References
Aijaz, A., Li, M., Smith, D., Khong, D., LeBlon, C., Fenton, O. S., . .
. Parekkadan, B. (2018). Biomanufacturing for clinically advanced cell
therapies. Nature Biomedical Engineering, 2 (6), 362-376.
doi:10.1038/s41551-018-0246-6
Albinger, N., Hartmann, J., & Ullrich, E. (2021). Current status and
perspective of CAR-T and CAR-NK cell therapy trials in Germany.Gene Therapy . doi:10.1038/s41434-021-00246-w
Alizadeh, D., Wong, R. A., Yang, X., Wang, D., Pecoraro, J. R., Kuo, C.
F., . . . Brown, C. E. (2019). IL15 Enhances CAR-T Cell Antitumor
Activity by Reducing mTORC1 Activity and Preserving Their Stem Cell
Memory Phenotype. Cancer Immunol Res, 7 (5), 759-772.
doi:10.1158/2326-6066.CIR-18-0466
Bieback, K., Fernandez-Munoz, B., Pati, S., & Schafer, R. (2019). Gaps
in the knowledge of human platelet lysate as a cell culture supplement
for cell therapy: a joint publication from the AABB and the
International Society for Cell & Gene Therapy. Cytotherapy,
21 (9), 911-924. doi:10.1016/j.jcyt.2019.06.006
Canestrari, E., Steidinger, H. R., McSwain, B., Charlebois, S. J., &
Dann, C. T. (2019). Human Platelet Lysate Media Supplement Supports
Lentiviral Transduction and Expansion of Human T Lymphocytes While
Maintaining Memory Phenotype. J Immunol Res, 2019 , 3616120.
doi:10.1155/2019/3616120
Chan, O. T., & Shlomchik, M. J. (2000). Cutting edge: B cells promote
CD8+ T cell activation in MRL-Fas(lpr) mice independently of MHC class I
antigen presentation. J Immunol, 164 (4), 1658-1662.
doi:10.4049/jimmunol.164.4.1658
Chang, C. H., & Pearce, E. L. (2016). Emerging concepts of T cell
metabolism as a target of immunotherapy. Nat Immunol, 17 (4),
364-368. doi:10.1038/ni.3415
Costa, L. J., Lin, Y., Martin, T. G., Chhabra, S., Usmani, S. Z.,
Jagannath, S., . . . Hari, P. (2021). Cilta-cel versus conventional
treatment in patients with relapse/refractory multiple myeloma.Journal of Clinical Oncology, 39 (15_suppl), 8030-8030.
doi:10.1200/JCO.2021.39.15_suppl.8030
Delgoffe, G. M., Xu, C., Mackall, C. L., Green, M. R., Gottschalk, S.,
Speiser, D. E., . . . Beavis, P. A. (2021). The role of exhaustion in
CAR T cell therapy. Cancer Cell, 39 (7), 885-888.
doi:https://doi.org/10.1016/j.ccell.2021.06.012
Deola, S., Panelli, M. C., Maric, D., Selleri, S., Dmitrieva, N. I.,
Voss, C. Y., . . . Marincola, F. M. (2008). Helper B cells promote
cytotoxic T cell survival and proliferation independently of antigen
presentation through CD27/CD70 interactions. J Immunol, 180 (3),
1362-1372. doi:10.4049/jimmunol.180.3.1362
Dietz, A. B., Padley, D. J., & Gastineau, D. A. (2007). Infrastructure
development for human cell therapy translation. Clin Pharmacol
Ther, 82 (3), 320-324. doi:10.1038/sj.clpt.6100288
Edwards-Hicks, J., Mitterer, M., Pearce, E. L., & Buescher, J. M.
