References
Adobe Systems Inc. (2017). Adobe Creative Cloud: Adobe Systems Inc.
Retrieved from http://www.adobe.com
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J.
(1990). Basic local alignment search tool. Journal of molecular
biology, 215 (3), 403-410.
Askew, R., & Shaw, M. R. (1986). Parasitoid communities: their
size, structure and development. Paper presented at the Waage, J and
Greathead, D (eds), Insect Parasitoids, 13th Symposium of Royal
Entomological Society of London.
Balbuena, J. A., Míguez-Lozano, R., & Blasco-Costa, I. (2013). PACo: a
novel procrustes application to cophylogenetic analysis. PloS one,
8 (4), e61048.
Bass, A. (2019). Pine, Aphids, and Parasitoid Wasps: Patterns of
Cospeciation and Host Switches in a Tri-trophic System. (Master’s of
Science Master’s Thesis), University of Central Florida, Showcase of
Text, Archives, Research & Scholarship.
Beckage, N. E., & Gelman, D. B. (2004). Wasp parasitoid disruption of
host development: implications for new biologically based strategies for
insect control. Annual Reviews in Entomology, 49 (1), 299-330.
Bertoldi, V., Rondoni, G., Brodeur, J., & Conti, E. (2019). An egg
parasitoid efficiently exploits cues from a coevolved host but not those
from a novel host. Frontiers in physiology, 10 , 746.
Boring, C. A., Sharanowski, B. J., & Sharkey, M. J. (2011).
Maxfischeriinae: a new braconid subfamily (Hymenoptera) with highly
specialized egg morphology. Systematic Entomology, 36 (3),
529-548.
Brown Jr, W. L., Eisner, T., & Whittaker, R. H. (1970). Allomones and
kairomones: transspecific chemical messengers. Bioscience, 20 (1),
21-21.
Charnov, E. L., & Skinner, S. W. (1984). Evolution of host selection
and clutch size in parasitoid wasps. Florida Entomologist , 5-21.
Cipollini, D., Walters, D., & Voelckel, C. (2018). Costs of resistance
in plants: from theory to evidence. Annual Plant Reviews ,
263-307.
Colazza, S., McElfresh, J. S., & Millar, J. G. (2004). Identification
of volatile synomones, induced by Nezara viridula feeding and
oviposition on bean spp., that attract the egg parasitoidTrissolcus basalis . Journal of Chemical Ecology, 30 (5),
945-964.
Conow, C., Fielder, D., Ovadia, Y., & Libeskind-Hadas, R. (2010). Jane:
a new tool for the cophylogeny reconstruction problem. Algorithms
for Molecular Biology, 5 (1), 16.
Courtney, J. L., Lassak, E. V., & Speirs, G. B. (1983). Leaf wax
constituents of some myrtaceous species. Phytochemistry, 22 (4),
947-949.
D’Alessandro, M., Brunner, V., von Mérey, G., & Turlings, T. C. (2009).
Strong attraction of the parasitoid Cotesia marginiventristowards minor volatile compounds of maize. Journal of Chemical
Ecology, 35 (9), 999.
Davy, M., Withers, T. M., & Hogg, I. (2016). Effect of pouch size
on spinning success of potential biological control agent Eadya
paropsidis . Unpublished manuscript. University of Waikato.
de Castro, D. S. B., da Silva, D. B., Tibúrcio, J. D., Sobral, M. E. G.,
Ferraz, V., Taranto, A. G., . . . Alves, S. N. (2016). Larvicidal
activity of essential oil of Peumus boldus Molina and its
ascaridole-enriched fraction against Culex quinquefasciatus.Experimental parasitology, 171 , 84-90.
de Moraes, C. M., Lewis, W., Pare, P., Alborn, H., & Tumlinson, J.
(1998). Herbivore-infested plants selectively attract parasitoids.Nature, 393 (6685), 570-573.
Du, Y., Poppy, G. M., Powell, W., & Wadhams, L. J. (1997). Chemically
mediated associative learning in the host foraging behavior of the aphid
parasitoid Aphidius ervi (Hymenoptera: Braconidae). Journal
of Insect Behavior, 10 (4), 509-522.
