Data Availability Statement
All data that support the findings of this study are available at DTU data repository, Lu et al (2022): Cold stress paper. Technical University of Denmark. Dataset. https://doi.org/10.11583/DTU.20198699.

References

Aldana, J., Romero-Otero, A., Cala, M.P., 2020. Exploring the Lipidome: Current Lipid Extraction Techniques for Mass Spectrometry Analysis. Metabolites 10, 231. https://doi.org/10.3390/metabo10060231
Anderson, R., Kates, M., Volcani, B.E., 1978. Identification of the sulfolipids in the non-photosynthetic diatom nitzschia alba. Biochim. Biophys. Acta - Lipids Lipid Metab. 528, 89–106. https://doi.org/10.1016/0005-2760(78)90055-3
Aro, E.-M., Karunen, P., 1988. Effects of hardening and freezing stress on membrane lipids and CO2 fixation of Ceratodon purpureus protonemata. Physiol. Plant. 74, 45–52. https://doi.org/10.1111/J.1399-3054.1988.TB04939.X
Badea, C., Kumar Basu, S., 2009. The effect of low temperature on metabolism of membrane lipids in plants and associated gene expression. Plant Omi. J. South. Cross Journals©2009 2, 78–84.
Beike, A.K., Jaeger, C., Zink, F., Decker, E.L., Reski, R., 2014. High contents of very long-chain polyunsaturated fatty acids in different moss species. Plant Cell Rep. 33, 245–254. https://doi.org/10.1007/s00299-013-1525-z
Calder, P.C., Yaqoob, P., 2009. Omega-3 polyunsaturated fatty acids and human health outcomes. BioFactors 35, 266–272. https://doi.org/10.1002/biof.42
Chen, D., Yan, X., Xu, J., Su, X., Li, L., 2013. Lipidomic profiling and discovery of lipid biomarkers in Stephanodiscus sp. under cold stress. Metabolomics 9, 949–959. https://doi.org/10.1007/s11306-013-0515-z
Conde, T.A., Couto, D., Melo, T., Costa, M., Silva, J., Domingues, M.R., Domingues, P., 2021. Polar lipidomic profile shows Chlorococcum amblystomatis as a promising source of value-added lipids. Sci. Rep. 11, 4355. https://doi.org/10.1038/s41598-021-83455-y
de Freitas, G.M., Thomas, J., Liyanage, R., Lay, J.O., Basu, S., Ramegowda, V., do Amaral, M.N., Benitez, L.C., Bolacel Braga, E.J., Pereira, A., 2019. Cold tolerance response mechanisms revealed through comparative analysis of gene and protein expression in multiple rice genotypes. PLoS One 14, e0218019. https://doi.org/10.1371/journal.pone.0218019
Decker, E.L., Reski, R., 2020. Mosses in biotechnology. Curr. Opin. Biotechnol. 61, 21–27. https://doi.org/10.1016/j.copbio.2019.09.021
Dembitsky, V.M., Rezanka, T., Bychek, I.A., Afonina, O.M., 1993. Polar lipid and fatty acid composition of some bryophytes. Phytochemistry 33, 1009–1014. https://doi.org/10.1016/0031-9422(93)85013-H
Domergue, F., Abbadi, A., Zähringer, U., Moreau, H., Heinz, E., 2005. In vivo characterization of the first acyl-CoA Δ 6 -desaturase from a member of the plant kingdom, the microalga Ostreococcus tauri. Biochem. J. 389, 483–490. https://doi.org/10.1042/BJ20050111
Eriksson, L., Kettaneh-Wold, N., Trygg, J., Wikström, C., Wold, S., 2006. Multi- and Megavariate Data Analysis : Part I: Basic Principles and Applications. Umetrics Inc, Department of Chemistry, Faculty of Science and Technology, Umeå University.
Gao, X., Liu, W., Mei, J., Xie, J., 2019. Quantitative Analysis of Cold Stress Inducing Lipidomic Changes in Shewanella putrefaciens Using UHPLC-ESI-MS/MS. Molecules 24, 4609. https://doi.org/10.3390/molecules24244609
Gellerman, J.L., Anderson, W.H., Richardson, D.G., Schlenk, H., 1975. Distribution of arachidonic and eicosapentaenoic acids in the lipids of mosses. Biochim. Biophys. Acta - Lipids Lipid Metab. 388, 277–290. https://doi.org/10.1016/0005-2760(75)90133-2
Glime, J.M., 2017. Volume 1, Chapter 10-2: Temperature: Cold.
