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Abstract

Cycloarenes are a particular category of polycyclic aromatic hydrocarbons that have intrigued the

experimental world for decades owing to the distinctiveness of their atomic and electrical configura-

tions. They are suitable venues for investigating fundamental problems of aromaticity, particularly

those involving the π-electron distribution in complex aromatic structures. Cycloarenes have recently

attracted much attention due to their distribution as analogues for graphene pores. Kekulene is the

member of this family that has been studied the most. For decades, its electrical structure has been a

source of contention. It’s a doughnut-shaped chemical structure of circularly stacked benzene rings with

interesting structural characteristics that lend themselves to experimental investigations like π-electron

conjugation circuits. To predict their properties, topological characterization of such structures is re-

quired. This paper discusses two new series of big polycyclic compounds made by tessellating many

kekulene doughnuts to make a hypothetical molecular belt with multiple cavities.

Keywords: Topological indices; molecular graph; convex cuts; kekulene.

1 Introduction

Polycyclic aromatic compounds have captivated researchers’ attention in recent years since they are

found in a variety of manufacturing chemicals and hence pose a threat to the environment as pollutants

[42, 43]. These substances are long-lasting materials with a wide range of structures and toxicity, as well
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as high melting and boiling temperatures and low water solubility and vapour pressure [42]. Electronics,

pharmaceuticals, agricultural and photographic products, functional polymers, and liquid crystals have

really shown attention in the chemical and bioactivities among those polycyclic aromatics [1]. Because

several polycyclic aromatic compounds’ derivatives are toxic as well as carcinogenic, various research has

been conducted to analyse their influence on that ecosystem and create a remediation approach [1, 57].

Furthermore, due to the phenomena of superaromaticity attributed to macrocyclic extended conjugations,

cycloarenes have garnered a strong interest. To comprehend superaromaticity, numerous theoretical

techniques [11, 13, 25–27, 37, 38, 54, 58] including graph-relevant theoretical conjugated circuit methods

were used to widen and extensively study the idea of aromaticity. Cycloarenes establish an intriguing

class of polycyclic aromatic hydrocarbons that have been fascinated in the academic network for decades

because of the singularity of their atomic and electronic structures [11,26,37,54,58]. They fill in as ideal

stages to examine principal inquiries around the idea of aromaticity and, specifically, those related to

the π-electron distribution in complex aromatic systems [26]. Recently, improved attention regarding

cycloarenes has emerged since serving as models for graphene pores [9, 24,55,63].

The structure of the kekulene molecule, which comprises twelve annulated benzene rings and a central

cavity, offers the tantalizing promise of enhanced stability with remarkable magnetic and magnetocaloric

effects. Kekulene has revealed remarkable counter ring currents and magnetic characteristics using ab

initio quantum chemical methodology [59]. Despite its exceptional physicochemical properties, this com-

pound’s utilization has been constrained for a decade owing to its complicated synthesis techniques [11].

This molecule is regularly called superbenzene because of its planar cyclic formation and D6h symme-

try [29]. It has inspired a wave of conceptual attention since it is seen as an appropriate model for con-

sidering conjugation circuits of π electrons, whether they delocalize locally in benzene rings or globally

across the molecule [44]. Pozo et al. [46] demonstrated an appropriate direction for the kekulene synthesis

using aryne chemistry, paving the way for large-scale manufacturing, which has prompted a huge interest.

It has since been suggested as a contender for magnetic refrigeration [3]. It has also been presented as a

suitable anode material for lithium-ion batteries due to its peculiar characteristics [28]. Consequently, a

theoretical analysis of its new structure can reveal more information about its characteristics.

Breakthroughs in cycloarenes theory and experiment have necessitated the enumeration and charac-

terization of these possible new compounds. Mathematical methods from group theory, combinatorial

mathematics, and graph theory, as proven in a recent paper by Balasubramanian [7], can give powerful

techniques for enumerating isomers and NMR signals of these compounds. Furthermore, quantitative

molecular similarity and related principles play a significant role in supporting computer-aided drug dis-

covery (CADD) methodologies, as do forecasts of toxicity potentials and potential findings of related

2



molecules [7]. Topological indices are a category of molecular parameters that provide quantitative mea-

surements based on the underlying connectivity of the structure. However, their applications are still

being studied and are not yet demonstrated [8, 33].

(a) (b)

Figure 1: (a) Kekulene molecular structure (b) Molecular graph corresponding to kekulene molecular

structure

Topological descriptors are numerical values derived from a molecular network in which each vertex

indicates an atom, and each edge signifies a chemical link between them. Topological indices are molecular

descriptors used to find a correlation model between chemical structure and the relevant physicochemical

and biological activity [8,33]. These topological descriptors are part of a set of theoretical tools for describ-

ing the structural characteristics of these molecules. As a result, topological indices and their evolution

have gotten much attention over the years. In the present study, we use theoretical and experimental

studies to propose unique cut methods for obtaining exact expressions for the topological indices of tri-

angle and rhombus tessellations of kekulenes, resulting in novel 2D molecular sheets with many cavities.

We exploited strength-weighted graphs to derive the formula for various distance-based, degree-based,

distance and degree-based, and bond additive-related topological indices.

2 Graph-Theoretical Concepts

A graph is an arranged pair (V,E), where V is known as the vertex set and E is known as the edge set.

A non-negative number which shows the number of edges that enter the vertex v is known as the degree

of a vertex dG(v), and the distance between two vertices u and v in a graph is the number of edges in a

shortest or minimal path and NG(u) to be the set of vertices that adjacent to u. If dG(u, v) = dH(u, v)

then the subgraph H of G is supposed to be isometric, and if all the shortest path between any two

vertices in G lies totally in H, at that point the subgraph H of G is said to be convex.
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The cut method ended up being amazingly helpful when managing distance-based topological indices,

which are thus among the focal ideas of chemical graph theory [34, 35]. It was frequently applied to

benzenoid frameworks to compute distance-based topological indices effectively [4, 48].