Fahrenholz, H. (1913). Ectoparasiten und abstammungslehre.Zoologischer Anzeiger, 41 (8), 371-374.
Folmer, O., Black, M., Hoeh, R., Lutz, R., & Vrijenhoek, R. (1994). DNA
primers for amplification of mitochondrial cytochrome c oxidase subunit
I from diverse metazoan invertebrates. Mol Mar Biol Biotech, 3 ,
294-299.
Forbes, A. A., Bagley, R. K., Beer, M. A., Hippee, A. C., & Widmayer,
H. A. (2018). Quantifying the unquantifiable: why Hymenoptera, not
Coleoptera, is the most speciose animal order. BMC Ecology,
18 (1), 21. doi:10.1186/s12898-018-0176-x
Gols, R., Bullock, J. M., Dicke, M., Bukovinszky, T., & Harvey, J. A.
(2011). Smelling the wood from the trees: non-linear parasitoid
responses to volatile attractants produced by wild and cultivated
cabbage. Journal of Chemical Ecology, 37 (8), 795.
Gosney, B. J., Potts, B. M., O’Reilly‐Wapstra, J. M., Vaillancourt, R.
E., Fitzgerald, H., Davies, N. W., & Freeman, J. S. (2016). Genetic
control of cuticular wax compounds in Eucalyptus globulus. New
Phytologist, 209 (1), 202-215.
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence
alignment editor and analysis program for Windows 95/98/NT. Nucl.
Acids. Symp. Ser., 41 , 95-98.
Hilker, M., & McNeil, J. (2008). Chemical and behavioral ecology in
insect parasitoids: how to behave optimally in a complex odorous
environment. Behavioral Ecology of Insect Parasitoids: From
Theoretical Approaches to Field Applications , 92-112.
Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q., & Vinh, L.
S. (2017). UFBoot2: improving the ultrafast bootstrap approximation.Molecular biology and evolution, 35 (2), 518-522.
Huddleston, T., & Short, J. R. T. (1978). A new genus of Euphorinae
(Hymenoptera: Braconidae) from Australia, with a description of the
final instar larva of one species. Austral Entomology, 17 (4),
317-321.
Hutchinson, M. C., Cagua, E. F., Balbuena, J. A., Stouffer, D. B., &
Poisot, T. (2017). paco: implementing Procrustean Approach to
Cophylogeny in R. Methods in Ecology and Evolution, 8 (8),
932-940.
Johnson, A. D., & Singh, A. (2017). Larvicidal activity and Biochemical
effects of Apigenin against filarial vector Culex quinquefasciatus.International Journal of Life-Sciences Scientific Research, 3 (5),
1315-1321.
Kaczmarek, A., Wrońska, A. K., Kazek, M., & Boguś, M. I. (2020).
Metamorphosis-related changes in the free fatty acid profiles of
Sarcophaga (Liopygia) argyrostoma (Robineau-Desvoidy, 1830).Scientific reports, 10 (1), 1-13.
Kahle, D., & Wickham, H. (2013). ggmap: Spatial Visualization with
ggplot2. The R journal, 5 (1), 144-161.
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., von Haeseler, A., &
Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate
phylogenetic estimates. Nature Methods, 14 (6), 587.
Kassambara, A., & Mundt, F. (2017). Factoextra: extract and visualize
the results of multivariate data analyses. R package version,
1 (4), 2017.
Kimura, M. (1980). A simple method for estimating evolutionary rates of
base substitutions through comparative studies of nucleotide sequences.Journal of molecular evolution, 16 (2), 111-120.
Kouamé, K., & Mackauer, M. (1991). Influence of aphid size, age and
behaviour on host choice by the parasitoid wasp Ephedrus californicus: a
test of host-size models. Oecologia, 88 (2), 197-203.
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular
evolutionary genetics analysis version 7.0 for bigger datasets.Molecular biology and evolution, 33 (7), 1870-1874.
Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: an R package for
multivariate analysis. Journal of Statistical Software, 25 (1),
1-18.
Legendre, P., Desdevises, Y., & Bazin, E. (2002). A statistical test
for host–parasite coevolution. Systematic Biology, 51 (2),
217-234.
