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Abstract: Driven by scientific development, the bio-convection unsteady nanofluid flow has 

gained enormous attention in research due to its applications in various disciplines such as 

biosensors, biological polymer synthesis, pharmaceutics, microbial improved oil recovery, and 

environment-friendly applications. As such, this study aims to investigate the mixed bio-

convective magnetized and electrically conducting 2-dimensional flow in view of two extended 

wall channels subjected to MHD, thermal radiation, and binary chemical reaction effects. A 

mathematical framework is developed underflow of a nonofluid based on certain conditions. The 

implication of Soret and Dufour impacts is considered in the model problem. Such a nonlinear 

mathematical model is tackled by invoking similarity solutions for mass conservation, 

momentum, temperature, concentration, and micro-organisms expressions. The dimensionless 

principles (ODEs) are addressed by the efficacy Nactsheim-Swigert shooting along with the 

iteration process, explicitly through shooting technique (RK-4). The outlines of distinguished 

emerging constraints on flow fields are offered through the plotted graphic visuals. The impact 

of physical quantities of engineering interest is offered numerically via tabulated values. 

1. Introduction 

Numerous researchers, mathematicians, engineers, and scientists from several disciplines of 

science are currently interested in a variety of non-Newtonian fluids known as nano-liquids. 

Because of their widespread application in different manufacturing units which includes solar 

steam generation, electronic component freezing, aerospace tribology, and medical suspension 

sterilisation. According to Pal and Mondal [1], bio-convection improves the stability of the 

nanofluid flow. Kuznetsov and Avramenko [2] investigated bio-convection in fluid flow with 

gyrotactic bacteria and nano-size particles. Khan et al. [3] examined the boundary layer 

nanofluid flow of microorganisms with Naiver slip condition through a vertical channel. The 

impact of the gyrotactic microbe density factor on bio-convection flow over a stretching surface 

was studied by Tham et al. [4]. The fully developed flow of nanofluid in a horizontally flat 

conduit containing gyrotactic bacteria and nanoparticles was studied by Xu et al. [5]. Raees et al. 

[6] reported an unstable bio convective flow of Newtonian fluid including nanoparticles between 

two extended plate channels. Fluid flow in a horizontal channel with gyrotactic microorganisms, 

including nanoparticles, was explored by Mosayebidorcheh et al. [7]. Shen et al. [8] employed 
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HAM to explore bio-convective nanofluid flow with radiation and velocity slip effects moving 

motile microorganisms across a stretched surface. The analytical approach assisted Nagaraju et 

al. [9] in exploring the flow in a cylinder projected vertically under the influence of heat 

source/sink effects uniformly. Semi analytic solutions were obtained by Yusuf and Gambo [10] 

while studying the free convective flood of an incompressible liquid including heat source or 

sink properties over a cylinder with a porous material placed vertically. Dawar et al. [11] noticed 

attractive results on the stream of viscoelastic and Newtonian liquid with heat 

generation/absorption. Under the idea of a small Reynolds number and applying Debye-Huckel 

approximations over the energy and momentum equation, the solution is obtained by Shaheen et 

al. [12]. Thumma and Mishra [13] worked analytically using the Adomian decomposition 

method over the Eyring- Powell nanofluid flow over a sheet that is stretched. Temperature and 

heat sink/source effects were discussed in detail. Cu-water nanofluid is covered in a squared 

cavity and partial slip effect along the horizontal walls. Shukla et al. [14] investigated heat 

transfer in bioconvective nanofluid flow under the influence of solar flux, radiation, and oblique 

magnetic fields. Cheng [15] used the Soret and Dufour effects on a saturated fluid flow in a 

porous medium to explain natural convection. Hayat et al. [16] investigated the impact of Soret 

and Dufour on viscoelastic fluid flow through a porous surface in the presence of a magnetic 

field. Hayat et al. [17] examined hydromagnetic properties in the 3D flow of couple stress nano 