(2020). Metabolic Dynamics of In Vitro CD8+ T Cell Activation.Metabolites, 11 (1). doi:10.3390/metabo11010012
Eyles, J. E., Vessillier, S., Jones, A., Stacey, G., Schneider, C. K.,
& Price, J. (2019). Cell therapy products: focus on issues with
manufacturing and quality control of chimeric antigen receptor T-cell
therapies. Journal of Chemical Technology & Biotechnology,
94 (4), 1008-1016. doi:https://doi.org/10.1002/jctb.5829
Fowell, D. J., & Kim, M. (2021). The spatio-temporal control of
effector T cell migration. Nat Rev Immunol .
doi:10.1038/s41577-021-00507-0
Franco, F., Jaccard, A., Romero, P., Yu, Y.-R., & Ho, P.-C. (2020).
Metabolic and epigenetic regulation of T-cell exhaustion. Nature
Metabolism, 2 (10), 1001-1012. doi:10.1038/s42255-020-00280-9
Gandara, C., Affleck, V., & Stoll, E. A. (2018). Manufacture of
Third-Generation Lentivirus for Preclinical Use, with Process
Development Considerations for Translation to Good Manufacturing
Practice. Hum Gene Ther Methods, 29 (1), 1-15.
doi:10.1089/hgtb.2017.098
Gett, A. V., Sallusto, F., Lanzavecchia, A., & Geginat, J. (2003). T
cell fitness determined by signal strength. Nature Immunology,
4 (4), 355-360. doi:10.1038/ni908
Hay, K. A. (2018). Cytokine release syndrome and neurotoxicity after
CD19 chimeric antigen receptor-modified (CAR-) T cell therapy.British Journal of Haematology, 183 (3), 364-374.
doi:https://doi.org/10.1111/bjh.15644
Henning, A. N., Roychoudhuri, R., & Restifo, N. P. (2018). Epigenetic
control of CD8(+) T cell differentiation. Nat Rev Immunol, 18 (5),
340-356. doi:10.1038/nri.2017.146
Highfill, S. L., & Stroncek, D. F. (2019). Overcoming Challenges in
Process Development of Cellular Therapies. Curr Hematol Malig Rep,
14 (4), 269-277. doi:10.1007/s11899-019-00529-5
Huang, H., Long, L., Zhou, P., Chapman, N. M., & Chi, H. (2020). mTOR
signaling at the crossroads of environmental signals and T-cell fate
decisions. Immunol Rev, 295 (1), 15-38. doi:10.1111/imr.12845
Kutner, R. H., Zhang, X. Y., & Reiser, J. (2009). Production,
concentration and titration of pseudotyped HIV-1-based lentiviral
vectors. Nat Protoc, 4 (4), 495-505. doi:10.1038/nprot.2009.22
Lipsitz, Y. Y., Timmins, N. E., & Zandstra, P. W. (2016). Quality cell
therapy manufacturing by design. Nature Biotechnology, 34 (4),
393-400. doi:10.1038/nbt.3525
Ma, S., Li, X., Wang, X., Cheng, L., Li, Z., Zhang, C., . . . Qian, Q.
(2019). Current Progress in CAR-T Cell Therapy for Solid Tumors.Int J Biol Sci, 15 (12), 2548-2560. doi:10.7150/ijbs.34213
Mastrogiovanni, M., Juzans, M., Alcover, A., & Di Bartolo, V. (2020).
Coordinating Cytoskeleton and Molecular Traffic in T Cell Migration,
Activation, and Effector Functions. Front Cell Dev Biol, 8 ,
591348. doi:10.3389/fcell.2020.591348
Mirzaei, H. R., Rodriguez, A., Shepphird, J., Brown, C. E., & Badie, B.
