References
Al-Hinai M.A., Jones S.W., Papoutsakis E.T. 2015. The Clostridiumsporulation programs: diversity and preservation of endospore differentiation. Microbiol. Mol. Biol. Rev. 79, 19 37.
Al-Shorgani N.K.N., Al-Tabib A.I., Kadier A., Zanil M.F., Lee K.M., Kalil M.S. 2019. Continuous butanol fermentation of dilute acid-pretreated de-oiled rice bran by Clostridium acetobutylicumYM1. Sci. Rep. 9, 4622.
Badr H.R., Toledo R., Hamdy M.K. 2001. Continuous acetone-ethanol-butanol fermentation by immobilized cells ofClostridium acetobutylicum . Biomass Bioenergy. 20, 119–132.
Bahl H., Andersch W., Braun K., Gottschalk G. 1982. Effect of pH and butyrate concentration on the production of acetone and butanol byClostridium acetobutylicum grown in continuous culture. European J. Appl. Microbiol. Biotechnol. 14, 17–20.
Bankar S.B., Survase S.A., Singhal R.S., Granström T. 2012. Continuous two stage acetone–butanol–ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B5313. Bioresour. Technol. 106, 110–116.
Cai D., Hu S., Miao Q., Chen C., Chen H., Zhang C., Li P., Qin P., Tan T. 2016. Two-stage pervaporation process for effective in situ removal acetone–butanol–ethanol from fermentation broth. Bioresour. Technol. 224, 380–388.
Chang Z., Cai D., Wang Y., Chen C., Fu C., Wang G., Qin P., Wang Z., Tan T. 2016. Effective multiple stages continuous acetone–butanol–ethanol fermentation by immobilized bioreactors: Making full use of fresh corn stalk. Bioresour. Technol. 205, 82–89.
Cheng C., Bao T., Yang S.T., 2019. Engineering Clostridium for improved solvents production: Recent progress and perspective. Appl. Microbiol. Biotechnol. 103, 5549–5566.
Davison B., Thompson J. 1993. Continuous direct solvent extraction of butanol in a fermenting fluidized-bed bioreactor with immobilizedClostridium acetobutylicum . Appl. Biochem. Biotechnol. 39-40, 415–426.
Diallo M, Kengen SWM, Lopez-Contreras AM. 2021. Sporulation in solventogenic and acetogenic clostridia. Appl Microbiol Biotechnol 105, 3533–3557.
Du G., Zhu C., Xu M., Yang S.T., Xue C. 2021. Energy-efficient butanol production by Clostridium acetobutylicum with histidine kinase knockouts to improve strain tolerance and process robustness, Green Chemistry 23, 2155–2168.
Ezeji T.C., Qureshi N., Blaschek H.P. 2004. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl. Microbiol. Biotechnol. 63, 653–658.
Frick C., Schugerl K. 1986. Continuous acetone-butanol production with free and immobilized Clostridium acetobutylicum . Applied. Microbiol. Biotechnol. 25, 186–193.
Gallazzi A., Branska B., Marinelli F., Patakova P. 2015. Continuous production of n -butanol by Clostridium pasteurianum DSM 525 using suspend and surface-immobilized cells. J. Biotechnol. 216, 29–35.
Glenner G.G. 1977. Formanzans and tetrazolium salts. In: Lillie RD, editor. H.J. Conn’s Biological Strains: A handbook on the nature and uses of the dyes employed in the biological laboratory. Baltimore, MD: Williams and Wilkins. Pp. 201–236.
Huang Y.L., Mann K., Novak J.M., Yang S.T. 1998. Acetic acid production from fructose by Clostridium formicoaceticum immobilized in a fibrous-bed bioreactor. Biotechnol. Prog. 14, 800–806.
Huang W.-C., Ramey D.E., Yang S.T. 2004. Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed bioreactor. Appl. Biochem. Biotechnol. 113-116, 887–898.
Huang J., Du Y., Bao T., Lin M., Wang J., Yang S.T. 2019. Production of n -butanol from cassava bagasse hydrolysate by engineered Clostridium tyrobutyricumoverexpressing adh E2: Kinetics and cost analysis. Bioresour. Technol. 292, 121969.
Jiang L., Wang J., Liang S., Cai J., Xu Z., Cen P., Yang S.T., Li S. 2011. Enhanced butyric acid tolerance and bioproduction byClostridium tyrobutyricum immobilized in a fibrous bed bioreactor, Biotechnol. Bioeng. 108, 31–40.
Jiang W., Zhao J., Wang Z., Yang S.T. 2014. Stable high-titern -butanol production from sucrose and sugarcane juice byClostridium acetobutylicum JB200 in repeated batch fermentations. Bioresour. Technol. 163, 172–179.
Jones D.T., Woods D.R. 1986. Acetone-butanol fermentation revisited. Microbiol. Rev. 50, 484–524.