Godchaux, W., Leadbetter, E.R., 1980. Capnocytophaga spp. contain sulfonolipids that are novel in procaryotes. J. Bacteriol. 144, 592–602. https://doi.org/10.1128/JB.144.2.592-602.1980
Hansen, C.E., Rossi, P., 1991. Effects of culture conditions on accumulation of arachidonic and eicosapentaenoic acids in cultured cells of Rhytidiadelphus squarrosus and Eurhynchium striatum. Phytochemistry 30, 1837–1841. https://doi.org/10.1016/0031-9422(91)85024-T
Hartmann, E., Beutelmann, P., Vandekerkhove, O., Euler, R., Kohn, G., 1986. Moss cell cultures as sources of arachidonic and eicosapentaenoic acids. FEBS Lett. 198, 51–55. https://doi.org/10.1016/0014-5793(86)81183-8
Hartmann, E, Beutelmann, P., Vandekerkhove, O., Euler, R., Kohn, G., 1986. Moss cell cultures as sources of arachidonic and eicosapentaenoic acids. FEBS Lett. 198, 51–55. https://doi.org/10.1016/0014-5793(86)81183-8
Horn, A., Pascal, A., Lončarević, I., Volpatto Marques, R., Lu, Y., Miguel, S., Bourgaud, F., Thorsteinsdóttir, M., Cronberg, N., Becker, J.D., Reski, R., Simonsen, H.T., 2021. Natural Products from Bryophytes: From Basic Biology to Biotechnological Applications. CRC. Crit. Rev. Plant Sci. 40, 191–217. https://doi.org/10.1080/07352689.2021.1911034
Hou, Q., Ufer, G., Bartels, D., 2016. Lipid signalling in plant responses to abiotic stress. Plant. Cell Environ. 39, 1029–1048. https://doi.org/10.1111/pce.12666
Lu, Y., Eiriksson, F.F., Thorsteinsdóttir, M., Simonsen, H.T., 2021. Effects of extraction parameters on lipid profiling of mosses using UPLC-ESI-QTOF-MS and multivariate data analysis. Metabolomics 17, 96. https://doi.org/10.1007/s11306-021-01847-7
Lu, Y., Eiriksson, F.F., Thorsteinsdóttir, M., Simonsen, H.T., 2019. Valuable Fatty Acids in Bryophytes—Production, Biosynthesis, Analysis and Applications. Plants 8, 524. https://doi.org/10.3390/plants8110524
Mikami, K., Hartmann, E., 2004. Lipid Metabolism in Mosses, in: New Frontiers in Bryology. Springer Netherlands, Dordrecht, pp. 133–155. https://doi.org/10.1007/978-0-306-48568-8_8
Okazaki, Y., Saito, K., 2018. Plant Lipidomics Using UPLC-QTOF-MS, in: Methods in Molecular Biology (Clifton, N.J.). pp. 157–169. https://doi.org/10.1007/978-1-4939-7819-9_11
Orsavova, J., Misurcova, L., Vavra Ambrozova, J., Vicha, R., Mlcek, J., 2015. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci. 16, 12871–12890. https://doi.org/10.3390/ijms160612871
Pan, X.-W., Han, L., Zhang, Y.-H., Chen, D.-F., Simonsen, H.T., 2015. Sclareol production in the moss Physcomitrella patens and observations on growth and terpenoid biosynthesis. Plant Biotechnol. Rep. 9, 149–159. https://doi.org/10.1007/s11816-015-0353-8
Pejin, B., Vujisić, L., Sabovljević, M., Tešević, V., Vajs, V., Vujisic, L., Sabovljevic, M., Tesevic, V., Vajs, V., 2012. The moss Mnium hornum, a promising source of arachidonic acid. Chem. Nat. Compd. 48, 120–121. https://doi.org/10.1007/s10600-012-0175-7
Rensing, S.A., Goffinet, B., Meyberg, R., Wu, S.-Z., Bezanilla, M., 2020. The Moss Physcomitrium ( Physcomitrella ) patens : A Model Organism for Non-Seed Plants. Plant Cell 32, 1361–1376. https://doi.org/10.1105/tpc.19.00828
Rensing, S.A., Lang, D., Zimmer, A.D., Terry, A., Salamov, A., Shapiro, H., Nishiyama, T., Perroud, P.-F., Lindquist, E.A., Kamisugi, Y., Tanahashi, T., Sakakibara, K., Fujita, T., Oishi, K., Shin-I, T., Kuroki, Y., Toyoda, A., Suzuki, Y., Hashimoto, S. -i., Yamaguchi, K., Sugano, S., Kohara, Y., Fujiyama, A., Anterola, A., Aoki, S., Ashton, N., Barbazuk, W.B., Barker, E., Bennetzen, J.L., Blankenship, R., Cho, S.H., Dutcher, S.K., Estelle, M., Fawcett, J.A., Gundlach, H., Hanada, K., Heyl, A., Hicks, K.A., Hughes, J., Lohr, M., Mayer, K., Melkozernov, A., Murata, T., Nelson, D.R., Pils, B., Prigge, M., Reiss, B., Renner, T., Rombauts, S., Rushton, P.J., Sanderfoot, A., Schween, G., Shiu, S.-H.S.-H.S.-H., Stueber, K., Theodoulou, F.L., Tu, H., Van de Peer, Y., Verrier, P.J., Waters, E., Wood, A., Yang, L., Cove, D., Cuming, A.C., Hasebe, M., Lucas, S., Mishler, B.D., Reski, R., Grigoriev, I. V., Quatrano, R.S., Boore, J.L., 2008. The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science (80-. ). 319, 64–69. https://doi.org/10.1126/science.1150646
Resemann, H.C., 2018. Sphingolipids in Physcomitrella patens.
