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Abstract

This work develops a model predictive control (MPC) scheme using online learning of recur-

rent neural network (RNN) models for nonlinear systems switched between multiple operating

regions following a prescribed switching schedule. Specifically, an RNN model is initially de-

veloped offline to model process dynamics using the historical operational data collected in a

small region around a certain steady-state. After the system is switched to another operating

region under a Lyapunov-based MPC with suitable constraints to ensure satisfaction of the

prescribed switching schedule policy, RNN models are updated using real-time process data

to improve closed-loop performance. A generalization error bound is derived for the updated

RNN models using the notion of regret, and closed-loop stability results are established for the

switched nonlinear system under RNN-based MPC. Finally, a chemical process example with

the operation schedule that requires switching between two steady-states is used to demonstrate

the effectiveness of the proposed RNN-MPC scheme.

Keywords: Online Machine Learning; Recurrent Neural Networks; Generalization Error; Model

Predictive Control; Nonlinear Systems

Introduction
Over the past decades, modeling large-scale, complex nonlinear dynamic systems has received con-

siderable attention in process systems engineering. While nonlinear first-principles process modeling
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provides a direct way to model nonlinear dynamic systems based on the underlying physio-chemical

phenomena, it is cumbersome and difficult to implement in complex industrial processes which are

not well-understood. Machine learning modeling approaches have gained increasing attention in re-

cent years, since they are able to model nonlinear processes efficiently with big data obtained from

industrial/simulation data. In addition to computer science, machine learning methods have been

adopted by researchers in the fields of classical engineering to tackle classification and regression

problems (8,33).

Among many machine learning modeling methods, recurrent neural networks (RNNs) have been

increasingly utilized in machine learning-based control of chemical processes due to their ability to

model nonlinear dynamic systems using time-series data. For example, RNNs were used to derive

a nonlinear prediction model for model predictive control (MPC) that stabilizes nonlinear chemical

processes at their steady-states in.33,34 One key challenge for the practical implementation of MPC

is the accuracy of the nonlinear prediction model. As discussed in,33,34 the RNN model was trained

offline using the data collected from the entire operating region in order to fully capture the dynamics

of nonlinear systems. However, the requirement for training data over the entire operating region

may not be realizable since real-world chemical processes are often operated within a small region

around the steady-state for safe and stable operation, and thus, only very limited data around the

steady-state is available for training in practice. Additionally, since machine learning models are

generally developed offline using historical data from past normal operations that do not involve

model uncertainty, the resulting machine learning models may not be able to accurately predict

real-time process dynamics in the presence of model uncertainty. To that end, online learning

provides a promising solution to improve machine learning models using real-time data for better

control performance under MPC. Compared to traditional offline machine learning algorithms that

learn a model using the entire training dataset at once, online learning algorithms can instantly and

efficiently update the model to capture the latest process dynamics when the learner receives new

training data sequentially.

Online learning algorithms have been widely used to develop machine learning models for large-

scale problems with a tremendous amount of data, since the training process is more computationally

efficient than batch algorithms (23). In addition to the considerations of computational efficiency,

online learning of machine learning models has demonstrated its benefits in improving model pre-

diction and closed-loop performance in many real-time control systems (2,11,24,27,31,35). However, an

ongoing challenge for the practical implementation of online learning models in real-world chemical

processes is their generalization performance on unseen data, for which a fundamental understand-
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ing needs to be developed. Generalization error bound is commonly used in statistical machine

learning to quantitatively characterize the generalization performance of machine learning models.

Many recent efforts have focused on the generalization analysis of neural networks in classification

and regression problems. For example, a sample complexity bound was derived for feedforward

neural networks in.14 A generalization error bound was developed for RNNs that approximate

the dynamics of nonlinear systems with a single output in.15 The generalization error bound for

RNNs was established for multiclass classification problems in.9 Additionally, the generalization

error bounds were developed for over-parameterized deep neural networks trained using stochastic

gradient descent in3,4 and gradient descent in,5 respectively. More recently, a generalization error

bound was derived for the offline learning RNNs that model a general class of nonlinear systems, and

probabilistic closed-loop stability results were developed for the MPC using RNN models in.30,32

The objective of an online learner is to minimize regret, which is defined as the difference be-

tween the cumulative loss of an online learner and that of the single best learner chosen in hindsight

given all the data. Online-to-batch conversion is a common technique in machine learning theory to

evaluate the generalization performance of online learning algorithms, which has been extensively

studied in.6,7, 17,20 Additionally, by using online-to-batch conversion techniques, many common

learning problems that fit more naturally in the batch learning setting can be addressed through

online learning algorithms to develop models in a more memory- and time-efficient manner (12). It is

demonstrated that the generalization performance of the online learning models is competitive with

the best model chosen in hindsight using all the data provided that the regret of the online learning

algorithms grows sublinearly. Therefore, many stochastic optimization methods have been devel-

oped showing that online convex optimization problems such as AdaGrad,13 RMSProp,28 Adam,18

and AMSGrad,25 have a sublinear regret bound. Additionally, as online learning algorithms will

constantly generate new machine learning models as data comes in a sequential order, how to make

the best use of all the models collected over time also plays an important role in improving the gen-

eralization performance of online learning models. Ensemble learning that uses multiple learners

obtained to solve the same problem has demonstrated its better predictive performance than that

can be achieved by any of the constituent learning algorithms alone (21). However, at this stage, the

generalization performance of ensemble online learning models has not been sufficiently studied yet.

Moreover, despite an increasing number of literature investigating generalization error bound and

regret analysis of online learning algorithms, stability analysis for the MPC using online learning of

RNN models has not been investigated.

Motivated by the above, this work utilizes an online learning algorithm to update RNN models
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using real-time process data and incorporates online learning models into the MPC design for the

switched nonlinear systems that are required to operate in different operating regions at prescribed

switching times. Closed-loop stability analysis is performed accounting for the generalization error

bound derived for online learning models. Specifically, in section “Preliminaries”, the notations, class

of nonlinear systems, stabilizability assumptions, and the general structure of RNNs are introduced.

In section “Online Learning of Recurrent Neural Networks”, a brief recap of the generalization error

bound for offline learning RNN models is presented, followed by the derivation of a generalization

error bound for online learning models based on regret analysis. In section “RNN-based LMPC

of Switched Nonlinear Systems”, Lyapunov-based MPCs using RNN models are developed for the

nonlinear system operated in a fixed operating region and switched different operating regions,

respectively. Subsequently, the implementation strategies for the integration of online learning

within RNN-based MPC are presented with the closed-loop stability analysis. Finally, the proposed

RNN-based MPC scheme is applied to a chemical process to demonstrate its effectiveness in section

“Application to a Chemical Process Example”.

Preliminaries

Notation
We use ∥A∥F and |·| to denote the Frobenius norm of A and the Euclidean norm of a vector,

respectively. The transpose of x is denoted by xT . The notation LfV (x) is used to denote the

standard Lie derivative LfV (x) := ∂V (x)
∂x

f(x). The operator “\” denotes set subtraction, i.e.,

A\B := {x ∈ Rn | x ∈ A, x /∈ B}. A function f(·) is of class C1 if it is continuously differen-

tiable. A continuous function α : [0, a) → [0,∞) belongs to class K if it is strictly increasing and

α(0) = 0. A function f : Rn → Rm is said to be L-Lipschitz, L ≥ 0, if |f(a) − f(b)| ≤ L|a − b|
for all a, b ∈ Rn. P(A) denotes the probability that event A will occur. The expected value of a

random variable X is denoted by E[X]. Given two sequences an and bn, we have an = O (bn) if

lim supn→∞ |an/bn| < ∞.