Two edges e = uv and f = cd of a connected graph G are in Θ relation, e Θ f , if

dG(u, c) + dG(v, d) ̸= dG(u, d) + dG(v, c)

then it is known as Djoković-Winkler relation. The relation Θ is reflexive and symmetric, however not

really transitive. Its transitive closure denoted by Θ∗. A significant group of graphs, which is firmly

identified with connection Θ and incorporate numerous chemical graphs, are so-called partial cubes. Note

that an associated graph is a incomplete partial cubes if and only if it is bipartite and Θ = Θ∗.

However, its transitive closure Θ∗ forms an equivalence relation and partitions the edge set into many

convex components. For any edge-cut Fi the quotient graph G/Fi is formed from the disconnected graph

G− Fi, where the connected components (Ci
j , C

i
k) acts as the vertices in G/Fi and the edge set E(G/Fi)

is the set of edges where a vertex x ∈ Ci
j is adjacent to a vertex y ∈ Ci

k with xy ∈ Fi. A partition

E = {E1, E2, . . . Ek} of E(G) is said to be coarser than F if each set Ei is the union of one or more

Θ∗-classes of G.

The strength-weighted graph was at first presented in [4] and widely discussed in [5,5,6,12,30–32,39,

47–51] as Gsw = (G, (wv, sv), se), where the vertex-weight and vertex-strength are wv : V (Gsw) → R+
0 ,

sv : V (Gsw) → R+
0 and the edge-strength capacity are se : E(Gsw) → R+

0 . For any edge uv ∈ E(G), then

the following sets:

Nu(e|G) = {x ∈ V (G)|dG(u, x) < dG(v, x)}, Nv(e|G) = {x ∈ V (G)|dG(v, x) < dG(u, x)}

In strength-weighted graph, dGsw(u, v) = dG(u, v), dGsw(u, f) = dG(u, f), DGsw(e, f) = DG(e, f),

Nu(e|Gsw) = Nu(e|G) and Mu(e|Gsw) = Mu(e|G). for any edge uv ∈ E(Gsw), then the following sets:

nu(e|Gsw) =
∑

x∈Nu(e|Gsw)

wv(x),

mu(e|Gsw) =
∑

x∈Nu(e|Gsw)

sv(x) +
∑

f∈Mu(e|Gsw)

se(f)

tu(e|Gsw) = nu(e|Gsw) +mu(e|Gsw)

The computations of nv(e|Gsw), mv(e|Gsw) and tv(e|Gsw) are analogous. The degree of a vertex u in

Gsw is characterized as

dGsw(u) = 2sv(u) +
∑

x∈NGsw (u)

se(ux).
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Theorem 1. [4, 36] For a strength-weighted graph Gsw =
(
G, (wv, sv), se

)
, let E = {E1, E2, . . . Ek} be a

partition of E(G) coarser than F . Let TI represent various topological indices such as W , We, Wve, Szv,

Sze, Szev, Szt, PI, S, and Gut. Then

TI(Gsw) =
k∑

i=1

TI(G/Ei, (w
i
v, s

i
v), s

i
e)

where

• wi
v : V (G/Ei) → R+ is defined by wi

v(C) =
∑
x∈C

wv(x), for all connected components C ∈ G/Ei,

• siv : E(G/Ei) → R+ is defined by siv(C) =
∑

xy∈C
se(xy) +

∑
x∈C

sv(x), for all connected components

C ∈ G/Ei,

• sie : E(G/Ei) → R+ is defined as the number of edges in Ei such that one end in C and the other end

in D, for any two connected components C and D of G/Ei.

The principal topological index was presented by Wiener and in these days realized as Wiener in-

dex. With time it became one of the most altogether considered topological index, both from the part

of chemical applications and mathematical properties. Numerous varieties and types of Wiener index

were presented and concentrated in literature. Many distinct variations of these topological indices have

recently appeared in the literature, and in some cases they are collectively referred to as Szeged-like topo-

logical indices. Now, we properly characterize the above depicted topological indices for strength-weighted

graph is shown in Table 1 with a connection that TI(Gsw) = TI(G) when wv = 1, sv = 0 and se = 1.
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Table 1: Topological indices for strength-weighted graph Gsw

Topological Indices Mathematical Expressions

Wiener W (Gsw) =
∑

{u,v}⊆V (Gsw)

wv(u)wv(v)dGsw
(u, v)

Edge-Wiener

We(Gsw) =
∑

{u,v}⊆V (Gsw)

sv(u) sv(v) dGsw
(u, v)

+
∑

{e,f}⊆E(Gsw)

se(e) se(f) DGsw
(e, f)

+
∑

u∈V (Gsw)

∑
f∈E(Gsw)

sv(u) se(f) dGsw(u, f)

Vertex-edge-Wiener

Wve(Gsw) =
1
2

[ ∑
{u,v}⊆V (Gsw)

{
wv(u) sv(v) + wv(v) sv(u)

}
dGsw(u, v)

+
∑

u∈V (Gsw)

∑
f∈E(Gsw)

wv(u) se(f) dGsw
(u, f)

]
Vertex-Szeged Szv(Gsw) =

∑
e=uv∈E(Gsw)

se(e)nu(e|Gsw)nv(e|Gsw)

Edge-Szeged Sze(Gsw) =
∑

e=uv∈E(Gsw)

se(e)mu(e|Gsw)mv(e|Gsw)

Edge-vertex-Szeged
Szev(Gsw) =

1
2

∑
e=uv∈E(Gsw)

se(e)
[
nu(e|Gsw)mv(e|Gsw)+

nv(e|Gsw)mu(e|Gsw)
]

Total-Szeged Szt(Gsw) = Szv(Gsw) + Sze(Gsw) + 2Szev(Gsw)

Padmakar-Ivan PI(Gsw) =
∑

e=uv∈E(Gsw)

se(e)
[
mu(e|Gsw) +mv(e|Gsw)

]
Schultz S(Gsw) =

∑
{u,v}⊆V (Gsw)