liquid. Numerical treatment for mixed convective nanoliquid flow in a lid-driven square cavity 

with three triangular heating blocks is reported by Boulahia et al. [18]. Hayat et al. [19] 

discussed the impact of the hydromagnetic 3D flow of nanoliquid induced by a nonlinear 

actuating sheet with the convective condition. Nanomaterial transport impact on hydromagnetic 

mixed convective nanofluids flow in micro-annuli with temperature-dependent thermophysical 

features is scrutinized by Malvandi et al. [20]. Hayat et al. [21] elaborated Darcy-Forchheimer 

3D flow of Williamson nanofluid over a convectively heated nonlinearly moving surface. 

Numerical treatment for Magnetohydrodynamic three-dimensional radiative slip flow of 

nanofluids induced by a nonlinear accelerating surface is performed by Mahanthesh et al. [22].  

Liu et al. [23] used lattice Boltzmann theory to create a dual-diffusion natural convective flow 

based on multi-relaxation phenomena with Soret and Dufour effects. They showed how to 

leverage the Soret and Dufour influences to create double-diffuse natural convection flow. In a 

Carreau fluid flow with Soret and Dufour effects, Sardar et al. [24] examined mixed convection 

processes. Bilal Ashraf et al. [25] addressed the mixed convective MHD viscoelastic fluid flow 

with Soret and Dufour impacts. Jiang et al. [26] have good results in simultaneous heat and mass 

transmission processes with Soret and Dufour effects. Hafeez et al. [27] investigated fluid flow 

across a disc exhibiting thermophoresis, Soret, and Dufour effects. Hannes Alfven was the first 

to invent and introduce magneto hydrodynamics in 1970. Drug targeting, astrophysics, MHD 

pumps, metallurgy, ship propulsion, turbulent drag reduction, and fusion reactors are examples 

of MHD uses in health sciences and engineering. The aforementioned utilizations of MHD 

motivate scientists to develop novel models in the field of fluid dynamics [28–31]. MHD flow 

across a variety of geometries relevant to engineering is a fascinating and worthwhile subject of 
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research. Patel and Singh [32] investigated MHD, micropolar fluid flow with Brownian 

diffusion, and the convective boundary condition. A steady MHD hybrid nanofluid flow was 

examined by Aly and Pop [33] over a permeable flat plate. Rashid et al. [34] investigated the 

effects of radiation on the MHD boundary layer flow over a porous shrinking sheet. Waini et al. 

[35] explored magnetic field interactions with steady fluid flow through a permeable wedge. 

Sheikhpour et al. [36] analyzed nanofluids usage in biomedical, imaging, drug delivery as well 

as anti-bacterial fields. In recent years, transmission in porous media is an interesting incident, so 

it was utilized by Khanafer and Vafai [37] for investigation of uses regarding nanofluids. Heat 

transfer, as well as flow features of nanofluid flow having forced and free convection, was 

reviewed by Wang and Mujumdar [38]. 

2. Mathematical Formulation 

Assuming an unsteady hydro-magnetic and electrically conducting bio-convective 2D flow of 

nanofluid between two extended plates channel subject to first order binary reaction, and the 

impact of Dufour and Soret are considered in modeling the flow problem. Figure 1 portrays the 

geometry and coordinate system selected in such a way that the x  direction is taken in the 

direction of the lower plate and y  axis normal to flow. The magnetic field is assumed in the 

normal direction. The plates are at     
0.5

1 /y h t at b   distance apart, and the upper plate 

is move away from the lower plate with  v t dh dt . Where, t  is time,  kinetic viscosity, and 

,a b are constants. Moreover, 1 0at  shows that 2 4 1 0b ac t  . Obviously, 0a  designates 

plates are stationary, 0 1a t  show that upper plate is squeezed against the lower one, and 

0a  show that the upper plate is move away from the lower plate. It is considered that both 

walls are preserved at a constant binary reaction concentration 1 2  C and C , constant temperatures

1 2 ,  T T and constant microorganisms 1 2  N and N .  

