                                                      (8)

The unbroken part is regarded as an elastic plastic material, so the elastic strain can be determined by loading and unloading tests (Sun et al. 2017), as shown in Fig. 4. The slope of the unloading curve is known as the unloading modulus Es, which is the ratio of the stress to the elastic strain (Wang et al. 2020). Given that the unloading modulus changes slightly with varying confining pressure (Zong 2013), it is assumed that the unloading modulus Es is a constant. Therefore, the elastic matrix strain  can be expressed as

                                                                          (9)
[image: ]
(a) elastic modulus E
[image: ]
(b) unloading modulus Es. (εp is the strain induced by plastic deformation; εe is the elastic strain; ε is the total strain.)
Fig. 4 Elastic modulus E and unloading modulus Es

The elastic matrix of the unbroken part is supposed to obey Hooke’s law. Thus, the following equation can be obtained for the equal confining pressure condition ()

                                              (10)
[bookmark: _Hlk46303107]where E is the elastic modulus (which is determined by the uniaxial compression test, as shown in Fig. 4(a)) and μ is the Poisson's ratio.

According to Eq. (5), the following equations can be obtained ()

                                                            (11)

                                       (12)
Eqs. (10) and (12) is substituted into Eq. (11), there is

                                              (13)


where σ1 and σ3 are the principal stresses and  and  are the maximum principal stress and minimum principal stress of the broken part, respectively. The other symbols are the same as above. It is worth noting that although the unloading modulus may be greater than or equal to the initial elastic modulus in one experiment (Sun et al. 2017), the unloading modulus Es is strictly greater than the elastic modulus E (i.e., Es-E >0) in Eq. (13) because the elastic modulus E is determined by the uniaxial compression test and the unloading modulus Es is determined by the triaxial compression test.



A new function needs to be introduced to eliminate the variable . The cohesion disappears after fracturing (Barton 2013); that is, the value of cohesion is zero. Therefore, based on the Mohr-Coulomb criterion, the relationship between  and  can be expressed as

                                                 (14)
where φ is the internal friction angle.
Meanwhile, it is assumed that when the strain energy density of the unbroken part ω reaches its maximum value, the unbroken part will break (Ghavami 2015). The expression of the maximum strain energy density can be expressed as (Ghavami 2015)

                                                                (15)
where σc is the uniaxial compressive strength of the rock. The other symbols are the same as above.

Under the triaxial compression test, the strain along the failure plane, which is caused by friction, is , as shown in Fig. 5. Therefore, the expression of the friction energy dissipation is obtained as

                                                                  (16)


where  and α =.
[image: ]
Fig. 5 Force analysis of the fracture plane
Let ωmax be equal to ωc and substitute Eq. (7) into Eq. (16), then the following equation can be obtained

                                              (17)
Eq. (17) is substituted into Eq. (14), and the following equations can be obtained

                                                            (18)

                                                     (19)
Then Eqs. (18) and (19) are substituted into (13), there is

                                             (20)
where

                                                             (21)
From the Eq. (20), the fracture degree Ft can be obtained as

                                                   (22)
2.2 Constitutive model
Here, the failure of the fractured rock mass depends on the stress state of the unbroken part. Therefore, considering that the stress state of the unbroken part and plastic body is the same, the stress state of the plastic body can be used to judge the failure of the fractured rock mass. Here, the Drucker-Prager criterion is used to describe the stress state of the plastic body.
A shear failure criterion for the plastic body can be generally expressed as

                                                                        (23)
[bookmark: OLE_LINK4]where S(σ) is the stress state and τf is the shear strength. 

When , the plastic body fails. S(σ) can be obtained from the failure criterion. Assuming that the plastic body obeys the Drucker-Prager criterion, the expression of the Drucker-Prager criterion in stress space can be expressed as

                                                           (24)
where I1 is the first stress invariant, J2 is the second deviatoric stress invariant, and γ and h are material constants, which are expressed as (Owen and Hinton 1980)

                                                               (25)

                                                               (26)
where c is the cohesion and φ is friction angle.