Resemann, H.C., Herrfurth, C., Feussner, K., Hornung, E., Ostendorf, A.K., Gömann, J., Mittag, J., van Gessel, N., Vries, J. de, Ludwig-Müller, J., Markham, J., Reski, R., Feussner, I., 2021. Convergence of sphingolipid desaturation across over 500 million years of plant evolution. Nat. Plants 7, 219–232. https://doi.org/10.1038/s41477-020-00844-3
Reski, R., Abel, W.O., 1985. Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine, Planta. Springer-Verlag.
Roughan, P.G., Slack, C.R., Holland, R., 1978. Generation of phospholipid artefacts during extraction of developing soybean seeds with methanolic solvents. Lipids 13, 497–503. https://doi.org/10.1007/BF02533620
Sabovljević, M.S., Sabovljević, A.D., Ikram, N.K.K., Peramuna, A., Bae, H., Simonsen, H.T., 2016. Bryophytes – an emerging source for herbal remedies and chemical production. Plant Genet. Resour. 14, 314–327. https://doi.org/10.1017/S1479262116000320
Shanab, S.M.M., Hafez, R.M., Fouad, A.S., 2018. A review on algae and plants as potential source of arachidonic acid. J. Adv. Res. 11, 3–13. https://doi.org/10.1016/j.jare.2018.03.004
Tarazona, P., Feussner, K., Feussner, I., 2015. An enhanced plant lipidomics method based on multiplexed liquid chromatography-mass spectrometry reveals additional insights into cold- and drought-induced membrane remodeling. Plant J. 84, 621–633. https://doi.org/10.1111/tpj.13013
Tsugawa, H., Satoh, A., Uchino, H., Cajka, T., Arita, Makoto, Arita, Masanori, 2019. Mass Spectrometry Data Repository Enhances Novel Metabolite Discoveries with Advances in Computational Metabolomics. Metabolites 9, 119. https://doi.org/10.3390/metabo9060119
Valledor, L., Furuhashi, T., Hanak, A.-M., Weckwerth, W., 2013. Systemic Cold Stress Adaptation of Chlamydomonas reinhardtii. Mol. Cell. Proteomics 12, 2032–2047. https://doi.org/10.1074/mcp.M112.026765
Vu, H.S., Shiva, S., Roth, M.R., Tamura, P., Zheng, L., Li, M., Sarowar, S., Honey, S., McEllhiney, D., Hinkes, P., Seib, L., Williams, T.D., Gadbury, G., Wang, X., Shah, J., Welti, R., 2014. Lipid changes after leaf wounding in Arabidopsis thaliana : expanded lipidomic data form the basis for lipid co-occurrence analysis. Plant J. 80, 728–743. https://doi.org/10.1111/tpj.12659
Walker, A., Pfitzner, B., Harir, M., Schaubeck, M., Calasan, J., Heinzmann, S.S., Turaev, D., Rattei, T., Endesfelder, D., Castell, W. zu, Haller, D., Schmid, M., Hartmann, A., Schmitt-Kopplin, P., 2017. Sulfonolipids as novel metabolite markers of Alistipes and Odoribacter affected by high-fat diets. Sci. Rep. 7, 11047. https://doi.org/10.1038/s41598-017-10369-z
Wang, X., Li, W., Li, M., Welti, R., 2006. Profiling lipid changes in plant response to low temperatures. Physiol. Plant. 126, 90–96. https://doi.org/10.1111/j.1399-3054.2006.00622.x
Welti, R., Li, W., Li, M., Sang, Y., Biesiada, H., Zhou, H.-E., Rajashekar, C.B., Williams, T.D., Wang, X., 2002. Profiling Membrane Lipids in Plant Stress Responses. J. Biol. Chem. 277, 31994–32002. https://doi.org/10.1074/jbc.M205375200
Welti, R., Wang, X., Williams, T.D., 2003. Electrospray ionization tandem mass spectrometry scan modes for plant chloroplast lipids. Anal. Biochem. 314, 149–152. https://doi.org/10.1016/S0003-2697(02)00623-1
Zhang, X.D., Wang, R.P., Zhang, F.J., Tao, F.Q., Li, W.Q., 2013. Lipid profiling and tolerance to low-temperature stress in Thellungiella salsuginea in comparison with Arabidopsis thaliana. Biol. Plant. 57, 149–153. https://doi.org/10.1007/s10535-012-0137-8
Tables and figures
Table 1. Internal standard used for calculation of lipid relative concentration. PC, phosphatidylcholine; LPC, lysophosphatidylcholine; CE, cholesterol ester; MG, monodiacylglyceride; DG, diglyceride; TG, triglyceride; SM, sphingomyelin; Cer, ceramides; DGTS, diacylglyceryl-N,N,N-trimethylhomoserine; PE, phosphatidylethanolamine; PS, phosphatidylserine; PG, phosphatidylglycerol; PI, phosphatidylinositol; LPE, lysophosphatidylethanolamine.