 

Fig. 1 Flow configuration of the problem 
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The constitutive flow system under specified assumptions is as follows: 
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Where    0 0,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,   , ,  ,    sB J V p T T D C C Q t N K t and j    are magnetic field, 

electric current density, velocity vector, pressure, fluid density, kinematic viscosity, thermal 

diffusivity, temperature, reference temperature, mass diffusivity, concentration, reference 

concentration, volumetric heat generation rate, motile microorganism, chemical reaction, and 

heat flux.  Herein 
2

t sj DK C C   is the Dufour effect given by Frick’s law, R is the flux 

concentration due to the temperature difference known as Soret effect from Fourier’s law, 

2 ,  ,  ,   c t m t mR q A DK T T K D and T    is the thermal diffusion ratio, coefficient of diffusion, 

and mean temperature.  

The respective component form of Eq. (2) for 2-dimenssional fluid flow may be expressed as: 
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By simplifying Eqs. (6) and (7), the following transformation is used given in Eq. (8): 
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In view of the above assumptions the resulting equations may be expressed as:  
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Mass conservation relation 
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Momentum expression 
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Concentration equation 
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Motile gyrotactic microorganisms 
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where u
y





 and v
x


 


 are velocity factors, 2   is the vorticity function, N  is the 

microorganisms density, cW  is the cell moment,  01c cv b W C C C y     denote the 

microorganisms average velocity, cb  constant, and mD diffusivity of microorganisms.  

Following similarity variables are suggested: 
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One gets the resulting nonlinear couples system of equations with aid of Eq. (15) in Eqs. (9)–(12) 

in the dimensionless form as: 
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Labeled as squeezing parameter, magnetic field, Dufour number, heat generation parameter, 

Soret number, Lewis number, Schmidt number, chemical reaction parameter, and bio convection 

Peclet number respectively,  whereas ,  ,  T C w   are constants. The magnetic field strength and 

internal heating is defined as         
3

1
4

0 01   1  sB b at B t and Q b at Q t



    . 

3. Solution methodology 
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There are numerous methods for addressing nonlinear problems. Solving analytically these types 

of equations are so tedious due to nature complexity. Thus an efficient and validated numerical 

algorithm through shooting method references [39-42]. Because of its rapid convergence, it is 

preferred over many other analytical and numerical approaches. The RK-4 method is 

intrinsically stable and convergent. In general, this technique has been employed for the BVP 

because of their exceptionally good stability qualities and fourth-order precision. The iterative 

procedure is continued until the required results are achieved to meet the convergence 

requirement up to accuracy point 610  by taking the step size is 0.01. The preliminary stage 

needs to shift all the ODEs Eqs. (7)- (10) into first order ODEs. For the convenience of the 

reader the flow path of the computational framework shown in Fig. 2. 

 

Fig. 2 Continued 

3.1 Verification of Code 

The correctness of the numerical method is measured by comparison the numerical outcomes on 

velocity, temperature and nanofluid-concentration from the analytical approach against the 

current consequences obtained and summarizes the comparison of analytic (HAM) and 

numerical solution is presented through plotted graphs Fig.3 and tabulated values given in table 

1. 

 



8 
 

Fig. 3(a–d) Graphical comparisons of        ' , ,   F T C and w    functions 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Table 1(a–d) Numerical comparison for velocity, energy, concentration, and motile 

microorganism 

 

η HAM solution Numerical soltuion Absolute Error

0. −2.71051 × 10−20 0.000000 2.7105 × 10−20

0.1 0.315400 0.313749 0.001651
0.2 0.510029 0.509174 0.000855
0.3 0.624514 0.625047 0.000533
0.4 0.683397 0.685000 0.001602
0.5 0.699910 0.701867 0.001957
0.6 0.678548 0.680047 0.001500
0.7 0.615914 0.616275 0.000361
0.8 0.499986 0.498950 0.001035
0.9 0.307648 0.305879 0.001769
1.0 5.8102 × 10−8 4.8261 × 10−8 9.84119 × 10−9