[
wv(v)dGsw(u) + wv(u)dGsw(v)

]
dGsw(u, v)

Gutman Gut(Gsw) =
∑

{u,v}⊆V (Gsw)

dGsw
(u)dGsw

(v)dGsw
(u, v)

Degree-based indices are a class of molecular descriptors that are predicated on the graph’s degree

parameter and have interesting chemical applications. The Randić index [53] has to be the most im-

portant degree-based index for correlating alkane chemical characteristics such as boiling temperatures,

chromatographic retention periods, and formation enthalpies. Other indices, such as Zagreb variations,

forgotten, and geometric arithmetic indices [14,15,45], have a high degree of predictability and hence aid

in the development of multi-linear regression models for future investigation of the compound. Variants

of irregularity measures provide a numerical measure of molecular graph irregularity [2]. In [19,22,33,64],

the significance of such indices and potential utilization in the chemical industry were discussed. Some of

the degree-based topological indices are listed in Table 2.
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Table 2: Degree based topological indices

Topological Indices Mathematical Expressions

Randić [10, 52] R(G) =
∑

uv∈E(G)

1√
d(u)d(v)

Reciprocal Randić [17] RR(G) =
∑

uv∈E(G)

√
d(u)d(v)

Reduced reciprocal Randić [41] RRR(G) =
∑

uv∈E(G)

√
(d(u)− 1)(d(v)− 1)

First Zagreb [21] M1(G) =
∑

u∈V (G)

d(u)2

Second Zagreb [21] M2(G) =
∑

uv∈E(G)

d(u)d(v)

Reduced second Zagreb [20] RM2(G) =
∑

uv∈E(G)

(d(u)− 1)(d(v)− 1)

Hyper Zagerb [56] HM(G) =
∑

uv∈E(G)

[d(u) + d(v)]2

Augmented Zagerb [18] AZ(G) =
∑

uv∈E(G)

(
d(u)d(v)

d(u)+d(v)−2

)3

Atom bond connectivity [15] ABC(G) =
∑

uv∈E(G)

√
d(u)+d(v)−2

d(u)d(v)

Harmonic [16] H(G) =
∑

uv∈E(G)

2
d(u)+d(v)

Sum-connectivity [67] SC(G) =
∑

uv∈E(G)

1√
d(u)+d(v)

Geometric arithmetic [61] GA(G) =
∑

uv∈E(G)

2

(√
d(u)d(v)

d(u)+d(v)

)
Inverse sum indeg [60] ISI(G) =

∑
uv∈E(G)

(
d(u)d(v)
d(u)+d(v)

)
First multiple Zagreb [66] PM1(G) =

∏
uv∈E(G)

[d(u) + d(v)]

Second multiple Zagreb [66] PM2(G) =
∏

uv∈E(G)

[d(u)× d(v)]

3 Results

Polycyclics have been the topic of extensive theoretical and empirical investigation considering to their

importance in numerous disciplines of science, such as organic photovoltaics [40], electronics [62], and op-

toelectronic devices [65]. These are made exclusively of concised hexagonal rings, either by circumscribing

the benzene rings to increase the size of the base molecule or by confining the base molecule into dimers,

trimers, and oligomers [23]. In this section, we concentrate on two PAHs with hollow spaces that are

made using kekulene structures in a methodical way. Figure 1 depicts the fundamental chemical structure
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of the kekulene molecule, which may be rearranged in a collection of ways to produce new sequence of

massive PAHs. In this section, we discuss the triangular and rhombus shaped kekulene tessellation.

Theorem 2. Let G be a triangular tessellation of kekulene system TK(n). Then,

(i) W (G) = 3(162n5 + 1485n4 + 3916n3 + 2925n2 + 700n+ 36)/4.

(ii) We(G) = 216n5 + 1818n4 + 4186n3 + 2181n2 + 455n+ 12.

(iii) Wve(G) = (648n5 + 5697n4 + 14074n3 + 8967n2 + 1934n+ 72)/4.

(iv) Szv(G) = 3(540n6 + 6051n5 + 23520n4 + 37055n3 + 20120n2 + 4534n+ 180)/10.

(v) Sze(G) = 6(240n6 + 2514n5 + 9000n4 + 12300n3 + 4425n2 + 1001n+ 20)/5.

(vi) Szev(G) = (432n6 + 4683n5 + 17484n4 + 25745n3 + 11724n2 + 2500n+ 72)/2.

(vii) Szt(G) = (8820n6 + 95151n5 + 353400n4 + 516215n3 + 230700n2 + 50614n+ 1500)/10.

(viii) PI(G) = 8(18n4 + 124n3 + 228n2 + 47n+ 3).

(ix) S(G) = 648n5 + 5805n4 + 14848n3 + 10479n2 + 2384n+ 108.

(x) Gut(G) = 12(72n5 + 630n4 + 1562n3 + 1038n2 + 225n+ 9).

Proof. The number of vertices and edges of TK(n) are respectively given by 9n2+33n+6 and 12n2+42n+6.

Let {HZi : 1 ≤ i ≤ 4} be the horizontal zigzag cuts which are Θ∗-classes, and {AZi : 1 ≤ i ≤ 4},

{OZi : 1 ≤ i ≤ 4} be the acute zigzag and obtuse zigzag cuts produced by spinning the horizontal

zigzag cuts by 60◦ and 120◦ in the anticlockwise direction and the same is depicted in Figure 2. Let

{V Ci : 1 ≤ i ≤ 4}, VM , {V C ′
i : 1 ≤ i ≤ 4}, {ACi : 1 ≤ i ≤ 4}, AM , {AC ′

i : 1 ≤ i ≤ 4}, {OCi : 1 ≤ i ≤ 4},

OM and {OC ′
i : 1 ≤ i ≤ 4} be the various Θ-classes as depicted in Figure 3.