Kong, X. P., He, A. Y. & Zhao, J. 2015. Efficient acetone-butanol-ethanol production (ABE) by Clostridium acetobutylicum XY16 immobilized on chemically modified sugarcane bagasse. Bioproc. Biosyst. Eng. 38, 1365–1372.
Kumar M., Goyal Y., Sarkar A., Gayen, K. 2013. Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks. Appl. Energy 93, 193–204.
Lee S.M., Cho M.O., Park C.H., Chung Y.C., Kim J.H., Sang B.I., Um Y. 2008. Continuous butanol production using suspended and immobilizedClostridium beijerinckii NCIMB 8052 with supplementary butyrate. Energy Fuels 22, 3459–3464.
Lee S.Y., Park J.H., Jang S.H., Nielsen L.K., Kim J., Jung K.S. 2008. Fermentative butanol production by clostridia. Biotechnol. Bioeng. 101, 209-228.
Lewis V.P., Yang S.T. 1992. Continuous propionic acid fermentation by using immobilized Propionibacterium acidipropionici in a novel packed-bed bioreactor. Biotechnol. Bioeng. 40, 465–474.
Li J., Du Y., Bao T., Dong J., Tang I.C., Shim H., Yang S.T. 2019.n -Butanol production from lignocellulosic biomass hydrolysates without detoxification by Clostridium tyrobutyricumΔack -adhE2 in a fibrous-bed bioreactor, Bioresour. Technol. 289, 121749.
Long S., Jones D.T. 1984. Initiation of solvent production, clostridial stage and endospore formation in clostridium acetobutylicum P262. Appl. Microbiol. Biotech. 20, 256–261.
Lu C., Zhao J., Yang S.T., Wei D. 2012. Fed-batch fermentation forn -butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresour. Technol. 104, 380–387.
Lu C., Dong J., Yang S.T. 2013. Butanol production from wood pulping hydrolysate in an integrated fermentation-gas stripping process. Bioresour. Technol. 143, 467–475.
Lu C., Yu L., Varghese S., Yu M., Yang S.T. 2017. Enhanced robustness in acetone-butanol-ethanol fermentation with engineered Clostridium beijerinckii overexpressing adh E2 and ctf AB, Bioresour. Technol., 243, 1000–1008.
Lütke-Eversloh T., Bahl H. 2011. Metabolic engineering ofClostridium acetobutylicum : recent advances to improve butanol production. Curr. Opin. Biotechnol. 22, 634–647.
Moon H.G., Jang Y.S., Cho C., Lee J., Binkley R., Lee S.Y. 2016. One hundred years of clostridial butanol fermentation. FEMS Microbiol. Lett. 363(3), fnw001.
Nguyen N.P.T., Raynaud C., Meynial-Salles I., Soucaille P. 2018. Reviving the Weizmann process for commercial n-butanol production. Nat. Commun. 9, 3682.
Pierrot P., Fick M., Engasser J.M. 1986. Continuous acetone-butanol fermentation with high productivity by cell ultrafiltration and recycling. Biotechnol. Lett. 8, 253–256.
Qureshi, N., Maddox, I.S. 1988. Reactor design for the ABE fermentation using cells of Clostridium acetobutylicum immobilized by adsorption onto bonechar. Bioprocess Engineering 3, 69-72.
Qureshi N., Maddox I.S. 1991. Integration of continuous production and recovery of solvents from whey permeate: use of immobilized cells ofClostridium acetobutylicum in a fluidized bed reactor coupled with gas stripping. Bioprocess Eng. 6, 63–69.
Qureshi N., Schripsema J., Lienhardt J., Blaschek H.P. 2000. Continuous solvent production by Clostridium beijerinckii BA101 immobilized by adsorption onto brick. World J. Microbiol. Biotechnol. 16, 377–382.
Qureshi N., Ezeji T.C., Ebener J., Dien B.S., Cotta M.A., Blaschek H.P. 2008. Butanol production by Clostridium beijerinckii . Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresour. Technol. 99, 5915–5922.
Soni B.K., Soucaille P., Goma G. 1987. Continuous acetone-butanol fermentation: a global approach for the improvement in the solvent productivity in synthetic medium. Appl. Microbiol. Biotechnol. 25, 317–321.
Steiner E., Dago A.E., Young D.I., Heap J.T., Minton N.P., Hoch J.A., Young M. 2011. Multiple orphan histidine kinases interact directly with Spo0A to control the initiation of endospore formation inClostridium acetobutylicum . Mol. Microbiol. 80, 641–654.
Survase S.A., Van Heiningen A., Granström T. 2012. Continuous bio-catalytic conversion of sugar mixture to acetone–butanol–ethanol by immobilized Clostridium acetobutylicum DSM 792. Appl. Microbiol. Biotechnol. 93, 2309–2316.