  

(a) 

η HAM solution Numerical soltuion Absolute Erro
0. 1.000000 1.000000 0.000000

0.1 0.910434 0.910728 0.000295
0.2 0.815189 0.815606 0.000417
0.3 0.715304 0.715698 0.000394
0.4 0.612101 0.612366 0.000266
0.5 0.507096 0.507175 0.000079
0.6 0.401903 0.401789 0.000114
0.7 0.298147 0.297884 0.000263
0.8 0.197370 0.197052 0.000318
0.9 0.100949 0.100708 0.000240
1.0 0.010000 0.010000 3.588050 × 10−11

 

(b) 
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η HAM solution Numerical soltuion Absolute Error
0.0 1.000000 1.000000 0.000000
0.1 0.920602 0.922540 0.001938
0.2 0.837148 0.840714 0.003566
0.3 0.749489 0.754331 0.004842
0.4 0.657506 0.663230 0.005724
0.5 0.561103 0.567267 0.006164
0.6 0.460198 0.466313 0.006115
0.7 0.354719 0.360245 0.005526
0.8 0.244591 0.248938 0.004347
0.9 0.129726 0.132249 0.002524
1.0 0.010000 0.010000 1.6405 × 10−10

 

(c) 

η HAM solution Numerical soltuion Absolute Error
0.0 1.000000 1.000000 0.000000
0.1 0.920602 0.920797 0.000195
0.2 0.837148 0.837507 0.000359
0.3 0.749489 0.749975 0.000486
0.4 0.657506 0.658080 0.000574
0.5 0.561103 0.561720 0.000617
0.6 0.460198 0.460809 0.000611
0.7 0.354719 0.355270 0.000552
0.8 0.244591 0.245024 0.000433
0.9 0.129726 0.129977 0.000251
1.0 0.010000 0.010000 1.61663 × 10−11

 

(d) 

4. Consequences and discussion 

In this section, the numerical solutions of coupled ordinary differential Eqs. (16) − (19) with 

boundary conditions Eq. (20) are obtained through shooting Fehlberg method. Our central 

concern is to debate the variation of the parameters such as squeezing parameter  , 

dimensionless magnetic field M , heat generation parameter Q , Dufour number Df , Soret 

number Sr , Schmidt number Sc , chemical reaction parameter
0K ,  and Peclet number Pe  on 

velocity, energy, concentration, and motile microorganism outlines is presented in Figures 3–16.  

From Figure 3, the outlines of M on the  'F   profile. It is observed that fluid velocity  'F 

improves quickly with the higher estimation of magnetic parameter, whereas an increase in M  

values enhances  'F  in the vicinities of upper and lower plates, yields decay in  'F   profile 

between the plates. Physically, larger magnetic parameter interacts with electrically conductive 

nanofluid which drags of fluid flow due to Lorentz force. In consequences fluid velocity  'F   
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profile is diminished. Figure 4 displays the effect of squeezing parameter   on  'F  outlines. It 

can be interpreted that velocity profile enhances with the increasing values of the  . This is due 

to the fact that the accelerated fluid has a greater velocity  'F  . Figure 5 unveils the outcome of 

heat generation parameter Q  on thermal field profile  T  . It can be observed that  T   rises 

through the growing values of Q parameter. Physically, higher estimation of Q  increase the 

internal energy due to which the kinetic energy of the nanofluid particles increases yields an 

increment in the thermal boundary layer as well the in the thermal field. Figure 6 designates the 

result of the binary reaction parameter Kr on energy  T   field. It can be perceived that thermal 

field curve develops with the growing values of Kr parameter. Attributes of Dufour number Df

on energy field curves  T  is outlines in Figure 7. It can be witnessed from plot that the energy 