We only address all the above said cuts for TK(n) once and account it 3 times in the computation

procedure because of symmetry. We should also remark that the strength weighted quotient graphs for

{HZi : 1 ≤ i ≤ n}, {AZi : 1 ≤ i ≤ n}, and {OZi : 1 ≤ i ≤ n} are all isomorphic to Figure 2(d). Similarly,

the quotient graphs for the Θ-classes V Z1i, V Z ′
1i, AC1i, AC

′
1i, OC1i, and OC ′

1i, where 1 ≤ i ≤ n along

with their edge strengths are given in Figure 3(d) and corresponding strength-weigthted values are given

in the Table 3. Also, the quotient graphs along with their edge strengths for middle Θ-classes VM , AM ,

and OM are given in Figure 3(e).
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HZ1

HZ2

HZ3

HZ4

(a)

AZ1

AZ2

AZ3

AZ4

(b)

OZ1

OZ2

OZ3

OZ4

(c)

[u1i, v1i] [u2i, v2i]

[1,0]

[1,0]

[1,0]

[1,0]

[1,0]

1

1

1

1

1

1

1

1

1

1

(d)

Figure 2: Θ∗-classes of kekulene structure (a) Horizontal zigzag; (b) Acute zigzag; (c) Obtuse zigzag; (d)

Quotient graph of zigzag cuts for the range 1 ≤ i ≤ n
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VC1

VC2

VC3

VC4

VM

VC'4

VC '2

VC '3

VC '1

(a)

AC �1

AC �2

AC��3

AC��4

AC1

AC2

AC3

AC4

AM

(b)

OC1 OC2
OC3 OC4

OM

OC��1

OC��2

OC��3

OC �4

(c)

[u3i, v3i]

[u4i, v4 i]

2i+2

(d)

[u5n, v5n]

[u6n, v6n]

2n+2

(e)

Figure 3: Θ-classes of kekulene structure (a) Vertical Cut; (b) Acute cut; (c) Obtuse cut; (d) Quotient

graph of vertical, acute and obtuse cuts for the range 1 ≤ i ≤ n; (e) Quotient graph for middle cuts

10



Table 3: Strength-weighted values of quotient graphs of triangular tessellation of kekulene system TK(n)

Quotient graph Vertex weight: wv Vertex strength: sv

G/AZi

1 ≤ i ≤ n

u1i = 9i2 + 15i− 2

u2i = |V (G)| − u1i − 2(i+ 1)

v1i = 12i2 + 18i− 4

v2i = |E(G)| − v1i − 4(i+ 1)

G/ACi

1 ≤ i ≤ n

u3i = (9i2 + 15i− 10)/2

u4i = |V (G)| − u3i

v3i = 6i2 + 8i− 8

v4i = |E(G)| − v3i − 2i− 2

G/AM
u5n = |V |/2

u6n = u5n

v5n = (|E| − (2n+ 2))/2

v6n = v5n

W (G) = 3

[
n∑

i=1

[2(i+ 1)(u1i + u2i) + 2u1iu2i + 2(i+ 1)(2(i+ 1)− 1)] + 2
n∑

i=1

u3iu4i + u5nu6n

]
.

We(G) = 3

[
n∑

i=1

[2(i+ 1)(v1i + v2i) + 2v1iv2i + 2(i+ 1)(2(i+ 1)− 1)] + 2

n∑
i=1

v3iv4i + v5nv6n

]
.

Wve(G) =
3

2

[
n∑

i=1

[2(i+ 1)(u1i + u2i + v1i + v2i) + 2(u1iv2i + v1iu2i) + 4(i+ 1)(2(i+ 1)− 1)]

+ 2
n∑

i=1

[u3iv4i + v3iu4i] + u5nv6n + v5nu6n

]
.

Szv(G) = 3

[
n∑

i=1

[
2(i+ 1)[(u1i + 2(i+ 1)− 1)(u2i + 1) + (u2i + 2(i+ 1)− 1)(u1i + 1)]

]
+ 2

n∑
i=1

[(2i+ 2)u3iu4i] + (2n+ 2)u5nu6n

]
.

Sze(G) = 3

[
n∑

i=1

[
2(i+ 1)[(v1i + 2(i+ 1)− 1)(v2i + 1) + (v2i + 2(i+ 1)− 1)(v1i + 1)]

]
+ 2

n∑
i=1

[(2i+ 2)v3iv4i] + (2n+ 2)v5nv6n

]
.

Szev(G) = 3

[
n∑

i=1

[
2(i+ 1)[(u1i + 2(i+ 1)− 1)(v2i + 1) + (v1i + 2(i+ 1)− 1)(u2i + 1)

+ (u2i + 2(i+ i)− 1)(v1i + 1) + (v2i + 2(i+ 1)− 1)(u1i + 1)]
]

+ 2
n∑

i=1

[(2i+ 2)(u3iv4i + v3iu4i)] + (2n+ 2)(u5nv6n + v5nu6n)

]
.

P I(G) = 3

[
n∑

i=1

2(i+ 1)[(v1i + 2(i+ 1)− 1) + (v2i + 1) + (v2i + 2(i+ 1)− 1) + (v1i + 1)]
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+ 2
n∑

i=1

[(2i+ 2)(v3i + v4i)] + (2n+ 2)(v5n + v6n)

]
.

S(G) = 3

[
n∑

i=1

[
2(i+ 1)[2(u1i + u2i + v1i + v2i) + 4(i+ 1)] + 2[u1i(2v2i + 2(i+ 1))

+ u2i(2v1i + 2(i+ 1))] + 8(i+ 1)(2(i+ 1)− 1)
]
+ 2

n∑
i=1

[u3i(2v4i + 2i+ 2)

+ u4i(2v3i + 2i+ 2)] + u5n(2v6n + 2n+ 2) + u6n(2v5n + 2n+ 2)

]
.