Suwannakham S., Yang S.T. 2005. Enhanced propionic acid fermentation byPropionibacterium acidipropionici mutant obtained by adaptation in a fibrous-bed bioreactor. Biotechnol. Bioeng. 91, 325–337.
Tashiro Y., Takeda K., Kobayashi G., Sonomoto K. 2005. High production of acetone–butanol–ethanol with high cell density culture by cell-recycling and bleeding. J. Biotechnol. 120, 197–206.
Vees·C., Neuendorf C.S., Pflügl S. 2020. Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives. J Ind. Microbiol. Biotechnol. 47, 753–787.
Veza I., Said M.F.M., Latiff Z.A. 2021. Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation. Biomass Bioenergy 144, 105919.
Wang J., Yang X., Chen C.C., Yang S.T. 2014. Engineering clostridia for butanol production from biorenewable resources: from cells to process integration. Curr. Opin. Chem. Eng. 6, 43–54.
Wei D., Liu X., Yang S.T. 2013. Butyric acid production from sugarcane bagasse hydrolysate by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor. Bioresour. Technol., 129, 553–560.
Xu M., Zhao J., Yu L., Tang I.C., Xue C., Yang S.T. 2015. EngineeringClostridium acetobutylicum with a histidine kinase knockout for enhanced n -butanol tolerance and production. Appl. Microbiol. Biotechnol. 99, 1011–1022.
Xu M., Zhao J., Yu L., Yang S.T. 2017. Comparative genomic analysis ofClostridium acetobutylicum for understanding the mutations contributing to enhanced butanol tolerance and production. J. Biotechnol. 263, 36–44.
Xue C., Zhao J.B., Lu C.C., Yang S.T., Bai F., Tang I.C. 2012. High-titer n-butanol production by Clostridium acetobutylicumJB200 in fed-batch fermentation with intermittent gas stripping. Biotechnol. Bioeng. 109, 2746–2756.
Xue C., Liu F., Xu M., Tang I.C., Zhao J., Bai F., Yang S.T. 2016a. Butanol production in acetone–butanol–ethanol fermentation within situ product recovery by adsorption. Bioresour Technol 219:158–168.
Xue C., Liu F., Xu M., Zhao J., Chen L., Ren J., Bai F., Yang S.T. 2016b. A novel in situ gas stripping‐pervaporation process integrated with acetone‐butanol‐ethanol fermentation for hyper n ‐butanol production. Biotechnol. Bioeng, 113, 120–129.
Xue C., Zhao J., Chen L., Yang S.T., Bai F. 2017. Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum . Biotechnol. Adv. 35, 310–322.
Yang S.T., Lu C. 2013. Extraction-fermentation hybrid (extractive fermentation), in Ramaswamy S., Ramarao B.V., Huang H. (eds.), Separation and Purification Technologies in Biorefineries, John Wiley & Sons, Ltd, Chichester, UK. (2013), Chapter 15. pp 409–437.
Yang S.T., Zhu H., Li Y., Hong G. 1994. Continuous propionate production from whey permeate using a novel fibrous bed bioreactor. Biotechnol. Bioeng. 43, 1124–1130.
Yang Y, Nie X, Jiang Y, Yang C, Gu Y, Jiang W. 2018. Metabolic regulation in solventogenic clostridia: regulators, mechanisms and engineering, Biotechnol. Adv. 36, 905–914.
Yu L., Zhao J., Xu M., Dong J., Varghese S., Yu M., Tang I.C., Yang S.T. 2015. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from glucose: Effects of CoA transferase, Appl. Microbiol. Biotechnol., 99, 4917–4930.
Zhang A., Yang S.T. 2009. Engineering of Propionibacterium acidipropionici for enhanced propionic acid tolerance and fermentation, Biotechnol. Bioeng., 104, 766–773.
Zhang Y., Ma Y., Yang F., Zhang C. 2009. Continuous acetone-butanol-ethanol production by corn stalk immobilized cells. J. Ind. Microbiol. Biotechnol. 36, 1117–1121.
Zhao J., Lu C., Chen C.C., Yang S.T. 2013. Biological production of butanol and higher alcohols, in Yang S.T., El-Enshasy H.A., Thongchul N. (eds.) Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers, Wiley, Hoboken, NJ, Ch. 13, pp. 235–261.
Zhu Y., Wu Z.T., Yang S.T. 2002. Butyric acid production from acid hydrolysate of corn fibre by Clostridium tyrobutyricum in a fibrous-bed bioreactor. Process Biochem. 38, 657–666.
Zhu Y., Yang S.T. 2003. Adaptation of Clostridium tyrobutyricumfor enhanced tolerance to butyric acid in a fibrous-bed bioreactor. Biotechnol. Progr. 19, 365–372.
Zhu C., Chen L., Xue C., Bai F. 2018. A novel close-circulating vapor stripping-vapor permeation technique for boosting biobutanol production and recovery. Biotechnol. Biofuels 11(1), 128.