Under the traditional triaxial test conditions, in which  equals , the first stress invariant I1 and the second deviatoric stress invariant J2 can be described by the effective stresses as follows

                                                       (27)

                                                               (28)
By comparing Eqs. (23) and (24), it can be found that h is a constant term. Thus, the expression of the stress state S can be expressed as

                                    (29)


And according to Eqs. (11), (12), (18), (19), (21) and (22), the  and  are derivated as follows

                                                         (30)

                                                          (31)
where

                                        (32)
The key point in statistical damage constitutive modeling is fitting the analytical probability distribution to characterize the stress level of rock elements. Several empirical distributions have been used, such as the Weibull distribution (Wang et al. 2007; Shen et al. 2019), lognormal distribution (Ji et al. 2018), power function distribution (Chen et al. 2018; Wang et al. 2017) and normal distribution (Cao et al. 2007), among which the Weibull distribution is the most popular (Jian and Gu 2011). Therefore, we also assume that the strength of the plastic body obeys the Weibull distribution function, and the probability distribution function P(S) can be defined as

                                                                (33)
where m and F are parameters of the distribution function.
Eqs. (33), (29), (22) and (20) are substituted into (4), and the specific constitutive models based on the Weibull distribution function for the fractured rock mass can be obtained as

                                   (34)
From Eq. (34), there are eight parameters in the models. The parameters m and F are newly introduced distribution parameters that are determined by the linear fitting method using the test results as shown in the next section, and the other six parameters, including the elastic modulus E, unloading modulus Es, Poisson's ratio μ, internal friction angle φ, cohesion c and uniaxial compressive strength σc, can be determined by laboratory tests.
2.3 Determination of the model parameters m and F
Based on the results of the triaxial test, parameters m and F can be determined by the linear fitting method, which can be described as follows.
From Eq. (34), the following equation can be obtained

                                             (35)
The logarithm operation is conducted on both sides of Eq. (35), which produces the following equation

                                        (36)
The logarithm operation is conducted for both sides of Eq. (36) again, which produces the following equation

                             (37)
To simplify the form of Eq. (37) and facilitate the calculation of parameters m and F, Eq. (37) is regarded as a linear equation that can be described as

                                                                      (38)
where

                                        (39)

                                                                       (40)

                                                                         (41)

                                                                     (42)
To solve the parameters a and b, the databases that include the physical parameters and experimental data of the specimen are constructed by selecting the pairs of x and y, which are obtained by calculating Eqs. (39) and (40), as follows

                                                             (43)
where n is the sample size, i.e., the number of value points under a certain confining pressure.
Linear regression analysis is conducted for every (xi, yi), and the values of a and b can be obtained. Thus, the parameters m and F for a certain confining pressure can be obtained as

                                                                          (44)

                                                                    (45)
3. Verification study
3.1 Verification by the experimental study
The experimental data obtained by Zong (2013) was used to verify the new constitutive model. The samples used in the experiment are red sandstone with fine sand structure and good homogeneity. Zong (2013) conducted a triaxial compression test on intact rocks, and the reloading of fractured rock specimens under different confining pressures was studied, as described below. First, the confining pressure was applied at a rate of 0.05 MPa/s until 30 MPa. Then, under the fixed confining pressure, the axial stress was applied up to the design unloading point (residual strength stage) at a stable loading rate, and thus, the fractured rock specimens were obtained. Finally, the triaxial compression test was conducted on the fractured rock specimens under confining pressures of 5 MPa, 10 MPa, 15 MPa, and 20 MPa. Because the residual strength stage of the stress-strain curves for rocks discussed by Zong (2013) was consistent with the fractured rocks studied in this paper, the experimental data from Zong (2013) (Fig. 6) were cited and used in this study.
[image: ]
Fig. 6 Test results of the fractured rock specimens (Zong 2013)
[bookmark: _Hlk45876061]By fitting the regression analysis of the experimental curves, the corresponding parameters m and F of the constitutive model for the fractured rock mass can be obtained as shown in Table 1. Here, the data under confining pressures of 5 MPa, 10 MPa, and 15 MPa are used to construct the model, and those under 20 MPa are used for verification.
Table 1 Fitting results of the statistical parameters for the theoretical model with a single fracture
	Strength criterion
	Confining pressure/MPa
	m
	F/MPa