Gut(G) = 3

[
n∑

i=1

[
4(i+ 1)[2(v1i + v2i + 4(i+ 1))] + 2(2v2i + 2(i+ 1))(2v1i + 2(i+ 1))

+ 8(i+ 1)(2(i+ 1)− 1)
]
+ 2

n∑
i=1

[(2v3i + 2i+ 2)(2v4i + 2i+ 2)] + (2v5n + 2n+ 2)

(2v6n + 2n+ 2)

]
.

The results of the above theorem are represented in the following Figure 4.

0 5 10 15 20 25 30 35 40

0

0.5

1

1.5

2

2.5
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3.5

4

4.5

5
10

12

Figure 4: Graphical representation of topological indices of TK(n)
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Theorem 3. Let G be a triangular tessellation of kekulene system TK(n). Then,

(i) R(G) = (2n2
(√

6 + 2
)
+ 2n

(
4
√
6 + 6.5

)
+ 2

√
6 + 1)/2.

(ii) RR(G) = (18 + 6
√
6)n2 + (51 + 24

√
6)n+ 6

√
6− 3.

(iii) RRR(G) = (6
√
2 + 12)n2 + (33 + 24

√
2)n+ 6

√
2− 3.

(iv) M1(G) = 66n2 + 222n+ 24.

(v) M2(G) = 90n2 + 291n+ 21.

(vi) RM2(G) = 36n2 + 111n+ 3.

(vii) HM(G) = 366n2 + 1188n+ 90.

(viii) AZ(G) =
(
7446n2 + 24759n+ 2421

)
/64.

(ix) ABC(G) = ((6 + 4
√
2)n2 + (27 + 10

√
2)n+ 9− 2

√
2)/

√
2.

(x) H(G) =
(
44n2 + 161n+ 29

)
/10.

(xi) SC(G) =
(
(4
√
15 + 12

√
2)n2 + (3

√
10 + 48

√
2 + 10

√
15)n+ 3

√
10 + 12

√
2− 2

√
15
)
/2
√
10.

(xii) GA(G) =
(
(30 + +12

√
6)n2 + (90 + 48

√
6)n+ 12

√
6
)
/5.

(xiii) ISI(G) = (162n2 + 543n+ 57)/10.

(xiv) PM1(G) = 43n+3 × 56n
2+24n+6 × 66n

2+15n−3.

(xv) PM2(G) = 43n+3 × 66n
2+24n+6 × 96n

2+15n−3.

The above results are simple along with the values of the following Table 4.

Table 4: The edge partition of triangular tessellation of kekulene system TK(n)

S. No Edge Type (d(u), d(v)) Frequency

1 E1 (2,2) 3n+ 3

2 E2 (2,3) 6n2 + 24n+ 6

3 E3 (3,3) 6n2 + 15n− 3

The computed numerical values of various degree-based indices for first 10 dimensions of TK(n) are

presented in Table 5 and Table 6. The graphical representation of various degree-based topological indices

of triangle kekulene are depicted in Figure 5 and Figure 6.
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Table 5: Computed numerical values of R(G), RR(G), RRR(G), M1(G), M2(G), RM(G), and HM(G)

for G = TK(n)

n R(G) RR(G) RRR(G) M1(G) M2(G) RM(G) HM(G)

1 24 154 93 312 402 150 1644

2 53 362 221 732 963 369 3930

3 92 635 391 1284 1704 660 6948

4 139 974 601 1968 2625 1023 10698

5 196 1378 852 2784 3726 1458 15180

6 261 1848 1145 3732 5007 1965 20394

7 335 2382 1478 4812 6468 2544 26340

8 418 2983 1852 6024 8109 3195 33018

9 510 3648 2267 7368 9930 3918 40428

10 611 4379 2723 8844 11931 4713 48570

Table 6: Computed numerical values of AZ(G), ABC(G), H(G), SC(G), GA(G), and ISI(G) for G =

TK(n)

n AZ(G) ABC(G) H(G) SC(G) GA(G) ISI(G)

1 541 42 23 264 59 76

2 1277 83 53 602 136 179

3 2246 132 91 1042 237 314

4 3447 189 138 1585 362 482

5 4881 254 193 2231 510 682

6 6547 327 258 2979 683 915

7 8447 408 331 3830 879 1180

8 10579 497 413 4783 1098 1477

9 12943 594 504 5839 1342 1807

10 15541 700 604 6998 1609 2169

14



Figure 5: For G = TKn, graphical representation of degree-based indices R(G), RR(G), RRR(G), M1(G),

M2(G), RM(G), and HM(G)

Figure 6: For G = TKn, the graphical representation of degree-based indices AZ(G), ABC(G), H(G),

SC(G), GA(G), and ISI(G)
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Theorem 4. Let G be a rhombus tessellation of kekulene system RK(n). Then,

(i) W (G) = (20493n5 + 91080n4 + 93295n3 + 1800n2 + 902n− 30)/30.

(ii) We(G) = (18216n5 + 71580n4 + 54460n3 − 15450n2 + 4424n− 210)/15.

(iii) Wve(G) = (27324n5 + 114405n4 + 102310n3 − 11865n2 + 3386n− 120)/30.

(iv) Szv(G) = (19440n6 + 106362n5 + 186835n4 + 103280n3 − 5335n2 + 3478n− 60)/15.

(v) Sze(G) = (11520n6 + 57264n5 + 87240n4 + 30480n3 − 14100n2 + 4776n− 180)/5.

(vi) Szev(G) = (5184n6 + 27066n5 + 44405n4 + 20208n3 − 4289n2 + 1422n− 36)/3.

(vii) Szt(G) = (211680n6 + 1097628n5 + 1785210n4 + 793600n3 − 181050n2 + 64052n− 1920)/30.

(viii) PI(G) = (8n(252n3 + 905n2 + 741n− 134))/3.

(ix) S(G) = (54648n5 + 235290n4 + 226940n3 − 6330n2 + 3652n− 120)/15.

