Data Availability Statement
All data that support the findings of this study are available at DTU
data repository, Lu et al (2022): Cold stress paper. Technical
University of Denmark. Dataset.
https://doi.org/10.11583/DTU.20198699.
References
Aldana, J., Romero-Otero, A., Cala, M.P., 2020. Exploring the Lipidome:
Current Lipid Extraction Techniques for Mass Spectrometry Analysis.
Metabolites 10, 231. https://doi.org/10.3390/metabo10060231
Anderson, R., Kates, M., Volcani, B.E., 1978. Identification of the
sulfolipids in the non-photosynthetic diatom nitzschia alba. Biochim.
Biophys. Acta - Lipids Lipid Metab. 528, 89–106.
https://doi.org/10.1016/0005-2760(78)90055-3
Aro, E.-M., Karunen, P., 1988. Effects of hardening and freezing stress
on membrane lipids and CO2 fixation of Ceratodon purpureus protonemata.
Physiol. Plant. 74, 45–52.
https://doi.org/10.1111/J.1399-3054.1988.TB04939.X
Badea, C., Kumar Basu, S., 2009. The effect of low temperature on
metabolism of membrane lipids in plants and associated gene expression.
Plant Omi. J. South. Cross Journals©2009 2, 78–84.
Beike, A.K., Jaeger, C., Zink, F., Decker, E.L., Reski, R., 2014. High
contents of very long-chain polyunsaturated fatty acids in different
moss species. Plant Cell Rep. 33, 245–254.
https://doi.org/10.1007/s00299-013-1525-z
Calder, P.C., Yaqoob, P., 2009. Omega-3 polyunsaturated fatty acids and
human health outcomes. BioFactors 35, 266–272.
https://doi.org/10.1002/biof.42
Chen, D., Yan, X., Xu, J., Su, X., Li, L., 2013. Lipidomic profiling and
discovery of lipid biomarkers in Stephanodiscus sp. under cold stress.
Metabolomics 9, 949–959. https://doi.org/10.1007/s11306-013-0515-z
Conde, T.A., Couto, D., Melo, T., Costa, M., Silva, J., Domingues, M.R.,
Domingues, P., 2021. Polar lipidomic profile shows Chlorococcum
amblystomatis as a promising source of value-added lipids. Sci. Rep. 11,
4355. https://doi.org/10.1038/s41598-021-83455-y
de Freitas, G.M., Thomas, J., Liyanage, R., Lay, J.O., Basu, S.,
Ramegowda, V., do Amaral, M.N., Benitez, L.C., Bolacel Braga, E.J.,
Pereira, A., 2019. Cold tolerance response mechanisms revealed through
comparative analysis of gene and protein expression in multiple rice
genotypes. PLoS One 14, e0218019.
https://doi.org/10.1371/journal.pone.0218019
Decker, E.L., Reski, R., 2020. Mosses in biotechnology. Curr. Opin.
Biotechnol. 61, 21–27. https://doi.org/10.1016/j.copbio.2019.09.021
Dembitsky, V.M., Rezanka, T., Bychek, I.A., Afonina, O.M., 1993. Polar
lipid and fatty acid composition of some bryophytes. Phytochemistry 33,
1009–1014. https://doi.org/10.1016/0031-9422(93)85013-H
Domergue, F., Abbadi, A., Zähringer, U., Moreau, H., Heinz, E., 2005. In
vivo characterization of the first acyl-CoA Δ 6 -desaturase from a
member of the plant kingdom, the microalga Ostreococcus tauri. Biochem.
J. 389, 483–490. https://doi.org/10.1042/BJ20050111
Eriksson, L., Kettaneh-Wold, N., Trygg, J., Wikström, C., Wold, S.,
2006. Multi- and Megavariate Data Analysis : Part I: Basic Principles
and Applications. Umetrics Inc, Department of Chemistry, Faculty of
Science and Technology, Umeå University.