	D-P criterion
	5
	1.743
	515.934

	
	10
	2.291
	534.834

	
	15
	2.361
	608.740



Let parameters m and F be the dependent variables and the confining pressure σ3 be the independent variable, then the scatter plot figures between parameters (m and F) and confining pressure σ3 are obtained (Fig. 7). The fitted functions are given as follows

                                                  (46)
As shown in Fig. 7, it is clear that the results of Eq. (46) agree favorably with the calculated points, in which the correlation coefficients R2 of the logarithmic curve and straight line are 0.9164 and 0.7903, respectively. Both m and F increase with increasing σ3. Then, the equation in Eq. (46) are substituted into Eq. (34), and the constitutive model based on the Weibull distribution function for fractured rock masses can be obtained as follows

                               (47)
[image: ]
(a) parameter m
[image: ]
(b) parameter F
Fig. 7 Relationship between the distribution parameters and the confining pressure
According to the experimental data from Zong (2013), the parameters of Eq. (47) are given as follows
[bookmark: OLE_LINK5]Es = 15.96 GPa, E = 11.84 GPa, μ = 0.4, φ = 30.51°, c = 31.31 MPa, and σc = 69.22 MPa.
Fig. 8 shows the results of the models using the data under confining pressures of 5 MPa, 10 MPa, and 15 MPa. Fig. 9 is the verification of the models for the data under the confining pressure of 20 MPa.
Figs. 8 and 9 illustrate that the results of the theoretical model favorably agree with the test results. When the confining pressures are 5 MPa, 10 MPa, and 15 MPa, the theoretical curves can reflect the elastic stage, plastic stage and strain softening stage. When the value reaches 20 MPa, it can also reflect the strain hardening stage.

[image: ]
(a) confining pressure of 5MPa
[image: ]
(b) confining pressure of 10MPa
[image: ]
(c) confining pressure of 15MPa
Fig. 8 Comparisons of the model results with the test data
[image: ]
Fig. 9 Verification of the constitutive model for data under a confining pressure of 20 MPa
It can be concluded from Figs. 8 and 9 that the accuracy of both models improves with increasing confining pressure, and the initial elastic moduli of the models are greater than those of the experiment. The reasons for these findings are as follows: (1) Based on the assumption that the material is regarded as a linear elastic material, there is a difference between the theoretical model and experimental data. (2) An increasing number of fractures close with increasing confining pressure, resulting in the elastic modulus increasing with increasing confining pressure (Peng et al. 2015). Therefore, the initial elastic modulus of the experiment approaches that of the theoretical model. In the elastic stage, the stress increases rapidly and is higher than the test value. When the stress-strain curves reach the plastic stage, the rate of increase of the stress is gradually reduced, and the stress begins to decrease under a confining pressure of 5~15 MPa. When the confining pressure is 20 MPa, the mechanical behavior of the fractured rock mass changes to strain hardening, which shows the ductility of the material.
3.2 Verification by the numerical study
Although the experiment performed by Zong (2013) included a series of conventional triaxial experiments on fractured rock masses, only rock with a single fracture surface was studied. In fact, the fractured rock mass usually contains many complex fracture surfaces (Laghaei et al. 2018). However, it is difficult to prepare fractured rock samples with multiple fracture surfaces in laboratory tests. Therefore, using numerical simulations (Itasca's particle flow code simulation) to prepare fractured rock samples with multiple fracture surfaces is a suitable method.
To prepare the fractured rock samples with the particle flow code simulation, the mesoscopic parameters are essential. Here, the mesoscopic parameters were calibrated by using the test data from Zong (2013). The calibration process is as follows. First, a rock model is established using a parallel bonded model. Second, the predetermined confining pressure is applied through the contraction of the cylindrical wall, and the axial pressure is applied through the motion of the top and bottom walls until the rock model fails. Then, the fractured rock model is obtained. Third, the reloading test is carried out under different confining pressures. Finally, the mesoscopic parameters are constantly adjusted until the simulated result is similar to the experimental result, as shown in Fig. 10.
[image: ][image: ]
(a) numerical model                    (b) stress-strain curves
Fig. 10 Calibration results of the numerical model from PFC
[image: ]
(a) actual fractured rock specimen     (b) numerical sample
Fig. 11 Comparisons of the real and numerical samples
Therefore, the mesoscopic parameters that can present the macroscopic parameters can be obtained, as shown in Table 2.
Table 2 Mesoscopic parameters of the numerical model
	particle-particle contact modulus
GPa
	particle stiffness ratio
kn/ks
	parallel-bond radius coefficient
λ
	particle radius ratio
Rmax/Rmin
	friction coefficient
μ
	Porosity
n/%
	parallel-bond strength
MPa