(x) Gut(G) = (72864n5 + 303600n4 + 274760n3 − 21360n2 + 6856n− 240)/15.
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Figure 7: Θ-classes of kekulene structure (a) Horizontal cut; (b) Acute Cut ; (c) Obtuse cut

[u1i, v1i]

[u2i, v2i]
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(a)

[u3n, v3n]
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Figure 8: Quotient Graph (a) G/Hi; (b) G/HM ; (c) G/A1i; (d) G/A2i
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Figure 9: Θ∗-classes of kekulene structure (a) Obtuse zigzag; (b) Acute zigzag; (c) Vertical zigzag
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Figure 10: Quotient Graph (a) G/AZi; (b) G/V Zi
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Table 7: Strength weighted values of rhombus tessellation of kekulene system RK(n)

Quotient Graph Vertex weight : wv Vertex strength : sv

G/Hi

1 ≤ i ≤ n

u1i = 9i2 − 2i

u2i = |V (G)| − u1i

v1i = 12i2 − 6i

v2i = |E(G)| − v1i − 4i

G/HM
u3n = 1

2(|V |)

u4n = u3n

v3n = 1
2(|E| − 4n)

v4n = v3n

G/A1i

1 ≤ i ≤ n

u5i =
1
2(9i

2 + 15i− 10)

u6i = |V (G)| − u5i

v5i = 6i2 + 8i− 8

v6i = |E(G)| − v5i − 2(i+ 1)

G/A2i

1 ≤ i ≤ n

u7i =
1
2(9n

2 + 15n+ 18ni+ 16i− 10)

u8i = |V (G)| − u7i

v7i = 6n2 + 8n+ 12ni+ 10i− 8

v8i = |E(G)| − v7i − 2(n+ 1)

G/AZi

1 ≤ i ≤ n

u9i = 18ni+ 16i− 2n− 10

u10i = |V (G)| − u9i − 2(n+ 1)

v9i = 24ni+ 20i− 4n− 14

v10i = |E(G)| − b9i − 4(n+ 1)

G/V Zi

1 ≤ i ≤ n

u11i = 9i2 + 15i− 2

u12i = |V (G)| − u11i − 2(i+ 1)

v11i = 12i2 + 18i− 4

v12i = |E(G)| − v11i − 4(i+ 1)

Proof. The number of vertices and edges of RK(n) are given respectively by 18n2 + 32n− 2 and 24n2 +

40n−4. With this we let {Hi : 1 ≤ i ≤ 3} and HM be the horizontal cuts and horizontal middle cut which

are Θ-classes depicted in Figure 7(a), and the cuts {Hi : 1 ≤ i ≤ 3} are symmetrical with {H ′
i : 1 ≤ i ≤ 3}.

The other Θ-classes in PK(n) are {A1i : 1 ≤ i ≤ 3}, {A′
1i : 1 ≤ i ≤ 3}, and {A2i : 1 ≤ i ≤ 3} depicted in

Figure 7(b) in which A′
1i and A1i cuts results an isomorphic quotient graph, same is depicted in Figure

8(c) along with its strength weighted values. Similarly, it happens for {O1i : 1 ≤ i ≤ 3}, {O′
1i : 1 ≤ i ≤ 3},

and {O2i : 1 ≤ i ≤ 3}. See Figure 7(c). The quotient graph of {A2i : 1 ≤ i ≤ 3} and {O2i : 1 ≤ i ≤ 3}

are isomorphic and the same is depicted in Figure 8(d). Let {OZi : 1 ≤ i ≤ 3}, {AZi : 1 ≤ i ≤ 3}, and

{V Zi : 1 ≤ i ≤ 3} be the obtuse zigzag and acute zigzag and vertical zigzag cuts respectively depicted in

Figure 9(a), 9(b), and 9(c). The quotient graph of obtuse zigzag and acute zigzag are isomorphic and the

same is depicted in Figure 10(a); and the quotient graph for vertical zigzag is depicted in Figure 10(b)

and corresponding strength-weigthted values are given in the Table 7.

W (G) = 2
n∑

i=1

u1iu2i + u3nu4n + 4
n∑

i=1

u5iu6i + 2
n∑

i=1

u7iu8i

+ 2
n∑

i=1

[2(n+ 1)(u9i + u10i) + 2u9iu10i + 2(n+ 1)(2(n+ 1)− 1)]

+
n∑

i=1

[2(i+ 1)(u11i + u12i) + 2u11iu12i + 2(i+ 1)(2(i+ 1)− 1)]
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+

n−1∑
i=1

[2(i+ 1)(u11i + u12i) + 2u11iu12i + 2(i+ 1)(2(i+ 1)− 1)].

We(G) = 2

n∑
i=1

v1iv2i + v3nv4n + 4

n∑
i=1

v5iv6i + 2

n∑
i=1

v7iv8i

+ 2

n∑
i=1

[2(n+ 1)(v9i + v10i) + 2v9iv10i + 2(n+ 1)(2(n+ 1)− 1)]

+

n∑
i=1

[2(i+ 1)(v11i + v12i) + 2v11iv12i + 2(i+ 1)(2(i+ 1)− 1)]

+
n−1∑
i=1

[2(i+ 1)(v11i + v12i) + 2v11iv12i + 2(i+ 1)(2(i+ 1)− 1)].

Wve(G) =
1

2

[
2

n∑
i=1

[u1iv2i + u2iv1i] + [u3nv4n + u4nv3n] + 4

n∑
i=1

[u5iv6i + u6iv5i] + 2

n∑
i=1

[u7iv8i + u8iv7i]

+ 2

n∑
i=1

2(n+ 1)(u9i + u10i + v9i + v10i) + 2(u9iv10i + u10iv9i) + 4(n+ 1)(2(n+ 1)− 1)

+

n∑
i=1

2(i+ 1)(u11i + u12i + v11i + v12i) + 2(u11iv12i + u12iv11i) + 4(i+ 1)(2(i+ 1)− 1)

+
n−1∑
i=1

2(i+ 1)(u11i + u12i + v11i + v12i) + 2(u11iv12i + u12iv11i) + 4(i+ 1)(2(i+ 1)− 1)

]
.