Gao, X., Liu, W., Mei, J., Xie, J., 2019. Quantitative Analysis of Cold
Stress Inducing Lipidomic Changes in Shewanella putrefaciens Using
UHPLC-ESI-MS/MS. Molecules 24, 4609.
https://doi.org/10.3390/molecules24244609
Gellerman, J.L., Anderson, W.H., Richardson, D.G., Schlenk, H., 1975.
Distribution of arachidonic and eicosapentaenoic acids in the lipids of
mosses. Biochim. Biophys. Acta - Lipids Lipid Metab. 388, 277–290.
https://doi.org/10.1016/0005-2760(75)90133-2
Glime, J.M., 2017. Volume 1, Chapter 10-2: Temperature: Cold.
Godchaux, W., Leadbetter, E.R., 1980. Capnocytophaga spp. contain
sulfonolipids that are novel in procaryotes. J. Bacteriol. 144,
592–602. https://doi.org/10.1128/JB.144.2.592-602.1980
Hansen, C.E., Rossi, P., 1991. Effects of culture conditions on
accumulation of arachidonic and eicosapentaenoic acids in cultured cells
of Rhytidiadelphus squarrosus and Eurhynchium striatum. Phytochemistry
30, 1837–1841. https://doi.org/10.1016/0031-9422(91)85024-T
Hartmann, E., Beutelmann, P., Vandekerkhove, O., Euler, R., Kohn, G.,
1986. Moss cell cultures as sources of arachidonic and eicosapentaenoic
acids. FEBS Lett. 198, 51–55.
https://doi.org/10.1016/0014-5793(86)81183-8
Hartmann, E, Beutelmann, P., Vandekerkhove, O., Euler, R., Kohn, G.,
1986. Moss cell cultures as sources of arachidonic and eicosapentaenoic
acids. FEBS Lett. 198, 51–55.
https://doi.org/10.1016/0014-5793(86)81183-8
Horn, A., Pascal, A., Lončarević, I., Volpatto Marques, R., Lu, Y.,
Miguel, S., Bourgaud, F., Thorsteinsdóttir, M., Cronberg, N., Becker,
J.D., Reski, R., Simonsen, H.T., 2021. Natural Products from Bryophytes:
From Basic Biology to Biotechnological Applications. CRC. Crit. Rev.
Plant Sci. 40, 191–217. https://doi.org/10.1080/07352689.2021.1911034
Hou, Q., Ufer, G., Bartels, D., 2016. Lipid signalling in plant
responses to abiotic stress. Plant. Cell Environ. 39, 1029–1048.
https://doi.org/10.1111/pce.12666
Lu, Y., Eiriksson, F.F., Thorsteinsdóttir, M., Simonsen, H.T., 2021.
Effects of extraction parameters on lipid profiling of mosses using
UPLC-ESI-QTOF-MS and multivariate data analysis. Metabolomics 17, 96.
https://doi.org/10.1007/s11306-021-01847-7
Lu, Y., Eiriksson, F.F., Thorsteinsdóttir, M., Simonsen, H.T., 2019.
Valuable Fatty Acids in Bryophytes—Production, Biosynthesis, Analysis
and Applications. Plants 8, 524. https://doi.org/10.3390/plants8110524
Mikami, K., Hartmann, E., 2004. Lipid Metabolism in Mosses, in: New
Frontiers in Bryology. Springer Netherlands, Dordrecht, pp. 133–155.
https://doi.org/10.1007/978-0-306-48568-8_8
Okazaki, Y., Saito, K., 2018. Plant Lipidomics Using UPLC-QTOF-MS, in:
Methods in Molecular Biology (Clifton, N.J.). pp. 157–169.
https://doi.org/10.1007/978-1-4939-7819-9_11
Orsavova, J., Misurcova, L., Vavra Ambrozova, J., Vicha, R., Mlcek, J.,
2015. Fatty acids composition of vegetable oils and its contribution to
dietary energy intake and dependence of cardiovascular mortality on
dietary intake of fatty acids. Int. J. Mol. Sci. 16, 12871–12890.
https://doi.org/10.3390/ijms160612871
Pan, X.-W., Han, L., Zhang, Y.-H., Chen, D.-F., Simonsen, H.T., 2015.