Class of nonlinear systems
Consider the class of continuous-time nonlinear systems described by the following state-space form:

ẋ = F (x, u) := f(x) + g(x)u, x(t0) = x0 (1)
where x ∈ Rn and u ∈ Rnu are the state vector and the control input vector. The control input is

constrained by u ∈ U := {umin ≤ u ≤ umax} ⊂ Rnu , where umin and umax denote the minimum and

maximum value vectors of the input constraint. Throughout this manuscript, it is assumed that the
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initial time t0 is set to zero (t0 = 0). Additionally, we assume that the vector function f(·) : Rn → Rn

and the matrix function g(·) : Rn → Rn×nu are sufficiently smooth. The nonlinear system of Eq. (1)

is assumed to have multiple steady-states xsk under u = us (i.e., ẋsk = f(xsk)+g(xsk)us ≡ 0), where

k ∈ ℓ = {1, 2, . . . , p} and p is the number of steady-states. The nonlinear system of Eq. (1) is said

to operate in mode k if it is required to be stabilized at the steady-state xsk , ∀k ∈ ℓ. Additionally,

we use tink and toutk to represent the time when the kth mode is switched in and out, respectively.

When the nonlinear system is operated in mode k, i.e., t ∈ [tink , toutk ), we assume that the state

measurements are available every sampling time tq = tink + q∆, q = 0, 1, · · · , Nk, where ∆ is the

sampling period and Nk is the number of sampling periods within tink and toutk .

Stabilization via control Lyapunov function
Consider the nonlinear system of Eq. (1) with multiple steady-states xsk , k ∈ ℓ. Using the deviation

variables zk := x− xsk , k ∈ ℓ, the nonlinear system of Eq. (1) can be written in the deviation form

of żk = F ′
k(zk, u) such that F ′

k(0, u) = 0 under u = us. We assume that for each steady-state xsk ,

k ∈ ℓ, there exists a stabilizing feedback controller uk = Φk(zk) ∈ U such that the origin of the

nonlinear system of żk = F ′
k(zk, u) is rendered exponentially stable. This stabilizability assumption

implies that for each steady-state xsk , k ∈ ℓ, there exists a C1 control Lyapunov function Vk(zk)

such that the following inequalities hold for all zk in an open neighborhood Dk around the origin:

c1k |zk|2 ≤ Vk(zk) ≤ c2k |zk|2 (2a)
∂Vk(zk)

∂zk
F ′
k(zk,Φk(zk)) ≤ −c3k |zk|2 (2b)∣∣∣∣∂Vk(zk)

∂zk

∣∣∣∣ ≤ c4k |zk| (2c)

where c1k , c2k , c3k , and c4k , k ∈ ℓ, are positive constants. We use a level set of Lyapunov function

described by Ωρk := {zk ∈ Dk | Vk(zk) ≤ ρk} , ρk > 0, k ∈ ℓ, to denote an estimate of the closed-loop

stability region for the nonlinear system of żk = F ′
k(zk, u) under uk = Φk(zk) ∈ U . Additionally,

due to the smoothness of f(·) and g(·) and the boundedness of u, for all zk, z′k ∈ Ωρk , u ∈ U , k ∈ ℓ,

there exist positive constants Mk, Lk, L
′
k such that the following inequalities hold:

|F ′
k(zk, u)| ≤ Mk (3a)

|F ′
k(zk, u)− F ′

k (z
′
k, u)| ≤ Lk |zk − z′k| (3b)∣∣∣∣∂Vk(zk)

∂zk
F ′
k(zk, u)−

∂Vk (z
′
k)

∂zk
F ′
k (z

′
k, u)

∣∣∣∣ ≤ L′
k |zk − z′k| (3c)
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Recurrent neural networks
In this work, we consider a general RNN model with the following form to approximate the dynamics

of the nonlinear system of Eq. (1):

ht = σh (Qht−1 +Wxt) , yt = σy (V ht) (4)

where xt ∈ Rdx , yt ∈ Rdy , and ht ∈ Rdh denote the input, the output, and the hidden state of the

RNN model at the tth time step, respectively, where t = 1, . . . , Tnn. All vectors of the RNN model

are written in boldface to differentiate the notation of input, output, and state between the RNN

model of Eq. (4) and the nonlinear system of Eq. (1). W ∈ Rdh×dx , V ∈ Rdy×dh , and Q ∈ Rdh×dh

are the weight matrices for the input layer, the output layer, and the hidden layer, respectively. σh

is the nonlinear element-wise activation function for the hidden layer (e.g., ReLU). The activation

function of the output layer is denoted by σy; a typical choice of σy is a linear unit for regression

problems. The datasets for offline training of RNNs can be generated following the simulation-

based data generation method in.33 Specifically, extensive open-loop simulations of the nonlinear

system of Eq. (1) are carried out under various initial conditions (x0 − xsk) ∈ Ωρk and control

actions u ∈ U . Each simulation runs for a fixed period of time, e.g., one sampling period, where

the control action u is implemented in a sample-and-hold fashion (i.e., u(t) = u (tq) ,∀t ∈ [tq, tq+1),

where tq+1 := tq +∆, and ∆ is the sampling period), and the system of Eq. (1) is solved using the

explicit Euler method with a sufficiently small integration time step h̄c < ∆. Based on open-loop

simulation data, the RNN model is developed to predict future states x(t), ∀t ∈ [tq, tq+1), using the

current state measurement x (tq) and the control input u(t), t ∈ [tq, tq+1). Therefore, the RNN input

x = [x(tq) u(t)] consists of the state at the current time step t = tq and the control action that will

be applied for [tq, tq+1), and the predicted states x(t), t ∈ [tq, tq+1) including those in the integration

time steps are the RNN output y. Since the control input u(t) is implemented in a sample-and-

hold fashion, the RNN input x remains unchanged for one sampling period. Additionally, xt and

yt represent the RNN input and output at the tth time step, where each time step corresponds

to one integration time step in this work, and thus, the total number of time steps is Tnn = ∆
h̄c

.

We consider the mean squared error (MSE) as the loss function L(h (xt), ȳt) for the RNN model,

where yt = h(xt) and ȳt are the predicted output and the true output values, respectively, and h(·)
denotes the RNN model chosen from the hypothesis class H that maps an input xt ∈ Rdx to an

output yt ∈ Rdy . We have the following assumptions on the development of RNN models:

Assumption 1. The RNN inputs are bounded, i.e., |xt| ≤ BX , for all t = 1, . . . , Tnn.

Assumption 2. The Frobenius norms of all the weight matrices are bounded as follows:

∥W∥F ≤ BW,F , ∥V ∥F ≤ BV,F , ∥Q∥F ≤ BQ,F (5)
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Assumption 3. The datasets for training RNN models are drawn from the same distribution.
Remark 1. The above assumptions are standard in the machine learning framework. Specifically,

Assumption 1 requires the boundedness of the RNN input, which follows directly from the fact that

the state and the control input of the nonlinear system of Eq. (1) are bounded by (x− xsk) ∈ Ωρk

and u ∈ U . The boundedness of the RNN weight matrices in Assumption 2 is consistent with the

practical training process and also implies that the predicted output is bounded. Assumption 3

implies that the offline and online RNN models developed from historical and real-time process

data will be applied to the same process with the same data distribution.