field is strengthened with the increasing values of Dufour number. An increment in Df number 

yields to enhance the concentration. Inconsequence a rapid diffusion in is happened, due to 

which energy transfer increases in nanoparticles. Consequently,  T   profile increases. Figure 8 

discloses the influence of Soret number St on temperature curves  T  .  As noticed that the 

incrementing values of St  number develops the energy field curves  T  . Figure 9 describes the 

effect of heat generation parameter Q  on concentration  C  profile. It is clear from this plot 

that both  C  profile and the associated boundary layer thickness are diminishing subject to 

higher estimation of the heat generation parameterQ . Figure 10 explains the upshot of the binary 

reaction parameter Kr upon  C   outlines. It can be observed that the changing values
 
of Kr

decreasing the concentration profile as well as the concentration boundary layer. Physically, this 

decrease in  C   is because of the decline in molecular diffusivity with larger chemical species.  

Figure 11 outlines behavior of Dufour number Df on  C  . It can be clearly witnessed that 

concentration profiles dwindles with the expanding values of Df number.  Figure 12 explains the 

result of Soret number St on  C  profile; as noticed that larger estimation of number St declining 

the concentration profile. Figure 13 describes Sc upshot against  C  . Physically, Sc and D  are 

inversely related with each other. Hence, an augmentation in Sc values reasons decay in the 

 C  profile. Physically, D declines when Sc  number increases. Thus  C  diminishes for 

expanding values of Sc . Figures 14–16 elucidated the consequences of Soret number St  and 

Dufour number Df on microorganism’s  w  profile. One can observed a decline trends in 

 w   profile for expanding values of both Soret and Dufour numbers is observed in these plots. 

A greater St and Df optimum reduces the density of motile microorganism  w  profile shown 

in Figure 14 and 15. Figure 16 explained that the pattern for Peclet number Pe against motile 
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microorganism  w  profile. The increasing values of Pe parameter there is a decreasing 

behavior in  w  profile. The empirical impacts of this propensity are related to a decay in 

motile-diffusivity due to which a loss in  w  as well as in decline in the density of 

microorganism. 

 

Fig. 3 Result of M against  'F   
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Fig. 4 Result of  against  'F   

 

 

Fig. 5 Result ofQ against  T   
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Fig. 6 Result of Kr against  T   

 

 

Fig. 7 Result of Df against  T   
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Fig. 8 Result of St against  T   

 

 

Fig. 9 Result ofQ against  C   
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Fig. 10 Result of Kr against  C   

 

 

Fig. 11 Result of Df against  C   
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Fig. 12 Result of St against  C   

 

 

Fig. 13 Result of Sc against  C   
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Fig. 14 Result of St against  w   

 

 

Fig. 15 Result of Df against  w   
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Fig. 16 Result of Pe against  w   

5. Conclusions  

The present model explores the role of Soret and Dufour effects in unsteady bio-convective 

electrically conducting nanofluid between two parallel plates channel containing motile 

microorganismin a horizontal channel. The model problem described a nonlinear coupled system 

of ODEs are tackled for numerical solution through an efficient and validated numerical 

algorithm via shooting technique. The specific outcomes of this study are listed: 

 It has been observed that velocity outline is decreased in the middle and increases 

partially with the parallel walls. 

 The expanding squeezing parameter values diminishing the fluid flow significantly 

within the flow domain. 

 An increment in binary reaction parameter, heat generation, and Dufour and Soret 

constraints developed the thermal field curves. 

 The increase in the chemical reaction parameter caused in decline in both concentration 

and motile microorganism. 

 For higher estimation of the Schmidth number, heat generation, and Dufour and Soret 

parameters increases the concentration profile significantly. 

 Motile microorganism curves are dwindled subject to higher values of Dufour and Soret 

numbers and Peclet number. 

  For growing values of Peclet number decline the density of motile microorganism. 
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