References
Adobe Systems Inc. (2017). Adobe Creative Cloud: Adobe Systems Inc. Retrieved from http://www.adobe.com
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215 (3), 403-410.
Askew, R., & Shaw, M. R. (1986). Parasitoid communities: their size, structure and development. Paper presented at the Waage, J and Greathead, D (eds), Insect Parasitoids, 13th Symposium of Royal Entomological Society of London.
Balbuena, J. A., Míguez-Lozano, R., & Blasco-Costa, I. (2013). PACo: a novel procrustes application to cophylogenetic analysis. PloS one, 8 (4), e61048.
Bass, A. (2019). Pine, Aphids, and Parasitoid Wasps: Patterns of Cospeciation and Host Switches in a Tri-trophic System. (Master’s of Science Master’s Thesis), University of Central Florida, Showcase of Text, Archives, Research & Scholarship.
Beckage, N. E., & Gelman, D. B. (2004). Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Annual Reviews in Entomology, 49 (1), 299-330.
Bertoldi, V., Rondoni, G., Brodeur, J., & Conti, E. (2019). An egg parasitoid efficiently exploits cues from a coevolved host but not those from a novel host. Frontiers in physiology, 10 , 746.
Boring, C. A., Sharanowski, B. J., & Sharkey, M. J. (2011). Maxfischeriinae: a new braconid subfamily (Hymenoptera) with highly specialized egg morphology. Systematic Entomology, 36 (3), 529-548.
Brown Jr, W. L., Eisner, T., & Whittaker, R. H. (1970). Allomones and kairomones: transspecific chemical messengers. Bioscience, 20 (1), 21-21.
Charnov, E. L., & Skinner, S. W. (1984). Evolution of host selection and clutch size in parasitoid wasps. Florida Entomologist , 5-21.
Cipollini, D., Walters, D., & Voelckel, C. (2018). Costs of resistance in plants: from theory to evidence. Annual Plant Reviews , 263-307.
Colazza, S., McElfresh, J. S., & Millar, J. G. (2004). Identification of volatile synomones, induced by Nezara viridula feeding and oviposition on bean spp., that attract the egg parasitoidTrissolcus basalis . Journal of Chemical Ecology, 30 (5), 945-964.
Conow, C., Fielder, D., Ovadia, Y., & Libeskind-Hadas, R. (2010). Jane: a new tool for the cophylogeny reconstruction problem. Algorithms for Molecular Biology, 5 (1), 16.
Courtney, J. L., Lassak, E. V., & Speirs, G. B. (1983). Leaf wax constituents of some myrtaceous species. Phytochemistry, 22 (4), 947-949.
D’Alessandro, M., Brunner, V., von Mérey, G., & Turlings, T. C. (2009). Strong attraction of the parasitoid Cotesia marginiventristowards minor volatile compounds of maize. Journal of Chemical Ecology, 35 (9), 999.
Davy, M., Withers, T. M., & Hogg, I. (2016). Effect of pouch size on spinning success of potential biological control agent Eadya paropsidis . Unpublished manuscript. University of Waikato.
de Castro, D. S. B., da Silva, D. B., Tibúrcio, J. D., Sobral, M. E. G., Ferraz, V., Taranto, A. G., . . . Alves, S. N. (2016). Larvicidal activity of essential oil of Peumus boldus Molina and its ascaridole-enriched fraction against Culex quinquefasciatus.Experimental parasitology, 171 , 84-90.
de Moraes, C. M., Lewis, W., Pare, P., Alborn, H., & Tumlinson, J. (1998). Herbivore-infested plants selectively attract parasitoids.Nature, 393 (6685), 570-573.
Du, Y., Poppy, G. M., Powell, W., & Wadhams, L. J. (1997). Chemically mediated associative learning in the host foraging behavior of the aphid parasitoid Aphidius ervi (Hymenoptera: Braconidae). Journal of Insect Behavior, 10 (4), 509-522.
Fahrenholz, H. (1913). Ectoparasiten und abstammungslehre.Zoologischer Anzeiger, 41 (8), 371-374.
Folmer, O., Black, M., Hoeh, R., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech, 3 , 294-299.
Forbes, A. A., Bagley, R. K., Beer, M. A., Hippee, A. C., & Widmayer, H. A. (2018). Quantifying the unquantifiable: why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecology, 18 (1), 21. doi:10.1186/s12898-018-0176-x
Gols, R., Bullock, J. M., Dicke, M., Bukovinszky, T., & Harvey, J. A. (2011). Smelling the wood from the trees: non-linear parasitoid responses to volatile attractants produced by wild and cultivated cabbage. Journal of Chemical Ecology, 37 (8), 795.
Gosney, B. J., Potts, B. M., O’Reilly‐Wapstra, J. M., Vaillancourt, R. E., Fitzgerald, H., Davies, N. W., & Freeman, J. S. (2016). Genetic control of cuticular wax compounds in Eucalyptus globulus. New Phytologist, 209 (1), 202-215.