Online Learning of Recurrent Neural Networks
Since the evaluation of any learning algorithm is based on finite training samples only, the training

error measured on the training data may not provide sufficient information on its predictive capacity

on unseen data. Therefore, generalization error is generally used in statistical learning theory to

measure how accurately a neural network model learned from training data can generalize to new

data that has not been seen previously. Therefore, the aim of many learning algorithms is to obtain

an upper bound on the generalization error. In this section, the notion of generalization error and

empirical error is first introduced, followed by a brief discussion on the generalization error bound

derived for the offline learning RNN models. Then, we develop a generalization error bound for

online learning models based on regret bound analysis.

Generalization error bound for offline learning
Given a data distribution D and a function h that predicts the output y for the input x, the

generalization error is defined as follows:

E[L(h(x), y)] =
∫
X×Y

L(h(x), y)ρ(x, y)dxdy (6)

where ρ(x, y) represents the joint probability distribution for x and y, and X, Y denote the vector

space for all possible inputs and outputs, respectively. Since the joint probability distribution ρ is

unknown in most cases, we can instead calculate the empirical error based on m labeled samples

(x1, y1), · · · , (xm, ym) drawn from the same distribution D to approximate the generalization error

in Eq. (6). The empirical error is defined as follows:

ÊS[L(h(x), y)] =
1

m

m∑
i=1

L(h(xi), yi) (7)

Offline training has been widely used to develop machine learning models using historical process

data by minimizing the empirical error of Eq. (7). The following lemma was developed in32 to derive

a generalization error bound for offline-trained RNN models.
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Lemma 1 (c.f. Theorem 1 in32). Let Gt = {gt : (x,y) → L(h(x),y), h ∈ H} be the loss function class

associated with the RNN hypothesis class H that predicts the RNN output at the tth time step, with

1-Lipschitz continuous and positive-homogeneous activation functions as well as weight matrices

satisfying Assumptions 1-3. Given m sequences of Tnn-time-length independent and identically

distributed (i.i.d.) data points S = (xi,t,yi,t)
Tnn
t=1 , i = 1, . . . ,m and t = 1, . . . , Tnn, with probability

at least 1− δ over S, the following inequality holds:

E[gt(x,y)] ≤
1

m

m∑
i=1

gt(xi,yi) + 3

√
log(2

δ
)

2m
+O

(
Lrdy

MBX(1 +
√
2 log(2)t)√

m

)
(8)

where M = BW,FBV,F
1−(BQ,F )t

1−BQ,F
, and BW,F , BV,F , BQ,F , BX are the bounds of RNN weight matrices

and RNN inputs defined in Assumptions 1-3. Lr is the local Lipschitz constant for the MSE loss

function and dy is the dimension of the RNN output.

Remark 2. Lemma 1 demonstrates that the generalization error of offline learning RNN models is

bounded by the three terms on the right-hand side (RHS) of Eq. (8). Specifically, the generalization

error depends on the training error (first term), confidence level δ and sample size m (second term),

as well as the bounds of RNN weight matrices/inputs and the time length t of RNN inputs (last

term). Interested readers may refer to32 for detailed discussion and derivations of Eq. (8).

Online machine learning
As discussed in the data generation method for training RNN models in,33 extensive open-loop

simulations of the nonlinear system of Eq.(1) are conducted by sweeping over all possible values of

(x − xsk) ∈ Ωρk and uk ∈ U for k ∈ ℓ in order to capture the dynamics of the nonlinear system

of Eq.(1) accurately. However, this dataset generation method may not be feasible in practice, as

chemical processes are often required to operate in a small region around the steady-state xsk to

ensure safe and stable operation. When the RNN model is trained offline using a limited dataset

collected around the steady-state xsk , the RNN model may not well capture the nonlinear dynamics

within the entire operating region. Furthermore, real-world chemical processes are often required to

execute mode transitions for considerations of economics and safety, i.e., the processes are switched

from the current operating region around xsk to a subsequent operating region around another

steady-state xsf for some k, f ∈ ℓ. This mode transition may lead to an undesired predictive

performance of the RNN model trained offline since it lacks the data around xsf . To address this

issue, online learning can be used to update RNN models during operation using real-time process

data. In this section, we will use statistical learning theory and online learning algorithms to develop

the generalization error bound for online learning of RNN models. We first introduce the following

8



lemma that will be used in the derivation of the generalization error bound for online learning.

Lemma 2. (Azuma’s inequality, c.f. Theorem D.7 in23) Let V1, . . . , Vm be a martingale difference

sequence with respect to a sequence of random variables X1, . . . , Xm. Assume that for all i > 0,

there exist a constant ci ≥ 0 and a random variable Zi that is a function of X1, . . . , Xi−1, such that

Zi ≤ Vi ≤ Zi + ci. Then, for all m and ϵ > 0, the following inequalities hold:

P

[
m∑
i=1

Vi ≥ ϵ

]
≤ exp

(
−2ϵ2∑m
i=1 c

2
i

)
, P

[
m∑
i=1

Vi ≤ −ϵ

]
≤ exp

(
−2ϵ2∑m
i=1 c

2
i

)
(9)

Consider a set of T labeled samples collected in T rounds (x1, y1), . . ., (xT , yT ) that are drawn

from a distribution D, and the samples are sequentially processed by an online algorithm A to

generate a sequence of hypotheses h1, . . ., hT . The algorithm incurs a loss L(hτ (xτ ), yτ ) in each

round τ = 1, . . . , T , and the regret of the algorithm A after T rounds is defined as follows:

RegA(T ) =
T∑

τ=1

L (hτ (xτ ) , yτ )−
T∑

τ=1

L (h⋆ (xτ ) , yτ ) (10)

where h⋆ denotes the optimal model from a hypothesis class H that achieves the minimum cu-

mulative loss after T rounds (i.e., h⋆ = argmin
h∈H

∑T
τ=1 L (h (xτ ) , yτ ). h⋆ can only be obtained in

hindsight after receiving all samples. The generalization error of a hypothesis h ∈ H is defined by

its expected value of the loss function R(h) = E(x,y)∼D[L(h(x), y)].

Generalization error bound for online learning

Following the idea in,19 we develop a more general generalization error bound for online learning

using online-to-batch conversion based on the existing results of,6,23 which connects the regret of

the online algorithm with its generalization error.