	5
	1
	1
	1.5
	0.577
	0.1
	25



The real fractured rock specimen and the numerical model are shown in Fig. 11.
To construct rock specimens with multiple fracture surfaces, triaxial compression is applied to the complete rock specimen by the numerical simulation, where the confining pressure is 50 MPa. The loading stops when the specimen reaches the residual stage. Thus, rock specimens with multiple fracture surfaces can be obtained, as shown in Fig. 12.
[image: ][image: ]
(a) Rock specimen model        (b) Computing results
Fig. 12 Numerical results for the fractured rock mass with multiple fracture surfaces

[image: ]
(a) confining pressure of 5MPa
[image: ]
(b) confining pressure of 10MPa
[image: ]
(c) confining pressure of 15MPa
[image: ]
(d) confining pressure of 20MPa
Fig. 13 Comparisons of the theoretical results with the numerical experimental data
[image: ]
(a) confining pressure of 25MPa
[image: ]
(b) confining pressure of 30MPa
Fig. 14 Verification of the constitutive model under confining pressures of 25 MPa and 30 MPa
Then, the reloading test is conducted on the rock specimen with multiple fracture surfaces, in which the confining pressures are 5 MPa, 10 MPa, 15 MPa, 20 MPa, 25 MPa and 30 MPa. The computing results are shown in Fig. 13.
The parameters m and F are calculated except for those for a confining pressure of 25 MPa and 30 MPa, as shown in Table 3.
Table 3 Fitting results of the statistical parameters for the theoretical model with multiple fractures
	Strength criterion
	Confining pressure/MPa
	m
	F/MPa

	D-P criterion
	5
	1.474
	504.062

	
	10
	1.679
	511.704

	
	15
	1.727
	514.746

	
	20
	1.682
	516.053



Fig. 13 shows the results of the model under the conditions of different confining pressures (5 MPa, 10 MPa, 15 MPa and 20 MPa), and Fig. 14 verifies the model under the conditions of confining pressures of 25 MPa and 30 MPa.
Fig. 13 shows that the model is in good agreement with the numerical experiment, which is the same for the results in Fig. 14. Moreover, Figs. 13 and 14 illustrate that when the confining pressures are 5 MPa, 10 MPa and 15 MPa, respectively, the theoretical model curve is divided into three stages, i.e., the elastic stage, plastic stage and strain softening stage. When the confining pressure reaches 20 MPa and above, the strain softening behavior turns to strain hardening. Thus, the theoretical curve is generally consistent with the numerical experimental curve.
In the process of fracture closing due to the increase in the confining pressure, the unevenness of the fracture interfaces makes it close irregularly. Under a low confining pressure, although the fractures are gradually closing, their geometry changes a little. When the confining pressure exceeds a certain value, a change in the fracture geometry is obvious, which gradually becomes flat and closed (Peng et al. 2015). The fracture density decreases with increasing confining pressure. Therefore, as shown in Figs. 13 and 14, the elastic modulus increases with increasing confining pressure according to the Taylor formula of meso-damage theory, which is expressed as (Murakami 2012)