Sclareol production in the moss Physcomitrella patens and observations
on growth and terpenoid biosynthesis. Plant Biotechnol. Rep. 9,
149–159. https://doi.org/10.1007/s11816-015-0353-8
Pejin, B., Vujisić, L., Sabovljević, M., Tešević, V., Vajs, V., Vujisic,
L., Sabovljevic, M., Tesevic, V., Vajs, V., 2012. The moss Mnium hornum,
a promising source of arachidonic acid. Chem. Nat. Compd. 48, 120–121.
https://doi.org/10.1007/s10600-012-0175-7
Rensing, S.A., Goffinet, B., Meyberg, R., Wu, S.-Z., Bezanilla, M.,
2020. The Moss Physcomitrium ( Physcomitrella ) patens : A Model
Organism for Non-Seed Plants. Plant Cell 32, 1361–1376.
https://doi.org/10.1105/tpc.19.00828
Rensing, S.A., Lang, D., Zimmer, A.D., Terry, A., Salamov, A., Shapiro,
H., Nishiyama, T., Perroud, P.-F., Lindquist, E.A., Kamisugi, Y.,
Tanahashi, T., Sakakibara, K., Fujita, T., Oishi, K., Shin-I, T.,
Kuroki, Y., Toyoda, A., Suzuki, Y., Hashimoto, S. -i., Yamaguchi, K.,
Sugano, S., Kohara, Y., Fujiyama, A., Anterola, A., Aoki, S., Ashton,
N., Barbazuk, W.B., Barker, E., Bennetzen, J.L., Blankenship, R., Cho,
S.H., Dutcher, S.K., Estelle, M., Fawcett, J.A., Gundlach, H., Hanada,
K., Heyl, A., Hicks, K.A., Hughes, J., Lohr, M., Mayer, K., Melkozernov,
A., Murata, T., Nelson, D.R., Pils, B., Prigge, M., Reiss, B., Renner,
T., Rombauts, S., Rushton, P.J., Sanderfoot, A., Schween, G., Shiu,
S.-H.S.-H.S.-H., Stueber, K., Theodoulou, F.L., Tu, H., Van de Peer, Y.,
Verrier, P.J., Waters, E., Wood, A., Yang, L., Cove, D., Cuming, A.C.,
Hasebe, M., Lucas, S., Mishler, B.D., Reski, R., Grigoriev, I. V.,
Quatrano, R.S., Boore, J.L., 2008. The Physcomitrella Genome Reveals
Evolutionary Insights into the Conquest of Land by Plants. Science (80-.
). 319, 64–69. https://doi.org/10.1126/science.1150646
Resemann, H.C., 2018. Sphingolipids in Physcomitrella patens.
Resemann, H.C., Herrfurth, C., Feussner, K., Hornung, E., Ostendorf,
A.K., Gömann, J., Mittag, J., van Gessel, N., Vries, J. de,
Ludwig-Müller, J., Markham, J., Reski, R., Feussner, I., 2021.
Convergence of sphingolipid desaturation across over 500 million years
of plant evolution. Nat. Plants 7, 219–232.
https://doi.org/10.1038/s41477-020-00844-3
Reski, R., Abel, W.O., 1985. Induction of budding on chloronemata and
caulonemata of the moss, Physcomitrella patens, using
isopentenyladenine, Planta. Springer-Verlag.