Theorem 1. Given a set of labeled samples S = ((x1, y1) , . . . , (xT , yT )) drawn i.i.d. from a dis-

tribution D. Consider a loss function L(·, ·) that is convex with respect to its first argument and is

bounded by M for some M ≥ 0, h1, . . . , hT being a sequence of hypotheses generated by an online

algorithm A processing samples S sequentially, and λ = [λ1 . . . λT ]
T being a weight vector belong-

ing to an unit simplex, i.e., ΩT =:
{
λ ∈ RT |

∑T
τ=1 λτ = 1 and λτ ≥ 0 for τ = 1, . . . , T

}
. Let h be

the ensemble of all the hypotheses through weighted sum, i.e., h =
∑T

τ=1 λτhτ , and h⋆ be the optimal

hypothesis from a hypothesis class H. Then, with probability at least 1− δ, the following inequalities

hold:

R

(
T∑

τ=1

λτhτ

)
≤

T∑
τ=1

λτL (hτ (xτ ) , yτ ) +M |λ|
√
2 log

1

δ
(11)
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R

(
T∑

τ=1

λτhτ

)
≤ RegA(T )

T
+

T∑
τ=1

λτL (h⋆ (xτ ) , yτ ) +
T∑

τ=1

M |λτ −
1

T
|+M |λ|

√
2 log

1

δ
(12)

Proof. For each round τ = 1, . . . , T , we define Vτ = λτ (R(hτ )− L (hτ (xτ ) , yτ )), which is a martin-

gale difference sequence since E [Vτ ] = λτ (R (hτ )− E [L (hτ (xτ ) , yτ )]) = λτ (R (hτ )−R (hτ )) = 0,

based on the fact that a stochastic series V is a martingale difference sequence if its expectation

with respect to the past is zero. Furthermore, −λτM ≤ Vτ ≤ λτM holds since the loss function

L is bounded by M . Thus, by applying Azuma’s inequality in Lemma 2, for all ϵ > 0, we have

P
[∑T

τ=1 Vτ ≥ ϵ
]
≤ exp

(
−2ϵ2∑T

τ=1(2λτM)2

)
. Setting ϵ = M |λ|

√
2 log 1

δ
, the following result holds with

probability at least 1− δ:

T∑
τ=1

λτR (hτ ) ≤
T∑

τ=1

λτL (hτ (xτ ) , yτ ) +M |λ|
√
2 log

1

δ
(13)

Eq. (11) is obtained by substituting the inequality R
(∑T

τ=1 λτhτ

)
≤
∑T

τ=1 λτR (hτ ) derived from

Jensen’s inequality into Eq. (13). Next, to prove Eq. (12), we expand L :=
∑T

τ=1 λτL(hτ (xτ ), yτ )

−
∑T

τ=1 λτL(h
⋆(xτ ), yτ ) as follows.

L =
T∑

τ=1

(λτ−
1

T
) (L (hτ (xτ ) , yτ )−L (h⋆ (xτ ) , yτ ))+

1

T

T∑
τ=1

(L (hτ (xτ ) , yτ )−L (h⋆ (xτ ) , yτ ))

≤
T∑

τ=1

M |λτ −
1

T
|+ RegA(T )

T

(14)

where the above inequality is derived from the fact that the loss function L is bounded by M and

the definition of regret in Eq. (10). Using Eq. (14), we have

T∑
τ=1

λτL (hτ (xτ ) , yτ ) ≤
RegA(T )

T
+

T∑
τ=1

λτL (h⋆ (xτ ) , yτ ) +
T∑

τ=1

M |λτ −
1

T
| (15)

Therefore, by replacing
∑T

τ=1 λτL (hτ (xτ ) , yτ ) in Eq. (11) by the three terms in the RHS of Eq. (15),

Eq. (12) is obtained, and this completes the proof of Theorem 1.

Remark 3. Note that in,6,23 the generalization error bound was derived only for the weights λτ =

1/T for all τ = 1, . . . , T . However, in this work, we consider a more general scenario in which weights

can be optimized for the ensemble model to achieve the best prediction performance. Therefore,

the results derived in6,23 can be considered a special case of the generalization error bounds derived

in Theorem 1. Specifically, when λτ = 1/T for all τ = 1, . . . , T , the inequalities of Eqs. (11) and
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(12) in Theorem 1 are reduced to the inequalities of Eqs. (8.27) and (8.28) in Theorem 8.15.23

Additionally, the generalization error bounds proposed in Theorem 1 hold for any arbitrary weight

vector belonging to a unit simplex, which allows more freedom to search for a better generalization

performance in practice. In the next section, we will demonstrate that the weights for each model

generated by an online learning algorithm A can be optimized using a linear programming problem.

Remark 4. It is noted from Eq. (11) that the generalization error bound for an ensemble hypothesis

h =
∑T

τ=1 λτhτ consists of two terms: the first term in the RHS of Eq. (11) represents the cumulative

training loss in T rounds. The second term in the RHS of Eq. (11) is an error function associated

with the bound M for the loss function, the weight vector λ, and the confidence δ. To further

show that the generalization performance of the ensemble model h =
∑T

τ=1 λτhτ converges to the

optimal model h⋆ from the hypothesis class H in hindsight, Eq. (12) is derived to connect regret with

generalization error. Specifically, the generalization error can be bounded by regret (the first term),

the loss suffered by the optimal model h⋆ (the second term), and the error functions with respect

to M,λ, δ, and T (the third and last terms). The third and last terms in the RHS of Eq. (12) are

readily known once a weight vector λ and a confidence level δ are chosen, which can be sufficiently

small with an appropriate choice of λ, i.e., for λτ = 1/T for all τ = 1, . . . , T , the third term equals

zero and the last term becomes M

√
2 log 1

δ

T that converges to zero as T → ∞. Therefore, if an

online algorithm A ensures that its regret is a sublinear function of T , i.e., RegA(T ) = O(
√
T ), the

regret term RegA(T )
T in Eq. (12) converges to zero as T → ∞, and the loss suffered by an ensemble

hypothesis h =
∑T

τ=1 λτhτ can be sufficiently close to the minimum loss achieved by the optimal

hypothesis h⋆ using the entire dataset S.

Remark 5. While Adam is commonly used in training neural networks, it has been shown in25

that Adam may fail to converge to the optimal solution in some optimization problems due to

fundamental flaws in the convergence analysis of Adam. To address the non-convergence issue of

Adam caused by the use of the exponential moving average of the past squared gradients, AMSGrad

is proposed in,25 where the key difference of AMSGrad is that it uses the maximum of the past

squared gradients. Some recent works have shown that AMSGrad can achieve convergence with a

sublinear rate of regret bound for online optimization problems (1,10,36). In this work, AMSGrad

will be used for the online learning algorithm.

Ensemble of online predictors

Machine learning modeling with a limited dataset is challenging, since a single machine learning

model may not provide perfect predictions over the entire operating region. Therefore, ensemble

learning has been utilized to generate ensemble models that improve predictive capability by com-
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bining the predictions from multiple machine learning models. Compared to a single model, the

prediction accuracy can be improved via ensemble learning due to the following reasons (26). First, a

single model with a sufficiently small training error may perform poorly in a region with insufficient

training data, while ensemble models obtained by aggregating multiple machine learning models can

decrease the risk of choosing a single flawed model. Second, a single learner may get stuck in locally

optimal solutions since the learning algorithm is known to be a non-convex optimization problem

in general, while ensemble learning using multiple learners can reduce the risk of obtaining a local

optimum. Third, the optimal hypothesis may be outside the search space of a finite hypothesis

class for any single model, while ensemble learning that combines different models can extend the

search space, and thus, achieves a better fit to the underlying data distribution. Many effective

methods for generating an ensemble model have been proposed in the past decades, and three most

popular ensemble methods are Bagging, Boosting, and Stacking. In this work, we follow the idea of

ensemble learning to develop an ensemble model that combines the predictions of multiple online

learning models. Specifically, the ensemble model denoted by h =
∑T

τ=1 λτhτ is built based on

the following three-step procedure. Step 1 : Generate a sequence of hypotheses h1, . . . , hT using

an online algorithm A. Step 2 : Choose a weight vector λ by solving the following optimization