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser., 41 , 95-98.
Hilker, M., & McNeil, J. (2008). Chemical and behavioral ecology in insect parasitoids: how to behave optimally in a complex odorous environment. Behavioral Ecology of Insect Parasitoids: From Theoretical Approaches to Field Applications , 92-112.
Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2017). UFBoot2: improving the ultrafast bootstrap approximation.Molecular biology and evolution, 35 (2), 518-522.
Huddleston, T., & Short, J. R. T. (1978). A new genus of Euphorinae (Hymenoptera: Braconidae) from Australia, with a description of the final instar larva of one species. Austral Entomology, 17 (4), 317-321.
Hutchinson, M. C., Cagua, E. F., Balbuena, J. A., Stouffer, D. B., & Poisot, T. (2017). paco: implementing Procrustean Approach to Cophylogeny in R. Methods in Ecology and Evolution, 8 (8), 932-940.
Johnson, A. D., & Singh, A. (2017). Larvicidal activity and Biochemical effects of Apigenin against filarial vector Culex quinquefasciatus.International Journal of Life-Sciences Scientific Research, 3 (5), 1315-1321.
Kaczmarek, A., Wrońska, A. K., Kazek, M., & Boguś, M. I. (2020). Metamorphosis-related changes in the free fatty acid profiles of Sarcophaga (Liopygia) argyrostoma (Robineau-Desvoidy, 1830).Scientific reports, 10 (1), 1-13.
Kahle, D., & Wickham, H. (2013). ggmap: Spatial Visualization with ggplot2. The R journal, 5 (1), 144-161.
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14 (6), 587.
Kassambara, A., & Mundt, F. (2017). Factoextra: extract and visualize the results of multivariate data analyses. R package version, 1 (4), 2017.
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.Journal of molecular evolution, 16 (2), 111-120.
Kouamé, K., & Mackauer, M. (1991). Influence of aphid size, age and behaviour on host choice by the parasitoid wasp Ephedrus californicus: a test of host-size models. Oecologia, 88 (2), 197-203.
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets.Molecular biology and evolution, 33 (7), 1870-1874.
Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: an R package for multivariate analysis. Journal of Statistical Software, 25 (1), 1-18.
Legendre, P., Desdevises, Y., & Bazin, E. (2002). A statistical test for host–parasite coevolution. Systematic Biology, 51 (2), 217-234.
Leschen, R. A., Reid, C. A., & Nadein, K. S. (2020). Generic Review of New Zealand Chrysomelinae (Coleoptera: Chrysomelidae). Zootaxa, 4740 (1), 1-66.
Lopez, J. V., Yuhki, N., Masuda, R., Modi, W., & O’Brien, S. J. (1994). Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. Journal of molecular evolution, 39 (2), 174-190.
Materić, D., Bruhn, D., Turner, C., Morgan, G., Mason, N., & Gauci, V. (2015). Methods in plant foliar volatile organic compounds research.Applications in plant sciences, 3 (12), 1500044.
McCall, P. J., Turlings, T. C., Lewis, W. J., & Tumlinson, J. H. (1993). Role of plant volatiles in host location by the specialist parasitoid Microplitis croceipes Cresson (Braconidae: Hymenoptera). Journal of Insect Behavior, 6 (5), 625-639.
McCormick, A. C., Unsicker, S. B., & Gershenzon, J. (2012). The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends in plant science, 17 (5), 303-310.
Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010, 14 Nov. 2010).Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Paper presented at the Proceedings of the Gateway Computing Environments Workshop (GCE).
Mohamed, R., & Jong, P. L. (2014). Fungal inoculation induces agarwood in young Aquilaria malaccensis trees in the nursery. Journal of forestry research, 25 (1), 201-204.
Nahrung, H. F., Lewis, A., Ridenabugh, R. D., Allen, G. R., Reid, C. A. M., McDougal, R., & Withers, T. M. (2020). Expansion ofParopsisterna cloelia (Stål) (Coleoptera: Chrysomelidae) geographic range through synonymy and inter- and intra-county invasion.accepted to Austral Entomology .
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2014). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular biology and evolution, 32 (1), 268-274.
Oksanen, J., Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., . . . Solymos, P. (2016). vegan: Community Ecology Package. (Version 2.3-3).
Page, R. D. (2003). Tangled trees: phylogeny, cospeciation, and coevolution : University of Chicago Press.
Paré, P. W., & Tumlinson, J. H. (1999). Plant volatiles as a defense against insect herbivores. Plant Physiology, 121 (2), 325-332.
Peixoto, L., Allen, G. R., Ridenbaugh, R. D., Quarrell, S. R., Withers, T. M., & Sharanowski, B. J. (2018). When taxonomy and biological control researchers unite: species delimitation of Eadya parasitoids (Braconidae) and consequences for classical biological control of invasive paropsine pests of Eucalyptus . PloS one, 13 (8), e0201276.