Leschen, R. A., Reid, C. A., & Nadein, K. S. (2020). Generic Review of
New Zealand Chrysomelinae (Coleoptera: Chrysomelidae). Zootaxa,
4740 (1), 1-66.
Lopez, J. V., Yuhki, N., Masuda, R., Modi, W., & O’Brien, S. J. (1994).
Numt, a recent transfer and tandem amplification of mitochondrial DNA to
the nuclear genome of the domestic cat. Journal of molecular
evolution, 39 (2), 174-190.
Materić, D., Bruhn, D., Turner, C., Morgan, G., Mason, N., & Gauci, V.
(2015). Methods in plant foliar volatile organic compounds research.Applications in plant sciences, 3 (12), 1500044.
McCall, P. J., Turlings, T. C., Lewis, W. J., & Tumlinson, J. H.
(1993). Role of plant volatiles in host location by the specialist
parasitoid Microplitis croceipes Cresson (Braconidae:
Hymenoptera). Journal of Insect Behavior, 6 (5), 625-639.
McCormick, A. C., Unsicker, S. B., & Gershenzon, J. (2012). The
specificity of herbivore-induced plant volatiles in attracting herbivore
enemies. Trends in plant science, 17 (5), 303-310.
Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010, 14 Nov. 2010).Creating the CIPRES Science Gateway for inference of large
phylogenetic trees. Paper presented at the Proceedings of the Gateway
Computing Environments Workshop (GCE).
Mohamed, R., & Jong, P. L. (2014). Fungal inoculation induces agarwood
in young Aquilaria malaccensis trees in the nursery. Journal of
forestry research, 25 (1), 201-204.
Nahrung, H. F., Lewis, A., Ridenabugh, R. D., Allen, G. R., Reid, C. A.
M., McDougal, R., & Withers, T. M. (2020). Expansion ofParopsisterna cloelia (Stål) (Coleoptera: Chrysomelidae)
geographic range through synonymy and inter- and intra-county invasion.accepted to Austral Entomology .
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2014).
IQ-TREE: a fast and effective stochastic algorithm for estimating
maximum-likelihood phylogenies. Molecular biology and evolution,
32 (1), 268-274.
Oksanen, J., Blanchet, F., Friendly, M., Kindt, R., Legendre, P.,
McGlinn, D., . . . Solymos, P. (2016). vegan: Community Ecology Package.
(Version 2.3-3).
Page, R. D. (2003). Tangled trees: phylogeny, cospeciation, and
coevolution : University of Chicago Press.
Paré, P. W., & Tumlinson, J. H. (1999). Plant volatiles as a defense
against insect herbivores. Plant Physiology, 121 (2), 325-332.
Peixoto, L., Allen, G. R., Ridenbaugh, R. D., Quarrell, S. R., Withers,
T. M., & Sharanowski, B. J. (2018). When taxonomy and biological
control researchers unite: species delimitation of Eadya
parasitoids (Braconidae) and consequences for classical biological
control of invasive paropsine pests of Eucalyptus . PloS
one, 13 (8), e0201276.
Ponzio, C., Cascone, P., Cusumano, A., Weldegergis, B. T., Fatouros, N.
E., Guerrieri, E., . . . Gols, R. (2016). Volatile-mediated foraging
behaviour of three parasitoid species under conditions of dual insect
herbivore attack. Animal Behaviour, 111 , 197-206.
Price, P. W. (1971). Niche breadth and dominance of parasitic insects
sharing the same host species. Ecology, 52 (4), 587-596.
R Core Team. (2016). R: A language and environment for statistical
computing. Vienna, Austria: R foundation for statistical computing.
Retrieved from http://www.R-project.org
Rambaut, A. (2012). FigTree v1. 4. Molecular evolution, phylogenetics
and epidemiology. Edinburgh: University of Edinburgh, Institute of
Evolutionary Biology .
[dataset] Ridenbaugh, R. D., Dowell, J., Head, M., Withers, T. M.,
Mason, C. M., Sharanowski, B. J. (2021). FigShare.
10.6084/m9.figshare.17105768.