problem:
min
λ∈ΩT

T∑
τ=1

λτL (hτ (xτ ) , yτ )

s.t.
T∑

τ=1

|λτ −
1

T
| ≤ α

(16)

where α ≥ 0 is a hyperparameter that constrains the difference between λτ and 1/T , and can

be predetermined through a validation process. Step 3 : Develop an ensemble hypothesis h =∑T
τ=1 λτhτ . It should be noted that the training loss L (hτ (xτ ) , yτ ) for each hypothesis hτ can be

obtained at the end of each round. The optimization problem of Eq. (16) considers an objective

function subject to two constraints (i.e., λ ∈ ΩT and
∑T

τ=1 |λτ − 1
T | ≤ α), where λ is the weight

vector to be optimized. Additionally, Eq. (12) demonstrates that the weight λτ should be chosen to

be sufficiently close to 1
T to ensure that the generalization performance of an ensemble model can

converge to that of the optimal model h⋆. Therefore, an inequality constraint
∑T

τ=1 |λτ − 1
T | ≤ α is

imposed to avoid the extreme scenario where the weight of a single hypothesis is assigned to be 1.

Development of RNN models using online learning
In this work, an RNN model is initially developed offline using the historical data collected around a

certain steady-state, and will be updated using real-time process data based on the online learning

algorithm. Specifically, given m sequences of Tnn-time-length i.i.d. data points S = (xi,t,yi,t),
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i = 1, . . . ,m and t = 1, . . . , Tnn, where Tnn is the number of time steps to be predicted by the RNN

model, an RNN model is initially trained offline to approximate the nonlinear system of Eq. (1)

under sample-and-hold implementation of the control actions u(t) = u (tq) ,∀t ∈ [tq, tq+1), where

tq+1 := tq+∆. The explicit Euler method is used to integrate the nonlinear system of Eq. (1) with a

sufficiently small integration time step h̄c < ∆. The RNN inputs xi,t and outputs yi,t are normalized

via standardization, and the statistics information such as distribution mean and standard deviation

will be saved for later data processing in online learning. The initial RNN model is constructed

using the normalized dataset to predict the future states for the next sampling period with total

time steps Tnn = ∆
h̄c

.

Subsequently, we apply online-to-batch conversion by using online algorithms in the batch setting

to update the RNN models. Specifically, instead of using randomly initialized weights to update

RNN model, the weights of the previous RNN model are used as the initial guess for the current

RNN model. The updated RNN models are developed using only the most recent process data in a

rolling window, which is collected from the real-time process operation. It should be noted that the

collected process data is normalized via standardization using the distribution mean and standard

deviation obtained from the initial offline-trained RNN model since the real-time data and offline

training data are of the same distribution. The above process for updating RNN models is repeated

once new process data is collected. The advantage of using previous RNN models as the initial

guess for online learning is that some of the nonlinear dynamics captured by the old datasets can be

transferred to the updated RNN models. Instead of training a new RNN model from scratch using

the entire dataset, we only utilize the most recent process data to update the RNN model, which

can significantly reduce the computation time for updating RNN models. However, due to the lack

of sufficient online training samples, it is not guaranteed that the online learning RNN models can

capture the dynamics of the nonlinear system of Eq. (1) throughout the operating region. Therefore,

RNN models need to be iteratively updated until the desired prediction accuracy is achieved such

that the MPC using RNN models can stabilize the nonlinear system at the given steady-state.

RNN-based LMPC of Switched Nonlinear Systems
In this section, we develop a Lyapunov-based MPC (LMPC) scheme using online learning RNN

models to analyze the closed-loop stability of the nonlinear system of Eq. (1) under scheduled mode

transitions between multiple steady-states. Specifically, an RNN model is initially trained using

the dataset collected around an initial steady-state, and is incorporated into LMPC to stabilize the

nonlinear system of Eq. (1) at the initial steady-state. The RNN model will be constantly improved

using the online learning algorithm as dynamic data becomes available during the mode transitions.
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We will demonstrate that under the RNN-MPC scheme, closed-loop state of the nonlinear system

of Eq. (1) is maintained in the stability region for each mode during the switching interval and

enters the stability region of a subsequent mode at the switching time, and ultimately converges to

a small terminal set after the terminal mode is activated.

Lyapunov-based control using RNN models
To simplify the discussion of stability properties for RNN-MPC, we use the following continuous-

time nonlinear system to represent the single-hidden-layer RNN model of Eq. (4):

˙̂x = Fnn(x̂, u) (17)

where x̂ ∈ Rn is the state vector of the RNN model and u ∈ Rnu is the control input vector. Consider

the RNN model of Eq. (17) with multiple steady-states xsk , for all k ∈ ℓ. By using the deviation

variables ẑk := x̂− xsk all k ∈ ℓ, the RNN model of Eq. (17) can be rewritten in the deviation form

of ˙̂zk = F ′
nnk

(ẑk, u). We assume for each steady-state xsk , k ∈ ℓ, there exists a stabilizing feedback

controller uk = Φnnk
(zk) ∈ U such that the steady-state of the RNN model of Eq. (17) is rendered

exponentially stable. This stabilizability assumption implies that for each steady-state xsk , k ∈ ℓ,

there exists a C1 control Lyapunov function V̂k(zk) such that the following inequalities hold for all

zk in an open neighborhood D̂k around the origin:

ĉ1k |zk|2 ≤ V̂k(zk) ≤ ĉ2k |zk|2, (18a)

∂V̂k(zk)

∂zk
F ′
nnk

(zk,Φnnk
(zk)) ≤ −ĉ3k |zk|2, (18b)∣∣∣∣∣∂V̂k(zk)

∂zk

∣∣∣∣∣ ≤ ĉ4k |zk|, (18c)

where ĉ1k , ĉ2k , ĉ3k , and ĉ4k , k ∈ ℓ, are positive constants. Additionally, due to the smoothness of

Fnn(x̂, u) and the boundedness of u, for all zk, z′k ∈ Ωρk , u ∈ U , k ∈ ℓ, for all zk, z′k ∈ Ωρ̂k , u ∈ U ,

k ∈ ℓ, there exist positive constants Mnnk
, Lnnk

, L′
nnk

such that the following inequalities hold:

|F ′
nnk

(zk, u)| ≤ Mnnk
(19a)∣∣F ′

nnk
(zk, u)− F ′

nnk
(z′k, u)

∣∣ ≤ Lnnk
|zk − z′k| (19b)∣∣∣∣∣∂V̂k(zk)

∂zk
F ′
nnk

(zk, u)−
∂V̂k(z

′
k)

∂zk
F ′
nnk

(z′k, u)

∣∣∣∣∣ ≤ L′
nnk

|zk − z′k| (19c)
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We follow the construction method in33 to characterize the closed-loop stability regions Ωρ̂k for

the RNN model of Eq. (17), k ∈ ℓ, starting from which stabilization at the steady-state xsk

can be achieved under the controller uk = Φnnk
(zk) ∈ U . Specifically, using Eq. (18), we first

search the entire state space to characterize a set of states ϕ̂uk
where Eq. (18) is satisfied un-

der the controller uk = Φnnk
(zk) ∈ U . A level set of Lyapunov function inside ϕ̂uk

, i.e., Ωρ̂k :={
zk ∈ ϕ̂uk

| V̂k(zk) ≤ ρ̂k

}
, ρ̂k > 0, k ∈ ℓ, is characterized as an estimate of the closed-loop stability

region for the RNN model around each steady-state. It should be noted that while the RNN models

are updated online using real-time data of the process variables, the stability regions Ωρ̂k , k ∈ ℓ, are

characterized using the initial RNN model obtained offline, and remain the same for all times. As a

result, when the RNN models are updated online, the controller uk = Φnnk
(zk) ∈ U designed based

on the initial RNN model may not be able to ensure stability for all states within Ωρ̂k using updated

models. This issue will be addressed in section “Integration of online learning with RNN-MPC”.