                                              (48)
where Eb is the elasticity modulus of the basic materials, E is the elasticity modulus of the basic materials that contain the fracture, υ is the Poisson’s ratio of the basic materials and f is the fracture density.
The relationship between the fracture density and effective elasticity modulus is shown in Fig. 15 (Murakami 2012).
[image: ]
Fig. 15 Relationship between the fracture density and E/Eb
Because of the closure of the fractures under a high confining pressure, the stress distribution of fractured rock tends to be uniform, which improves its bearing capacity and shows a strain-hardening tendency.
It is worth noting that the initial elasticity modulus of the model is obviously greater than that of the numerical experiment in the elastic stage. The reasons for this behavior are as follows. According to Eq. (48), it is concluded that the real initial elasticity modulus decreases with increasing fracture degree. The elasticity modulus used in the new constitutive model is constant. With the increase in the fracture degree, the difference in the initial elasticity modulus between the model and the test will increase. Therefore, some differences in theoretical results and numerical simulations were observed in rock with multiple fractures.
4. Discussion
4.1 Effects of the failure criterion and parameters (m and F)
Here, the most commonly used Mohr-Coulomb criterion is chosen for a comparison with the Drucker-Prager criterion (for simplicity, the models with the two different failure criteria are compared in the experimental test). Therefore, if the M-C criterion is used to define the stress state, the expression of the stress state S can be expressed as

                                                   (49)
Combining Eqs. (4), (20), (22), (33) and (49), the constitutive models based on the M-C criterion for the fractured rock mass can be obtained as

                                     (50)
Solving the parameters m and F through the linear fitting method mentioned in section 2.3, the fitted functions of parameters m and F are

                                                   (51)
To compare these two different failure criteria, the deviation of the two models relative to the test curves is calculated by the following equation

                                                             (52)
where σiT is the theoretical value, σiE is the actual value and q is the data number.
Table 4 Results for the deviation of the two theoretical models with different strength criteria
	strength criterion
	5MPa
	10MPa
	15MPa
	20MPa
	average value

	M-C
	2.98
	14.59
	9.97
	5.73
	8.32

	D-P
	7.84
	11.79
	5.38
	2.88
	6.97



The deviation results are summarized in Table 4. By comparing the deviation for the two models, it can be found that the average deviation value for the M-C criterion is 8.32, while the average value is 6.97 for the D-P criterion. In general, the constitutive model with the D-P criterion is better than the model with the M-C criterion. However, sometimes the model with the D-P criterion is worse than that of the M-C criterion. For example, under the condition of a confining pressure of 5 MPa, the model with the M-C criterion is better than that of the D-P criterion, where the deviations of the M-C and D-P criteria are 2.98 and 7.84, respectively. The reasons for these results are as follows. The M-C criterion assumes that the internal friction angle φ is a constant, i.e., the yield curve is linear, which agrees with the situation at a low confining pressure. However, the yield curve becomes nonlinear with increasing confining pressure, for which the M-C criterion is not very suitable. The D-P criterion assumes that the increase in the yield strength is nonlinear with the increase in the confining pressure, which is in agreement with the actual situation. Therefore, the D-P criterion employed in the paper is capable of accounting for a non-linear dependency with the confining stress and the model with the D-P criterion is more suitable than that of the M-C criterion with the increase in the confining pressure.
The Weibull distribution contains two variable parameters m and F, which increase with increasing confining pressure, as shown in Fig. 7. Parameter m is the shape parameter of the Weibull distribution function, which controls the distribution of its probability density function and is also called the homogeneity degree of materials (Tang et al. 1998; Lei and Gao 2019). When the confining pressure increases, more healed fractures improve the homogeneity degree of the fractured rock mass; that is, m increases with increasing confining pressure. Parameter F is the scale parameter of the Weibull distribution function, which only enlarges or shrinks the curve of the probability density function but does not change its shape. The parameter F reflects the strength of rock (Li et al. 2012). Therefore, F increases with increasing confining pressure. Figs. 8 and 9 show that the higher the confining pressure is, the more accurate the model, i.e., the larger the values of m and F, the more accurate the model. For the case with of multiple fracture surfaces, a higher fracture degree leads to a lower homogeneity degree and strength of the materials. Therefore, the parameters m and F are smaller than those for the case with of single fracture surface.
4.2 Effect of different initial fracture degrees
The model curves for two different initial fracture degrees are compared under the same confining pressure, as shown in Fig. 16.
[image: ]
(a) confining pressure of 5MPa