Szv(G) = 2

n∑
i=1

4iu1iu2i + 4nu3nu4n + 4

n∑
i=1

2(i+ 1)u5iu6i + 2

n∑
i=1

2(n+ 1)u7iu8i

+ 2

n∑
i=1

2(n+ 1)[(u9i + 2(n+ 1)− 1)(u10i + 1) + (u10i + 2(n+ 1)− 1)(u9i + 1)]

+

n∑
i=1

2(i+ 1)[(u11i + 2(i+ 1)− 1)(u12i + 1) + (u12i + 2(i+ 1)− 1)(u11i + 1)]

+
n−1∑
i=1

2(i+ 1)[(u11i + 2(i+ 1)− 1)(u12i + 1) + (u12i + 2(i+ 1)− 1)(u11i + 1)].

Sze(G) = 2

n∑
i=1

4iv1iv2i + 4nv3nv4n + 4

n∑
i=1

2(i+ 1)v5iv6i + 2

n∑
i=1

2(n+ 1)v7iv8i

+ 2

n∑
i=1

2(n+ 1)[(v9i + 2(n+ 1)− 1)(v10i + 1) + (v10i + 2(n+ 1)− 1)(v9i + 1)]

+

n∑
i=1

2(i+ 1)[(v11i + 2(i+ 1)− 1)(v12i + 1) + (v12i + 2(i+ 1)− 1)(v11i + 1)]

+
n−1∑
i=1

2(i+ 1)[(v11i + 2(i+ 1)− 1)(v12i + 1) + (v12i + 2(i+ 1)− 1)(v11i + 1)].

Szev(G) =
1

2

[
2

n∑
i=1

4i[u1iv2i + u2iv1i] + 4n[u3nv4n + u4nv3n] + 4

n∑
i=1

2(i+ 1)[u5iv6i + u6iv5i]
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+ 2

n∑
i=1

2(n+ 1)[u7iv8i + u8iv7i] + 2

n∑
i=1

2(n+ 1)[(u9i + 2(n+ 1)− 1)(v10i + 1)

+ (v9i + 2(n+ 1)− 1)(u10i + 1) + (u10i + 2(n+ 1)− 1)(v9i + 1)

+ (v10i + 2(n+ 1)− 1)(u9i + 1)] +

n∑
i=1

2(i+ 1)[(u11i + 2(i+ 1)− 1)(v12i + 1)

+ (v11i + 2(i+ 1)− 1)(u12i + 1) + (u12i + 2(i+ 1)− 1)(v11i + 1)

+ (v12i + 2(i+ 1)− 1)(u11i + 1)] +
n−1∑
i=1

2(i+ 1)[(u11i + 2(i+ 1)− 1)(v12i + 1)

+ (v11i + 2(i+ 1)− 1)(u12i + 1) + (u12i + 2(i+ 1)− 1)(v11i + 1)

+ (v12i + 2(i+ 1)− 1)(u11i + 1)]

]

PI(G) = 2

n∑
i=1

4i(v1i + v2i) + 4n(v3n + v4n) + 4

n∑
i=1

2(i+ 1)(v5i + v6i) + 2

n∑
i=1

2(n+ 1)(v7i + v8i)

+ 2

n∑
i=1

2(n+ 1)[(v9i + 2(n+ 1)− 1) + (v10i + 1) + (v10i + 2(n+ 1)− 1) + (v9i + 1)]

+

n∑
i=1

2(i+ 1)[(v11i + 2(i+ 1)− 1) + (v12i + 1) + (v12i + 2(i+ 1)− 1) + (v11i + 1)]

+

n−1∑
i=1

2(i+ 1)[(v11i + 2(i+ 1)− 1) + (v12i + 1) + (v12i + 2(i+ 1)− 1) + (v11i + 1)].

S(G) = 2

n∑
i=1

[u1i(2v2i + 4i) + u2i(2v1i + 4i)] + [u3n(2v4n + 4n) + u4n(2v3n + 4n)]

+ 4

n∑
i=1

[u5i(2v6i + 2i+ 2) + u6i(2v5i + 2i+ 2)] + 2

n∑
i=1

[u7i(2v8i + 2n+ 2)

+ u8i(2v7i + 2n+ 2)] + 2

n∑
i=1

2(n+ 1)[2(u9i + u10i + v9i + v10i) + 4(n+ 1)]

+ 2[u9i(2v10i + 2(n+ 1)) + u10i(2v9i + 2(n+ 1))] + 8(n+ 1)(2(n+ 1)− 1)

+

n∑
i=1

2(i+ 1)[2(u11i + u12i + v11i + v12i) + 4(i+ 1)] + 2[u11i(2v12i + 2(i+ 1))

+ u12i(2v11i + 2(i+ 1))] + 8(i+ 1)(2(i+ 1)− 1)

+
n−1∑
i=1

2(i+ 1)[2(u11i + u12i + v11i + v12i) + 4(i+ 1)] + 2[u11i(2v12i + 2(i+ 1))

+ u12i(2v11i + 2(i+ 1))] + 8(i+ 1)(2(i+ 1)− 1).

Gut(G) = 2
n∑

i=1

[(2v2i + 4i)(2v1i + 4i)] + [(2v4n + 4n)(2v3n + 4n)]
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+ 4

n∑
i=1

[(2v6i + 2i+ 2)(2v5i + 2i+ 2)] + 2

n∑
i=1

[(2v8i + 2n+ 2)(2v7i + 2n+ 2)]

+ 2

n∑
i=1

4(n+ 1)[2(v9i + v10i + 4(n+ 1))] + 2(2v9i + 2(n+ 1))(2v10i + 2(n+ 1))

+ 8(n+ 1)(2(n+ 1)− 1) +

n∑
i=1

4(i+ 1)[2(v11i + v12i + 4(i+ 1))]

+ 2(2v11i + 2(i+ 1))(2v12i + 2(i+ 1)) + 8(i+ 1)(2(i+ 1)− 1)

+
n−1∑
i=1

4(i+ 1)[2(v11i + v12i + 4(i+ 1))] + 2(2v11i + 2(i+ 1))(2v12i + 2(i+ 1))

+ 8(i+ 1)(2(i+ 1)− 1).