Finally, while the closed-loop stability regions are defined with respect to the states in deviation

variable form, in the following text, we will use x ∈ Ωρ̂k to represent that the state x is inside the

stability region Ωρ̂k around the steady-state xsk , with a slight abuse of notation.

LMPC for nonlinear systems operated in a fixed mode
In this section, we consider the nonlinear system of Eq. (1) operated in a fixed mode k for some

k ∈ ℓ at all times (i.e., t ∈ [tink , toutk ) when toutk = ∞). We present an RNN-MPC design that

guarantees closed-loop stability of the nonlinear system of Eq. (1) in probability provided that the

RNN models achieve a sufficiently small modeling error. Specifically, the next two propositions

from32 are first presented to demonstrate that the nonlinear system of Eq. (1) can be stabilized

under sample-and-hold implementation of the controller uk = Φnnk
(zk) ∈ U , k ∈ l in probability if

the modeling error is sufficiently small.

Proposition 1. (c.f. Proposition 2 in32) Consider the same initial condition x0 = x̂0 ∈ Ωρ̂k for

the nonlinear system of Eq. (1) and the RNN model of Eq. (17). If the initial offline-trained RNN

model and the online-updated RNN models both achieve a sufficiently small modeling error that

satisfies |F (x, u) − Fnn(x, u))| ≤ EM , where EM denotes the generalization error bound (i.e., the

RHS of Eq. (8) and of Eq. (12) for offline and online learning models, respectively). Then, for each

steady-state xsk , k ∈ ℓ, there exist a positive constant κ and a class K function fk(·) such that for

all x, x̂ ∈ Ωρ̂k , with probability at least 1− δ, the following inequalities hold:

|x(t)− x̂(t)| ≤ fk(t) :=
EM

Lk

(eLkt − 1) (20a)
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V̂k(x− xsk) ≤ V̂k(x̂− xsk) +
ĉ4k

√
ρ̂k√

ĉ1k
|x− x̂|+ κ|x− x̂|2 (20b)

Proof. The proof of Proposition 1 follows the proof of Proposition 2 in32 and is omitted here. The

only difference is that the proof in32 considers the modeling error EM for the offline learning models

using the generalization error of Eq. (8), while in this work, in addition to the initial offline-trained

RNN model, we also account for the modeling error derived for online learning of RNN models.

Proposition 2. (c.f. Proposition 3 in32)Consider the nonlinear system of Eq. (1) under the con-

troller uk = Φnnk
(x̂− xsk) ∈ U that stabilizes the RNN model of Eq. (17) and meets the conditions

of Eq. (18). If the modeling error is constrained by |F (x, u)−Fnn(x, u))| ≤ EM ≤ γ|x−xsk |, where

γk and γ are positive real numbers that satisfy γk < ĉ3k/ĉ4k and γ = min {γk, k ∈ ℓ}, and there exist

∆ > 0, ρ̂k > ρmink
> ρnnk

> ρsk and ϵk > 0, for k ∈ ℓ, such that the following inequalities hold:

− c̃3k
ĉ2k

ρsk + L′
kMk∆ ≤ −ϵk (21a)

ρnnk
:= max{V̂k(x̂(t+∆)− xsk) | u ∈ U, x̂(t) ∈ Ωρsk

} (21b)

ρmink
≥ ρnnk

+
ĉ4k

√
ρ̂k√

ĉ1k
fk(∆) + κ(fk(∆))2 (21c)

where c̃3k = −ĉ3k + ĉ4kγ < 0 and fk(t) =
EM

Lk
(eLkt − 1), then under the implementation of control

inputs in a sample-and-hold fashion, i.e., uk(t) = Φnnk
(x(tq) − xsk),∀t ∈ [tq, tq+1), where tq+1 :=

tq +∆, for any x (tq) ∈ Ωρ̂k\Ωρsk
, with a probability at least 1− δ, the following inequality holds:

V̂ (x(t)− xsk) ≤ V̂ (x (tq)− xsk) , ∀t ∈ [tq, tq+1) (22)

and the state x(t) of the nonlinear system of Eq. (1) remains inside Ωρ̂k for all times and ultimately

converges to Ωρmink
.

Proof. The proof of Proposition 2 follows the proof of Proposition 3 in32 that is developed for a single

steady-state of the nonlinear system of Eq. (1). To account for the existence of multiple steady-states

in this work, the coefficient of modeling error condition, γ, in32 is modified to be the minimum of

γk := ĉ3k/ĉ4k , k ∈ ℓ such that the modeling error condition |F (x, u)−Fnn(x, u))| ≤ EM ≤ γ|x−xsk |
is met for all the steady-states of the system of Eq. (1). Although the complete proof of Proposition 2

is omitted, we present the key steps that show the difference between this proof and the one in.32 To

simplify the notation, we use the state in deviation form and show that the state zk(t) = x(t)− xsk

of the system of żk = F ′
k(zk, u) converges to a small set Ωρsk

around the steady-state xsk under
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the controller uk = Φnnk
(zk) ∈ U . Specifically, we first derive the time derivative of V̂k for any

zk(tq) ∈ Ωρ̂k\Ωρsk
under uk = Φnnk

(zk) ∈ U :

˙̂
Vk(zk(t)) =

˙̂
Vk(zk(tq)) + (

˙̂
Vk(zk(t))− ˙̂

Vk(zk(tq))) (23)

Following the proof in,32 Eq. (23) can be expanded as ˙̂
Vk(zk(t)) =

˙̂
Vk(zk(tq))+L′

kMk∆ using Eq. (3),

where ˙̂
Vk(zk(tq)) can be further expanded using Eq. (18b) and Eq. (18c) as follows:

˙̂
Vk(zk(tq)) =

∂V̂k(zk(tq))

∂zk
F ′
k (zk(tq),Φnnk

(zk(tq)))

≤− ĉ3k |zk(tq)|2 + ĉ4k |zk(tq)| ·
∣∣F ′

k(zk(tq),Φnnk
(zk(tq)))−F ′

nnk
(zk(tq),Φnnk

(zk(tq)))
∣∣ (24)

Note that the term
∣∣F ′

k(zk(tq),Φnnk
(zk(tq)))− F ′

nnk
(zk(tq),Φnnk

(zk(tq)))
∣∣ represents the modeling

error between the nonlinear system of Eq. (1) and the RNN model of Eq. (17) in their deviation

form, and it is equivalent to the modeling error |F (x, u)− Fnn(x, u))| represented by the state x in

the original state space. Since the generalization error of the offline-trained RNN model depends

on the training sample size m, by choosing the number of samples m greater than the minimum

sample size mN(δ, |zk|) such that the modeling error constraint EM can be rendered less than γ|zk|.
Therefore, based on Eq. (18a), for any zk(tq) ∈ Ωρ̂k\Ωρsk