[image: ]
(b) confining pressure of 10MPa
[image: ]
(c) confining pressure of 15MPa
[image: ]
(d) confining pressure of 20MPa
Fig. 16 Comparisons of the theoretical curves for different initial Ft
As expected, the peak strength of the fractured rock specimens decreases with increasing initial fracture degree. Here, the ratio of the peak strength difference and the strength of rock specimens with multiple fractures is used to describe the effect of the initial fracture degree on the strength of the fractured rock, which is expressed as

                                                          (53)
where Strsingle is the peak strength of rock specimens with a single fracture and Strmultiple is the peak strength of rock specimens with multiple fractures.
As the confining pressure increases, the ratio decreases, as shown in Fig. 17.
[image: ]
Fig. 17 Ratio of the peak strength difference and the strength
[image: ]
Fig. 18 Comparisons of the elasticity modulus of the two fracture degrees
The ratio is 1.09 under a confining pressure of 5 MPa, and when the confining pressure reaches the confining pressure in excess of 15 MPa, the ratio is reduced to approximately 0.41, which indicates that the effect of the initial fracture degree on the strength decreases and tends to be constant with the increase in the confining pressure. Fig. 18 compares the effect of the initial fracture degree on the elastic modulus of the fractured rock.
With the increase in the confining pressure, both the increase in the elasticity modulus and the elasticity modulus difference of the two different initial fracture degrees become increasingly small, which indicates that the effect of the initial fracture degree on the elasticity modulus decreases with the increase in the confining pressure. The reasons for this result are as follows. With increasing confining pressure, the fracture gradually closes; that is, the real initial fracture degree decreases. Therefore, the effect of the initial fracture degree on the elastic modulus decreases with increasing confining pressure. When the confining pressure is 5, 10 and 15 MPa, there is strain softening for both models, and when the confining pressure is 20 MPa, there is strain hardening for both models, which shows that the initial fracture degree does not affect the deformation characteristics of the fractured rock.
5. Conclusion
Based on the statistical strength theory with the assumption that the mesoscopic distribution of the rock strength follows the Weibull distribution, a new constitutive model for the fractured rock mass is proposed, which uses the theory of continuous damage mechanics for reference. In this model, the fracture degree Ft is defined. The constitutive model for fractured rock is verified by laboratory tests and numerical simulations. Finally, the effects of the failure criterion, Weibull distribution parameters and degree of fracture are discussed. Based on the studies, the following conclusions can be drawn.
(1) The Weibull distribution parameters m and F increase with increasing σ3. The stress-strain curve of the fractured rock mass varies from strain softening to strain hardening as the confining pressure increases.
(2) The average deviation value for the model with the M-C criterion is 8.32, while that is 6.97 for the model with the D-P criterion. Thus, the constitutive model with the D-P criterion is better than the model with the M-C criterion. However, when the confining pressure is 5 MPa, the constitutive model with the M-C criterion is better than that with the D-P criterion.
(3) The constitutive model is more accurate with an increase in the parameters m and F. Meanwhile, the smaller m and F are, the greater the fracture degree of the fractured rock, which demonstrates a negative correlation between the Weibull distribution parameters and the fracture degree.
(4) The effect of the fracture degree on the strength decreases as the confining pressure increases. However, the initial fracture degree does not affect the deformation characteristics of the fractured rock mass.
[bookmark: OLE_LINK9][bookmark: OLE_LINK10]In addition, the constitutive model proposed in this study represents only primary research. Only the fracture degree caused by the loading process is considered, and two different fracture degrees have been verified by researchers. In addition, only a two-dimensional stress state is considered, and the effect of a complex stress environment, such as one in which a three-dimensional stress state is present, is not considered. Therefore, the consideration of the initial fracture degree, which can be quantitatively described, the verification of the fractured rock with different fracture degrees, and the consideration of a complex stress environment is the focus of our future work. Moreover, implementing the proposed constitutive model in numerical simulations and simulating problems under complex stress environments are topics for future research.
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