The results of the above theorem are represented in the following Figure 11.
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10
13

Figure 11: Graphical representation of various distance based topological indices of RK(n)

Theorem 5. Let G be a rhombus tessellation of kekulene system RK(n). Then,

(i) R(G) = (4 + 2
√
6)n2 + (6 + 4

√
6)n− 1.
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(ii) RR(G) = (36 + 12
√
6)n2 + (44n+ 24

√
6)n− 14.

(iii) RRR(G) = (24 + 12
√
2)n2 + (28 + 24

√
2)n− 10.

(iv) M1(G) = 132n2 + 208n− 28.

(v) M2(G) = 180n2 + 268n− 46.

(vi) RM2(G) = 72n2 + 100n− 22.

(vii) HM(G) = 732n2 + 1096n− 184.

(viii) AZ(G) =
(
7446n2 + 11542n− 1675

)
/32.

(ix) ABC(G) = (8 + 6
√
2)n2 + (8 + 14

√
2)n− 4.

(x) H(G) =
(
44n2 + 78n− 5

)
/5.

(xi) SC(G) =
(
(12 + 2

√
30)n2 + (24 + 2

√
30 + 2

√
5)n+

√
5−

√
30
)
/
√
5.

(xii) GA(G) = ((60 + 24
√
6)n2 + (80 + 48

√
6)n− 20)/5.

(xiii) ISI(G) = (162n2 + 254n− 35)/5.

(xiv) PM1(G) = 44n+2 × 512n
2+24n × 612n

2+12n−6.

(xv) PM2(G) = 44n+2 × 612n
2+24n × 912n

2+12n−6.

The proof of the above theorem is simple in line with the values of Table 8.

Table 8: The edge partition of rhombus tessellation of kekulene system RK(n)

S. No Edge Type (d(u), d(v)) Frequency

1 E1 (2,2) 4n+ 2

2 E2 (2,3) 12n2 + 24n

3 E3 (3,3) 12n2 + 12n− 6

The computed numerical values of various degree-based indices for first 10 dimensions of RK(n) are

presented in Table 9 and Table 10. The graphical representation of these degree-based indices are depicted

in Figure 12 and Figure 13.
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Table 9: Computed numerical value for degree-based indices R(G), RR(G), RRR(G), M1(G), M2(G),

RM(G), and HM(G) for G = RK(n)

n R(G) RR(G) RRR(G) M1(G) M2(G) RM2(G) HM(G)

1 24 154 93 312 402 150 1644

2 66 541 278 916 1210 466 4936

3 126 1147 545 1784 2378 926 9692

4 205 1971 893 2916 3906 1530 15912

5 300 3015 1324 4312 5794 2278 23596

6 414 4277 1837 5972 8042 3170 32744

7 546 5758 2431 7896 10650 4206 43356

8 695 7458 3108 10084 13618 5386 55432

9 862 9376 3866 12536 16946 6710 68972

10 1047 11513 4706 15252 20634 8178 83976

Table 10: Computed numerical value for degree-based indices AZ(G), ABC(G), H(G), SC(G), GA(G),

and ISI(G) for G = RK(n)

n AZ(G) ABC(G) H(G) SC(G) GA(G) ISI(G)

1 541 40 23 26 59 76

2 1600 118 65 75 170 224

3 3124 228 125 144 328 437

4 5113 371 202 233 534 715

5 7568 547 297 343 788 1057

6 10489 756 409 474 1088 1464

7 13874 998 539 625 1437 1936

8 17725 1273 687 797 1833 2473

9 22042 1581 852 989 2276 3075

10 26823 1923 1035 1201 2767 3741
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Figure 12: For G = RK(n), the graphical representation of degree-based indices R(G), RR(G), RRR(G),

M1(G), M2(G), RM(G), and HM(G)

Figure 13: For G = RK(n), the graphical representation of degree-based indices AZ(G), ABC(G), H(G),

SC(G), GA(G), and ISI(G)
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4 Conclusion

We have given the topological indices of two classes of massive polycyclic aromatic compounds made using

armchair kekulene systems in triangular and rhombus layouts. The strength-weighted graph strategy is

used to compute analytical expressions for the topological indices of these tessellations. The calculations

are carried out in MATLAB, and the results are validated in newGRAPH. The results obtained here could

potentially provide a vital tool for realizing the importance of these large-sized aromatic compounds when

combined with quantum chemical descriptors in various fields such as material science, predictive toxi-

cology, drug discovery, and so on, because the molecular descriptors describe the topological connectivity

properties of these compounds.
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[24] Jeremy Hieulle, Eduard Carbonell-Sanromà, Manuel Vilas-Varela, Aran Garcia-Lekue, Enrique

Guitián, Diego Peña, and Jose Ignacio Pascual. On-surface route for producing planar nanographenes

with azulene moieties. Nano Letters, 18:418–423, 1 2018.

[25] Jun ichi Aihara. Graph theory of ring-current diamagnetism. Bulletin of the Chemical Society of

Japan, 91:274–303, 2 2018.

[26] Jun ichi Aihara and Masakazu Makino. Constrained clar formulas of coronoid hydrocarbons. The

Journal of Physical Chemistry A, 118:1258–1266, 2 2014.

[27] Jun ichi Aihara, Masakazu Makino, Toshimasa Ishida, and Jerry R. Dias. Analytical study of super-

aromaticity in cycloarenes and related coronoid hydrocarbons. The Journal of Physical Chemistry

A, 117:4688–4697, 6 2013.

[28] Li Ji, Yan Shu, Wu Wenxiang, Li Lingxu, Li Hongda, and Hashem Soleymani. Potential application

of kekulene nanoring in the li-ion batteries: Dft studies. Computational and Theoretical Chemistry,

1181:112796, 7 2020.
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