REFERENCE
Ahmed, W., Li, R., Xia, Y., Bai, G., Siddique, K.H.M, Zhang, H., Zheng Y., Yang X. Guo P. (2022). Comparative Analysis of miRNA Expression Profiles Between Heat-Tolerant and Heat-Sensitive Genotypes of Flowering Chinese Cabbage Under Heat Stress Using High-Throughput Sequencing. Genes 11: 264.
Alves-Junior, L., Niemeier, S., Hauenschild, A., Rehmsmeier, M., and Merkle, T. (2009). Comprehensive prediction of novel microRNA targets in Arabidopsis thaliana. Nucleic Acids Research 37:4010-4021.
Anjali, N.N., and Sabu, K.K. (2020). Role of miRNAs in Abiotic and Biotic Stress Management in Crop Plants. In: Sustainable Agriculture in the Era of Climate Change–Roychowdhury, R., Choudhury, S., Hasanuzzaman, M., and Srivastava, S., eds. Cham: Springer International Publishing. 513-532.
Axtell, M., Meyers, B. (2018). Revisiting criteria for plant microRNA annotation in the era of big data. Plant Cell30: 272–284.
Bao, F., Huang, X., Zhu, C., Zhang, X., Li, X., and Yang, S.(2014). Arabidopsis HSP90 protein modulates RPP4-mediated temperature-dependent cell death and defense responses. New Phytologist202: 1320-1334.
Bhalla, P.L., and Singh, M.B. (2008). Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nature Protocols3: 181-189.
Biggar, K.K., and Storey, K.B. (2015). Insight into post-transcriptional gene regulation: stress-responsive microRNAs and their role in the environmental stress survival of tolerant animals. Journal of Experimental Biology 218: 1281-1289.
Bolt, S., Zuther, E., Zintl, S., Hincha, D.K., and Schmülling, T. (2017). ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation. Plant, Cell & Environment 40: 108-120.
Chalhoub, B., Denoeud, F., Liu, S., Parkin, I.A.P., Tang, H., Wang, X., Chiquet, J., Belcram, H., Tong, C., Samans, B., Corréa, M., Da Silva, C., Just, J., Falentin, C., Koh, C.S., Le Clainche, I., Bernard, M., Bento, P., Noel, B., Labadie, K., Alberti, A., Charles, M., Arnaud, D., Guo, H., Daviaud, C., Alamery, S., Jabbari, K., Zhao, M., Edger, P.P., Chelaifa, H., Tack, D., Lassalle, G., Mestiri, I., Schnel, N., Le Paslier, M.-C., Fan, G., Renault, V., Bayer, P.E., Golicz, A.A., Manoli, S., Lee, T.-H., Thi, V.H.D., Chalabi, S., Hu, Q., Fan, C., Tollenaere, R., Lu, Y., Battail, C., Shen, J., Sidebottom, C.H.D., Wang, X., Canaguier, A., Chauveau, A., Bérard, A., Deniot, G., Guan, M., Liu, Z., Sun, F., Lim, Y.P., Lyons, E., Town, C.D., Bancroft, I., Wang, X., Meng, J., Ma, J., Pires, J.C., King, G.J., Brunel, D., Delourme, R., Renard, M., Aury, J.-M., Adams, K.L., Batley, J., Snowdon, R.J., Tost, J., Edwards, D., Zhou, Y., Hua, W., Sharpe, A.G., Paterson, A.H., Guan, C., and Wincker, P. (2014). Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950-953.
Chen, S., Huang, H.-A., Chen, J.-H., Fu, C.-C., Zhan, P.-L., Ke, S.-W., Zhang, X.-Q., Zhong, T.-X., and Xie, X.-M. (2020). SgRVE6, a LHY-CCA1-Like Transcription Factor From Fine-Stem Stylo, Upregulates NB-LRR Gene Expression and Enhances Cold Tolerance in Tobacco. Front Plant Sci 11 . 1276
Chen, X. (2009). Small RNAs and Their Roles in Plant Development. Annual Review of Cell and Developmental Biology25: 21-44.
Cui, C., Wang, J., Zhao, J., Fang, Y., He, X., Guo, H., and Duan, C. (2020). A Brassica miRNA Regulates Plant Growth and Immunity through Distinct Modes of Action. Molecular Plant 13: 231-245.
Dangl, J.L., and Jones, J.D.G. (2001). Plant pathogens and integrated defence responses to infection. Nature 411: 826-833.
Ding, Y, Shi, Y., Yang, S. (2019). Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytologist 222: 1690-1704.
Gupta, O.P., Meena, N.L., Sharma, I., and Sharma, P. (2014). Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. Molecular Biology Reports 41:4623-4629.
He, J., Xu, M., Willmann, M.R., McCormick, K., Hu, T., Yang, L., Starker, C.G., Voytas, D.F., Meyers, B.C., and Poethig, R.S. (2018). Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana. Plos Genetics14: e1007337-e1007337.