Ridenbaugh, R. D., Barbeau, E., & Sharanowski, B. J. (2018).
Description of four new species of Eadya (Hymenoptera:
Braconidae), parasitoids of the Eucalyptus Tortoise Beetle
(Paropsis charybdis ) and other Eucalyptus defoliating
paropsine beetles. Journal of Hymenoptera Research, 64 , 141-175.
doi:10.3897/jhr.64.24282
Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A.,
Höhna, S., . . . Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient
Bayesian phylogenetic inference and model choice across a large model
space. Systematic Biology, 61 (3), 539-542.
Röse, U. S., Lewis, W. J., & Tumlinson, J. H. (1998). Specificity of
systemically released cotton volatiles as attractants for specialist and
generalist parasitic wasps. Journal of Chemical Ecology, 24 (2),
303-319.
Rutledge, C. E. (1996). A survey of identified kairomones and synomones
used by insect parasitoids to locate and accept their hosts.Chemoecology, 7 (3), 121-131.
Sarkar, N., & Barik, A. (2015). Free fatty acids from Momordica
charantia L. flower surface waxes influencing attraction of Epilachna
dodecastigma (Wied.)(Coleoptera: Coccinellidae). International
journal of pest management, 61 (1), 47-53.
Steidle, J. L., & Van Loon, J. J. (2003). Dietary specialization and
infochemical use in carnivorous arthropods: testing a concept.Entomologia Experimentalis et Applicata, 108 (3), 133-148.
Tumlinson, J. H., Lewis, W. J., & Vet, L. E. (1993). How parasitic
wasps find their hosts. Scientific American, 268 (3), 100-106.
Tumlinson, J. H., Turlings, T. C., & Lewis, W. J. (1993).
Semiochemically mediated foraging behavior in beneficial parasitic
insects. Archives of Insect Biochemistry and Physiology, 22 (3‐4),
385-391.
Turlings, T. C., Tumlinson, J. H., & Lewis, W. J. (1990). Exploitation
of herbivore-induced plant odors by host-seeking parasitic wasps.Science, 250 (4985), 1251-1253.
Vet, L. E., & Dicke, M. (1992). Ecology of infochemical use by natural
enemies in a tritrophic context. Annual review of entomology,
37 (1), 141-172.
Vinson, S. B. (1976). Host selection by insect parasitoids. Annual
review of entomology, 21 (1), 109-133.
Vinson, S. B., & Iwantsch, G. (1980). Host suitability for insect
parasitoids. Annual review of entomology, 25 (1), 397-419.
Wang, X., & Messing, R. (2004). Fitness consequences of
body-size-dependent host species selection in a generalist
ectoparasitoid. Behavioral Ecology and Sociobiology, 56 (6),
513-522.
Wei, J., Wang, L., Zhu, J., Zhang, S., Nandi, O. I., & Kang, L. (2007).
Plants attract parasitic wasps to defend themselves against insect pests
by releasing hexenol. PloS one, 2 (9).
Wickham, H. (2016). ggplot2: elegant graphics for data analysis :
Springer.
Withers, T., Todoroki, C., Allen, G., Pugh, A., & Gresham, B. (2019).
Host testing of Eadya daenerys , a potential biological control
agent for the invasive chrysomelid pest Paropsis charybdis ,
predicts host specificity to eucalypt-leaf feeding Paropsina.BioControl , 1-12.
Withers, T. M., Allen, G. R., Todoroki, C. L., Pugh, A. R., & Gresham,
B. A. (2020). Observations of parasitoid behaviour in both no‐choice and
choice tests are consistent with proposed ecological host range.Entomologia Experimentalis et Applicata .
Xiu, C., Dai, W., Pan, H., Zhang, W., Luo, S., Wyckhuys, K. A., . . .
Lu, Y. (2019). Herbivore-induced plant volatiles enhance field-level
parasitism of the mirid bug Apolygus lucorum . Biological
Control, 135 , 41-47.
Zhang, D.-X., & Hewitt, G. M. (1996). Nuclear integrations: challenges
for mitochondrial DNA markers. Trends in ecology & evolution,
11 (6), 247-251.