, with probability at least 1 − δ, Eq. (24)

is further bounded by:
˙̂
Vk(zk(tq)) ≤ −ĉ3k |zk(tq)|2 + ĉ4k |zk(tq)|γ|zk(tq)|

≤ −ĉ3k |zk(tq)|2 + ĉ4k |zk(tq)|γk|zk(tq)|
(25)

where the second line is derived based on the definition of γ, i.e., γ = min {γk, k ∈ ℓ}. Since γk <

ĉ3k/ĉ4k , we can further derive ˙̂
Vk(zk(tq)) ≤ −c̃3k |zk(tq)|2 ≤ −c̃3k

ρsk
ĉ2k

by defining c̃3k = ĉ3k − ĉ4kγk > 0,

and using Eq. (24) for any zk(tq) ∈ Ωρ̂k\Ωρsk
. Therefore, the time derivative of V̂k of Eq. (23) satisfies

the following inequality ∀k ∈ ℓ with a probability of at least 1 − δ if Eq. (21a) is satisfied for any

zk(tq) ∈ Ωρ̂k\Ωρsk
and t ∈ [tq, tq+1).

˙̂
Vk(zk(t)) ≤ −c̃3k

ρsk
ĉ2k

+ L′
kMk∆

≤ −ϵk

(26)

Eq. (26) implies that the time derivative of V̂k can be rendered negative with a probability of at

least 1− δ for any zk(tq) ∈ Ωρ̂k\Ωρsk
and t ∈ [tq, tq+1). As a result, the value of Lyapunov function

decreases every sampling period (Eq. (22)), and thus, the state zk(t) is bounded in Ωρ̂k for all times

and moves towards Ωρsk
under uk = Φnnk

(zk) ∈ U . Additionally, since Eq. (26) may not hold

when zk(tq) = ẑk(tq) ∈ Ωρsk
, we can show that the state ẑk(t) of the RNN model and the state
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zk(t) of the nonlinear system of Eq. (1) will be bounded in Ωρnnk
and Ωρmink

within one sampling

period according to the definitions of Ωρnnk
and Ωρmink

in Eq. (21b) and Eq. (21c), respectively,

where Ωρmink
is designed to be a superset of Ωρnnk

that accounts for the modeling error within one

sampling period. As a result, with a certain probability, the state of Eq. (1) is maintained in Ωρ̂k

for all times and ultimately converges to Ωρmink
under the controller uk = Φnnk

(zk) ∈ U .

Remark 6. Proposition 2 demonstrates that under a sample-and-hold implementation of the con-

troller uk = Φnnk
(x− xsk) ∈ U , the state of the nonlinear system of Eq. (1) can be driven towards

Ωρsk
, and ultimately bounded in a terminal set Ωρmink

around the steady-state xsk , provided that the

modeling error of the offline learning RNN model satisfies the constraint |F (x, u) − Fnn(x, u))| ≤
EM ≤ γ|x − xsk |. While stability is guaranteed (in a probability sense) using the initial offline

learning RNN model, the control performance may not be optimal in terms of convergence to the

steady-state since the modeling error EM may not be sufficiently small due to insufficient training

samples. As a result, a large terminal set Ωρmink
may have to be chosen to ensure the boundedness

of the state of the nonlinear system of Eq. (1) by accounting for the modeling error EM of the

initial RNN model. Therefore, to improve closed-loop performance under uk = Φnnk
(x− xsk) ∈ U ,

online learning will be used to reduce the modeling error EM such that the closed-loop state can

ultimately be bounded in a new terminal set that is closer to the steady-state.

Remark 7. Note that the results in Proposition 2 are derived for offline learning RNN models since

the stabilizability conditions of Eq. (18) and the closed-loop stability regions Ωρ̂k are developed

only for the initial RNN model. Therefore, once the RNN models are updated online using real-

time data, no stability guarantees can be derived for the new RNN models using the controller

uk = Φnnk
(x− xsk) ∈ U . One potential solution to address this issue is to update stability regions

and stabilizing controllers as well using the latest RNN model. However, the characterization of

new stability regions may be computationally intractable if the RNN model is updated frequently.

Therefore, in the next section, we propose a practically feasible solution to ensure the closed-loop

stability of the system of Eq. (1) with the closed-loop stability regions remaining the same.

We consider the scenario where the nonlinear system is operated in a fixed mode around a

certain steady-state xsk . The LMPC design using RNN models for the nonlinear system of Eq. (1)

operated in a fixed mode k is formulated as the following optimization problem:

J = min
u∈S(∆)

∫ tq+N

tq

LMPC(x̃(t), u(t))dt (27a)

s.t. ˙̃x(t) = Fnn(x̃(t), u(t)) (27b)

18



u(t) ∈ U, ∀ t ∈ [tq, tq+N) (27c)

x̃(tq) = x(tq) (27d)
˙̂
Vk(x(tq)− xsk , u) ≤

˙̂
Vk(x(tq)− xsk ,Φnnk

(x(tq)− xsk)), if x(tq) ∈ Ωρ̂k\Ωρnnk
(27e)

V̂k(x̃(t)− xsk) ≤ ρnnk
, ∀ t ∈ [tq, tq+N), if x(tq) ∈ Ωρnnk

(27f)

where x̃, N , and S(∆) denote the predicted state obtained from the RNN model, the fixed finite

prediction horizon, and the class of piecewise constant functions with sampling period ∆, respec-

tively. The objective of the RNN-MPC of Eq. (27) is to minimize the cost function of Eq. (27a)

and subject to the constraints of Eqs. (27b)-Eq. (27f). Specifically, Eq. (27b) uses the RNN model

of Eq. (17) to predict the state evolution. Eq. (27c) defines the constraints for control input over

t ∈ [tq, tq+N). Eq. (27d) defines the initial state x̃(tq), which is equal to the state measurements

at each sampling step. Eqs. (27e)-(27f) are the two Lyapunov-based constraints used to ensure

the closed-loop stability of the nonlinear system of Eq. (1). The optimal solution calculated by the

optimization problem of Eq. (27) is denoted by u⋆
k (t | tq), t ∈ [tq, tq+N). Only the first control action

is implemented to the systems in a sample-and-hold fashion, i.e., uk(t) = u⋆
k (t | tq) , t ∈ [tq, tq+1),

and the LMPC will be solved again with the new measurements at the next sampling time. The

analysis of the closed-loop stability of the nonlinear system of Eq. (1) under the MPC of Eq. (27)

using offline learning RNN models can be found in.32

LMPC for nonlinear systems switched between different modes
In this section, we consider the nonlinear system of Eq. (1) with switching modes according to a

prescribed switching schedule defined by switching times, i.e., the system is operated in the current

mode k for t ∈ [tink , toutk ) and is switched to a subsequent mode f for some k, f ∈ ℓ at t = toutk = tinf .

The following proposition is developed to ensure that the closed-loop state under sample-and-hold

implementation of the controller uk = Φnnk
(x−xsk) ∈ U enters the stability region of the subsequent

mode f at t = toutk = tinf .