Roughan, P.G., Slack, C.R., Holland, R., 1978. Generation of
phospholipid artefacts during extraction of developing soybean seeds
with methanolic solvents. Lipids 13, 497–503.
https://doi.org/10.1007/BF02533620
Sabovljević, M.S., Sabovljević, A.D., Ikram, N.K.K., Peramuna, A., Bae,
H., Simonsen, H.T., 2016. Bryophytes – an emerging source for herbal
remedies and chemical production. Plant Genet. Resour. 14, 314–327.
https://doi.org/10.1017/S1479262116000320
Shanab, S.M.M., Hafez, R.M., Fouad, A.S., 2018. A review on algae and
plants as potential source of arachidonic acid. J. Adv. Res. 11, 3–13.
https://doi.org/10.1016/j.jare.2018.03.004
Tarazona, P., Feussner, K., Feussner, I., 2015. An enhanced plant
lipidomics method based on multiplexed liquid chromatography-mass
spectrometry reveals additional insights into cold- and drought-induced
membrane remodeling. Plant J. 84, 621–633.
https://doi.org/10.1111/tpj.13013
Tsugawa, H., Satoh, A., Uchino, H., Cajka, T., Arita, Makoto, Arita,
Masanori, 2019. Mass Spectrometry Data Repository Enhances Novel
Metabolite Discoveries with Advances in Computational Metabolomics.
Metabolites 9, 119. https://doi.org/10.3390/metabo9060119
Valledor, L., Furuhashi, T., Hanak, A.-M., Weckwerth, W., 2013. Systemic
Cold Stress Adaptation of Chlamydomonas reinhardtii. Mol. Cell.
Proteomics 12, 2032–2047. https://doi.org/10.1074/mcp.M112.026765
Vu, H.S., Shiva, S., Roth, M.R., Tamura, P., Zheng, L., Li, M., Sarowar,
S., Honey, S., McEllhiney, D., Hinkes, P., Seib, L., Williams, T.D.,
Gadbury, G., Wang, X., Shah, J., Welti, R., 2014. Lipid changes after
leaf wounding in Arabidopsis thaliana : expanded lipidomic data form
the basis for lipid co-occurrence analysis. Plant J. 80, 728–743.
https://doi.org/10.1111/tpj.12659
Walker, A., Pfitzner, B., Harir, M., Schaubeck, M., Calasan, J.,
Heinzmann, S.S., Turaev, D., Rattei, T., Endesfelder, D., Castell, W.
zu, Haller, D., Schmid, M., Hartmann, A., Schmitt-Kopplin, P., 2017.
Sulfonolipids as novel metabolite markers of Alistipes and Odoribacter
affected by high-fat diets. Sci. Rep. 7, 11047.
https://doi.org/10.1038/s41598-017-10369-z
Wang, X., Li, W., Li, M., Welti, R., 2006. Profiling lipid changes in
plant response to low temperatures. Physiol. Plant. 126, 90–96.
https://doi.org/10.1111/j.1399-3054.2006.00622.x
Welti, R., Li, W., Li, M., Sang, Y., Biesiada, H., Zhou, H.-E.,
Rajashekar, C.B., Williams, T.D., Wang, X., 2002. Profiling Membrane
Lipids in Plant Stress Responses. J. Biol. Chem. 277, 31994–32002.
https://doi.org/10.1074/jbc.M205375200
Welti, R., Wang, X., Williams, T.D., 2003. Electrospray ionization
tandem mass spectrometry scan modes for plant chloroplast lipids. Anal.
Biochem. 314, 149–152. https://doi.org/10.1016/S0003-2697(02)00623-1
Zhang, X.D., Wang, R.P., Zhang, F.J., Tao, F.Q., Li, W.Q., 2013. Lipid
profiling and tolerance to low-temperature stress in Thellungiella
salsuginea in comparison with Arabidopsis thaliana. Biol. Plant. 57,
149–153. https://doi.org/10.1007/s10535-012-0137-8
Tables and figures
Table 1. Internal standard used for calculation of lipid relative
concentration. PC, phosphatidylcholine; LPC, lysophosphatidylcholine;
CE, cholesterol ester; MG, monodiacylglyceride; DG, diglyceride; TG,
triglyceride; SM, sphingomyelin; Cer, ceramides; DGTS,
diacylglyceryl-N,N,N-trimethylhomoserine; PE, phosphatidylethanolamine;
PS, phosphatidylserine; PG, phosphatidylglycerol; PI,
phosphatidylinositol; LPE, lysophosphatidylethanolamine.