He, X., Fang, Y., Feng, L., and Guo, H. (2008). Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR–NBS–LRR class R gene-derived novel miRNA in Brassica. FEBS Letters 582: 2445-2452.
Huang, X., Li, J., Bao, F., Zhang, X., and Yang, S. (2010). A Gain-of-Function Mutation in the Arabidopsis Disease Resistance Gene RPP4 Confers Sensitivity to Low Temperature. Plant Physiology154: 796-809.
Jones-Rhoades, M.W., and Bartel, D.P. (2004). Computational Identification of Plant MicroRNAs and Their Targets, Including a Stress-Induced miRNA. Molecular Cell 14: 787-799.
Jones, J.D.G., and Dangl, J.L. (2006). The plant immune system. Nature 444: 323-329.
Krishna, P., Sacco, M., Cherutti, J.F., and Hill, S. (1995). Cold-Induced Accumulation of hsp90 Transcripts in Brassica napus. Plant Physiology 107: 915-923.
Li, X., Lian, H., Zhao, Q., and He, Y. (2019). MicroRNA166 Monitors SPOROCYTELESS/NOZZLE for Building of the Anther Internal Boundary1. Plant Physiology 181: 208-220.
Liu, J., Pang, X., Cheng, Y., Yin, Y., Zhang, Q., Su, W., Hu, B., Guo, Q., Ha, S., Zhang, J., and Wan, H. (2018). The Hsp70 Gene Family in Solanum tuberosum: Genome-Wide Identification, Phylogeny, and Expression Patterns. Scientific Reports 8: 16628.
Ljubej, V., Radojčić Redovniković, I., Salopek-Sondi, B., Smolko, A., Roje, S., and Šamec, D. (2021). Chilling and Freezing Temperature Stress Differently Influence Glucosinolates Content in Brassica oleracea var. acephala. Plants 10: 1305.
Ma, X., Zhao, F., Zhou, B. (2022). The Characters of Non-Coding RNAs and Their Biological Roles in Plant Development and Abiotic Stress Response. International Journal of Molecular Science 23: 4124.
McClung, C.R., and Davis, S.J. (2010). Ambient Thermometers in Plants: From Physiological Outputs towards Mechanisms of Thermal Sensing. Current Biology 20: R1086-R1092.
Paul, P., Chhapekar, S.S., Rameneni, J.J., Oh, S.H., Dhandapani, V., Subburaj, S., Shin, S.Y., Ramchiary, N., Shin, C., Choi, S.R., and Lim, Y.P. (2021). MiR1885 Regulates Disease Tolerance Genes in Brassica rapa during Early Infection with Plasmodiophora brassicae. International Journal of Molecular Sciences 22: 9433.
Qian, W., Xiao, B., Wang, L., Hao, X., Yue, C., Cao, H., Wang, Y., Li, N., Yu, Y., Zeng, J., Yang Y., Wang, X. (2018). CsINV5, a tea vacuolar invertase gene enhances cold tolerance in transgenic Arabidopsis. BMC Plant Biology 18: 228
Sanghera, G.S., Wani, S.H., Hussain, W., and Singh, N.B.(2011). Engineering cold stress tolerance in crop plants. Curr Genomics12: 30-43.
Seo, P.J., Lee, A.K., Xiang, F., and Park, C.M. (2008). Molecular and functional profiling of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed germination. Plant & cell physiology 49: 334-344.
Shi, Y., Ding, Y., and Yang, S. (2018). Molecular Regulation of CBF Signaling in Cold Acclimation. Trends in Plant Science 23:623-6.
Snider, C.S., Hsiang, T., Zhao, G., and Griffith, M. (2000). Role of Ice Nucleation and Antifreeze Activities in Pathogenesis and Growth of Snow Molds. Phytopathology 90: 354-361.
Song, X., Yan, L., Cao, X., Qi,Y. (2019). MicroRNAs and Their Regulatory Roles in Plant-Environment Interactions. Annual Review of Plant Biology 70: 489-525.
Sun, M., Shen, Y., Chen, Y., Wang, Y., Cai, X., Yang, J., Jia, B., Dong, W., Chen, X., Sun, X. (2022). Osa-miR1320 targets the ERF transcription factor OsERF096 to regulate cold tolerance via JA-mediated signaling. Plant physiology kiac208.