Ponzio, C., Cascone, P., Cusumano, A., Weldegergis, B. T., Fatouros, N. E., Guerrieri, E., . . . Gols, R. (2016). Volatile-mediated foraging behaviour of three parasitoid species under conditions of dual insect herbivore attack. Animal Behaviour, 111 , 197-206.
Price, P. W. (1971). Niche breadth and dominance of parasitic insects sharing the same host species. Ecology, 52 (4), 587-596.
R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R foundation for statistical computing. Retrieved from http://www.R-project.org
Rambaut, A. (2012). FigTree v1. 4. Molecular evolution, phylogenetics and epidemiology. Edinburgh: University of Edinburgh, Institute of Evolutionary Biology .
[dataset] Ridenbaugh, R. D., Dowell, J., Head, M., Withers, T. M., Mason, C. M., Sharanowski, B. J. (2021). FigShare. 10.6084/m9.figshare.17105768.
Ridenbaugh, R. D., Barbeau, E., & Sharanowski, B. J. (2018). Description of four new species of Eadya (Hymenoptera: Braconidae), parasitoids of the Eucalyptus Tortoise Beetle (Paropsis charybdis ) and other Eucalyptus defoliating paropsine beetles. Journal of Hymenoptera Research, 64 , 141-175. doi:10.3897/jhr.64.24282
Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., . . . Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61 (3), 539-542.
Röse, U. S., Lewis, W. J., & Tumlinson, J. H. (1998). Specificity of systemically released cotton volatiles as attractants for specialist and generalist parasitic wasps. Journal of Chemical Ecology, 24 (2), 303-319.
Rutledge, C. E. (1996). A survey of identified kairomones and synomones used by insect parasitoids to locate and accept their hosts.Chemoecology, 7 (3), 121-131.
Sarkar, N., & Barik, A. (2015). Free fatty acids from Momordica charantia L. flower surface waxes influencing attraction of Epilachna dodecastigma (Wied.)(Coleoptera: Coccinellidae). International journal of pest management, 61 (1), 47-53.
Steidle, J. L., & Van Loon, J. J. (2003). Dietary specialization and infochemical use in carnivorous arthropods: testing a concept.Entomologia Experimentalis et Applicata, 108 (3), 133-148.
Tumlinson, J. H., Lewis, W. J., & Vet, L. E. (1993). How parasitic wasps find their hosts. Scientific American, 268 (3), 100-106.
Tumlinson, J. H., Turlings, T. C., & Lewis, W. J. (1993). Semiochemically mediated foraging behavior in beneficial parasitic insects. Archives of Insect Biochemistry and Physiology, 22 (3‐4), 385-391.
Turlings, T. C., Tumlinson, J. H., & Lewis, W. J. (1990). Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps.Science, 250 (4985), 1251-1253.
Vet, L. E., & Dicke, M. (1992). Ecology of infochemical use by natural enemies in a tritrophic context. Annual review of entomology, 37 (1), 141-172.
Vinson, S. B. (1976). Host selection by insect parasitoids. Annual review of entomology, 21 (1), 109-133.
Vinson, S. B., & Iwantsch, G. (1980). Host suitability for insect parasitoids. Annual review of entomology, 25 (1), 397-419.
Wang, X., & Messing, R. (2004). Fitness consequences of body-size-dependent host species selection in a generalist ectoparasitoid. Behavioral Ecology and Sociobiology, 56 (6), 513-522.
Wei, J., Wang, L., Zhu, J., Zhang, S., Nandi, O. I., & Kang, L. (2007). Plants attract parasitic wasps to defend themselves against insect pests by releasing hexenol. PloS one, 2 (9).
Wickham, H. (2016). ggplot2: elegant graphics for data analysis : Springer.
Withers, T., Todoroki, C., Allen, G., Pugh, A., & Gresham, B. (2019). Host testing of Eadya daenerys , a potential biological control agent for the invasive chrysomelid pest Paropsis charybdis , predicts host specificity to eucalypt-leaf feeding Paropsina.BioControl , 1-12.
Withers, T. M., Allen, G. R., Todoroki, C. L., Pugh, A. R., & Gresham, B. A. (2020). Observations of parasitoid behaviour in both no‐choice and choice tests are consistent with proposed ecological host range.Entomologia Experimentalis et Applicata .
Xiu, C., Dai, W., Pan, H., Zhang, W., Luo, S., Wyckhuys, K. A., . . . Lu, Y. (2019). Herbivore-induced plant volatiles enhance field-level parasitism of the mirid bug Apolygus lucorum . Biological Control, 135 , 41-47.
Zhang, D.-X., & Hewitt, G. M. (1996). Nuclear integrations: challenges for mitochondrial DNA markers. Trends in ecology & evolution, 11 (6), 247-251.