(2017). Chimeric Antigen Receptors T Cell Therapy in Solid Tumor:
Challenges and Clinical Applications. Front Immunol, 8 , 1850.
doi:10.3389/fimmu.2017.01850
Morotti, M., Albukhari, A., Alsaadi, A., Artibani, M., Brenton, J. D.,
Curbishley, S. M., . . . Ahmed, A. A. (2021). Promises and challenges of
adoptive T-cell therapies for solid tumours. British Journal of
Cancer, 124 (11), 1759-1776. doi:10.1038/s41416-021-01353-6
Munshi, N. C., Larry D. Anderson, J., Shah, N., Jagannath, S., Berdeja,
J. G., Lonial, S., . . . Investigators, o. b. o. t. K. S. (2020).
Idecabtagene vicleucel (ide-cel; bb2121), a BCMA-targeted CAR T-cell
therapy, in patients with relapsed and refractory multiple myeloma
(RRMM): Initial KarMMa results. Journal of Clinical Oncology,
38 (15_suppl), 8503-8503. doi:10.1200/JCO.2020.38.15_suppl.8503
Obstfeld, A. E., Frey, N. V., Mansfield, K., Lacey, S. F., June, C. H.,
Porter, D. L., . . . Wasik, M. A. (2017). Cytokine release syndrome
associated with chimeric-antigen receptor T-cell therapy:
clinicopathological insights. Blood, 130 (23), 2569-2572.
doi:10.1182/blood-2017-08-802413
Pelicano, H., Martin, D. S., Xu, R. H., & Huang, P. (2006). Glycolysis
inhibition for anticancer treatment. Oncogene, 25 (34), 4633-4646.
doi:10.1038/sj.onc.1209597
Rushdi, M., Li, K., Yuan, Z., Travaglino, S., Grakoui, A., & Zhu, C.
(2020). Mechanotransduction in T Cell Development, Differentiation and
Function. Cells, 9 (2). doi:10.3390/cells9020364
Scharping, N. E., Rivadeneira, D. B., Menk, A. V., Vignali, P. D. A.,
Ford, B. R., Rittenhouse, N. L., . . . Delgoffe, G. M. (2021).
Mitochondrial stress induced by continuous stimulation under hypoxia
rapidly drives T cell exhaustion. Nature Immunology, 22 (2),
205-215. doi:10.1038/s41590-020-00834-9
Schluns, K. S., & Lefrançois, L. (2003). Cytokine control of memory
T-cell development and survival. Nature Reviews Immunology, 3 (4),
269-279. doi:10.1038/nri1052
Sekiya, E. J., Forte, A., Kühn, T. I. B. d. B., Janz, F., Bydlowski, S.
P., & Alves, A. (2012). Establishing a stem cell culture laboratory for
clinical trials. Revista brasileira de hematologia e hemoterapia,
34 (3), 236-241. doi:10.5581/1516-8484.20120057
Sukumar, M., Liu, J., Ji, Y., Subramanian, M., Crompton, J. G., Yu, Z.,
. . . Gattinoni, L. (2013). Inhibiting glycolytic metabolism enhances
CD8+ T cell memory and antitumor function. J Clin Invest,
123 (10), 4479-4488. doi:10.1172/JCI69589
Sukumar, M., Liu, J., Mehta, G. U., Patel, S. J., Roychoudhuri, R.,
Crompton, J. G., . . . Restifo, N. P. (2016). Mitochondrial Membrane
Potential Identifies Cells with Enhanced Stemness for Cellular Therapy.Cell Metab, 23 (1), 63-76. doi:10.1016/j.cmet.2015.11.002
ten Ham, R. M. T., Hövels, A. M., Hoekman, J., Frederix, G. W. J.,
Leufkens, H. G. M., Klungel, O. H., . . . Hoefnagel, M. H. N. (2020).
What does cell therapy manufacturing cost? A framework and methodology
to facilitate academic and other small-scale cell therapy manufacturing
costings. Cytotherapy, 22 (7), 388-397.
doi:https://doi.org/10.1016/j.jcyt.2020.03.432
van der Windt, G. J., Everts, B., Chang, C. H., Curtis, J. D., Freitas,
T. C., Amiel, E., . . . Pearce, E. L. (2012). Mitochondrial respiratory
capacity is a critical regulator of CD8+ T cell memory development.Immunity, 36 (1), 68-78. doi:10.1016/j.immuni.2011.12.007
Wherry, E. J. (2011). T cell exhaustion. Nat Immunol, 12 (6),
492-499. doi:10.1038/ni.2035