Wang, S., Sun, X., Hoshino, Y., Yu, Y., Jia, B., Sun, Z., Sun, M., Duan, X., and Zhu, Y. (2014). MicroRNA319 Positively Regulates Cold Tolerance by Targeting OsPCF6 and OsTCP21 in Rice (Oryza sativa L.). Plos One 9 . e91357
Wang, X., and Wang, H., and Wang, J., and Sun, R., and Wu, J., and Liu, S., and Bai, Y., and Mun, J.-H., and Bancroft, I., and Cheng, F., and Huang, S., and Li, X., and Hua, W., and Wang, J., and Wang, X., and Freeling, M., and Pires, J.C., and Paterson, A.H., and Chalhoub, B., and Wang, B., and Hayward, A., and Sharpe, A.G., and Park, B.S., and Weisshaar, B., and Liu, B., and Li, B., and Liu, B., and Tong, C., and Song, C., and Duran, C., and Peng, C., and Geng, C., and Koh, C., and Lin, C., and Edwards, D., and Mu, D., and Shen, D., and Soumpourou, E., and Li, F., and Fraser, F., and Conant, G., and Lassalle, G., and King, G.J., and Bonnema, G., and Tang, H., and Wang, H., and Belcram, H., and Zhou, H., and Hirakawa, H., and Abe, H., and Guo, H., and Wang, H., and Jin, H., and Parkin, I.A.P., and Batley, J., and Kim, J.-S., and Just, J., and Li, J., and Xu, J., and Deng, J., and Kim, J.A., and Li, J., and Yu, J., and Meng, J., and Wang, J., and Min, J., and Poulain, J., and Wang, J., and Hatakeyama, K., and Wu, K., and Wang, L., and Fang, L., and Trick, M., and Links, M.G., and Zhao, M., and Jin, M., and Ramchiary, N., and Drou, N., and Berkman, P.J., and Cai, Q., and Huang, Q., and Li, R., and Tabata, S., and Cheng, S., and Zhang, S., and Zhang, S., and Huang, S., and Sato, S., and Sun, S., and Kwon, S.-J., and Choi, S.-R., and Lee, T.-H., and Fan, W., and Zhao, X., and Tan, X., and Xu, X., and Wang, Y., and Qiu, Y., and Yin, Y., and Li, Y., and Du, Y., and Liao, Y., and Lim, Y., and Narusaka, Y., and Wang, Y., and Wang, Z., and Li, Z., and Wang, Z., and Xiong, Z., and Zhang, Z., and The Brassica rapa Genome Sequencing Project, C. (2011). The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics 43:1035-1039.
Wang, Y., Zhang, Y., Wang, Z., Zhang, X., and Yang, S. (2013). A missense mutation in CHS1, a TIR-NB protein, induces chilling sensitivity in Arabidopsis. The Plant Journal 75: 553-565.
Xin, Z., and Browse, J. (1998). eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proceedings of the National Academy of Sciences 95: 7799.
Xu, P., and Cai, W. (2019). Function of Brassica napus BnABI3 in Arabidopsis gs1, an Allele of AtABI3, in Seed Development and Stress Response. Fronters in Plant Science 10 . 00067
Xu, P., Zhu, Y., Zhang, Y., Jiang, J., Yang, L., Mu, J., Yu, X., and He, Y. (2021). Global Analysis of the Genetic Variations in miRNA-Targeted Sites and Their Correlations With Agronomic Traits in Rapeseed. Fronters in Genetics 12 . 741858.
Yan, J., Zhao, C., Zhou, J., Yang, Y., Wang, P., Zhu, X., Tang, G., Bressan, R.A., and Zhu, J.-K. (2016). The miR165/166 Mediated Regulatory Module Plays Critical Roles in ABA Homeostasis and Response in Arabidopsis thaliana. Plos Genetics 12: e1006416.
Yang, H., Shi, Y., Liu, J., Guo, L., Zhang, X., and Yang, S.(2010). A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis. The Plant Journal 63: 283-296.
Yu, X., Wang, H., Lu, Y., de Ruiter, M., Cariaso, M., Prins, M., van Tunen, A., and He, Y. (2011). Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot63: 1025-1038.
Zbierzak, A.M., Porfirova, S., Griebel, T., Melzer, M., Parker, J.E., and Dörmann, P. (2013). A TIR–NBS protein encoded by Arabidopsis Chilling Sensitive 1 (CHS1) limits chloroplast damage and cell death at low temperature. The Plant Journal 75: 539-552.
Zeng, X., Xu, Y., Jiang, J., Zhang, F., Ma, L., Wu, D., Wang, Y., and Sun, W. (2018). Identification of cold stress responsive microRNAs in two winter turnip rape (Brassica rapa L.) by high throughput sequencing. BMC Plant Biology 18: 52.
Zhang, X.D., Sun, J.Y., You, Y.Y., Song, J.B., and Yang, Z.M.(2018). Identification of Cd-responsive RNA helicase genes and expression of a putative BnRH 24 mediated by miR158 in canola (Brassica napus). Ecotoxicology and Environmental Safety 157: 159-168.
Zhou, M., and Tang, W. (2019). MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells. Molecular Genetics and Genomics 294: 379-393.
Zhu, M., Wang, X., Zhou, Y., Tan, J., Zhou, Y., Gao, F. (2022). Small RNA Sequencing Revealed that miR4415, a Legume-Specific miRNA, was Involved in the Cold Acclimation of Ammopiptanthus nanus by Targeting an L-Ascorbate Oxidase Gene and Regulating the Redox State of Apoplast. Fronters in Genetics 13:870446.