Proposition 3. Consider the nonlinear system of Eq. (1) and the RNN model of Eq. (17) under

the controller uk = Φnnk
(x − xsk) ∈ U that meets the conditions in Propositions 1 and 2. Given

tink ≤ t < toutk = tinf and (x(tink )−xsk) ∈ Ωρ̂k , if there exist ρ̂k > 0, ϵk > 0, Nk > 0, and ∆ > 0 ∀k ∈ ℓ

such that

ĉ2f

(√
ρ̂k − ϵkNk∆

ĉ1k
+
∣∣xsk − xsf

∣∣) ≤ ρ̂f , (28)

then (x(tinf )− xsf ) ∈ Ωρ̂f .
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Proof. It has been proven in Eq. (26) that ˙̂
Vk(x(t)−xsk) ≤ −ϵk holds for all (x(t)−xsk) ∈ Ωρ̂k\Ωρsk

and t ∈ [tq, tq+1). Using the above inequality recursively for all sampling periods within the switching

interval t ∈ [tink , toutk ), we have the following inequality: V̂k(x(t
out
k ) − xsk) ≤ V̂k(x(t

in
k ) − xsk) −

ϵkNk∆. Since (x(tink )− xsk) ∈ Ωρ̂k , it follows that V̂k(x(t
out
k )− xsk) ≤ ρ̂k − ϵkNk∆. From Eq. (18a)

we can obtain |x(toutk )− xsk | ≤
√

ρ̂k−ϵkNk∆
ĉ1k

. Using the triangular inequality
∣∣x(toutk )− xsf

∣∣ ≤
|x(toutk )− xsk |+

∣∣xsk − xsf

∣∣ and Eq. (18a) for the Lyapunov function at the subsequent mode f and

tout
k = tinf , it follows that V̂f (x(t

in
f )− xsf ) ≤ ρ̂f if Eq. (28) holds, which implies that (x(tinf )− xsf ) ∈

Ωρ̂f .

The LMPC using RNN models for the nonlinear system of Eq. (1) with switching modes is

formulated as follows:

J = min
u∈S(∆)

∫ toutk

tq

LMPC(x̃(t), u(t))dt (29a)

s.t. ˙̃x(t) = Fnn(x̃(t), u(t)) (29b)

u(t) ∈ U, ∀ t ∈ [tq, t
out
k ) (29c)

x̃(tq) = x(tq) (29d)
˙̂
Vk(x(tq)− xsk , u) ≤

˙̂
Vk(x(tq)− xsk ,Φnnk

(x(tq)− xsk)), if x(tq) ∈ Ωρ̂k\Ωρnnk
(29e)

V̂k(x̃(t)− xsk) ≤ ρnnk
, ∀ t ∈ [tq, t

out
k ), if x(tq) ∈ Ωρnnk

(29f)

V̂f (x̃(t
out
k )− xsf ) ≤ ρ̂f (29g)

The notations follow those in Eq. (27). In contrast to the RNN-MPC of Eq. (27) for the nonlinear

system of Eq. (1) operated in a fixed mode, the RNN-MPC of Eq. (29) for the nonlinear systems

with switching modes has two major differences. First, the RNN-MPC problem of Eq. (29) is

implemented with a shrinking prediction horizon, which is calculated by the difference between the

switching out time toutk and the current time tq, while the RNN-MPC problem of Eq. (27) uses

a fixed predicted horizon N . Second, the constraint of Eq. (29g) is imposed by the RNN-MPC

problem of Eq. (29) to ensure that the closed-loop system state can enter the stability region Ωρ̂f of

the subsequent mode f at the time toutk when the system is switched out from the current mode k.

Closed-loop stability analysis for the nonlinear system of Eq. (1) under the RNN-MPC of Eq. (29)

will be provided in section “Closed-loop stability under RNN-MPC”.

Remark 8. Proposition 3 demonstrates that the closed-loop state is guaranteed to enter the stability

region Ωρ̂f of the subsequent mode f at the switching time t = toutk = tinf if the constraint of
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Eq. (28) holds. Therefore, the feasibility of the MPC optimization problem of Eq. (29) depends

on the feasibility of the transition constraint of Eq. (28). This implies that the mode transition

should not be carried out if the constraint of Eq. (28) is not feasible at t = tout
f in order to maintain

closed-loop stability. An underlying assumption for Proposition 3 is that the stability regions of two

consecutive switching modes (i.e., Ωρ̂k and Ωρ̂f ) should have a non-empty intersection. Additionally,

the time interval between tink and toutk is assumed to be Nk∆, which implies that the mode transition

is executed at the sampling time instant.

Integration of online learning with RNN-MPC
To improve the generalization performance of RNN models, the RNN models will be updated online

using real-time state measurements. The updated RNN models will be incorporated in RNN-MPC

to replace the previous RNN models (i.e., Fnn in Eq. (29b)) to provide a better prediction of future

states. However, since the RNN models obtained through the online learning algorithm may take

more than TN rounds to converge to the best model using the entire dataset (see Eq. (12)), where

TN is the minimum number of rounds that the online learning algorithm takes to meet the modeling

error constraint EM ≤ γ|x− xsk |, an implementation strategy needs to be developed to determine

whether to apply the updated RNN model in RNN-MPC at each sampling step. As discussed in

previous sections, the closed-loop system may lose stability properties using online learning RNN

models since the stability regions are characterized under the initial RNN model (i.e., Eq. (18) may

not hold for the new RNN models). Specifically, when incorporating online learning RNN models in

the RNN-MPC of Eq. (29), only the prediction model of Eq. (29b) is updated, and the RNN model

used in the contractive constraint of Eq. (29e) remains unchanged in order to guarantee closed-loop

stability. In this case, the constraints of Eq. (29f) and Eq. (29g) that depend on the future states

x̃ will use the updated RNN model of Eq. (29b), while the contractive constraint of Eq. (29e)

will use the initial RNN model for all times. As a result, feasibility is no longer guaranteed for the

RNN-MPC of Eq. (29) using the updated RNN models under the controller uk = Φnnk
(x−xsk) ∈ U .

To simplify the discussion, we assume that the nonlinear system of Eq. (1) is switched between

different modes for some k, f ∈ ℓ under the RNN-MPC of Eq. (29) during the operation period

t ∈ [0, t′), while for t ≥ t′, the nonlinear system of Eq. (1) operates in a terminal mode z ∈ ℓ under

the RNN-MPC of Eq. (27). Based on the prescribed switching schedule policy, the implementation

strategy (Algorithm 1) for online learning with RNN-MPC is presented as follows. Step 1 : An

RNN model is initially trained offline using the open-loop simulation data for the nonlinear system

of Eq. (1). Following the construction method in,33 the stabilizing controller Φnnk
and the stability

regions Ωρ̂k for each mode k ∈ ℓ are characterized using the initial RNN model. Step 2 : Given
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any state measurement x(tq) ∈ Ωρ̂k at t = tq, ∀k ∈ ℓ, the nonlinear system of Eq. (1) is operated

under the RNN-MPC of Eq. (29) (if t < t′) or Eq. (27) (if t ≥ t′) with real-time process data

collected sequentially. The optimal control action u⋆
k(t) is calculated by the RNN-MPC of Eq. (27)

or Eq. (29) using the latest RNN model at each sampling time. If the RNN-MPC of Eq. (27) or

Eq. (29) does not have a feasible solution, the stabilizing controller uk(t) = Φnnk
(x(tq) − xsk) ∈ U

is applied to the nonlinear system of Eq. (1) at the current mode k. Step 3 : The RNN models

are updated using the previous RNN models and the most recent process data. The generalization

error of updated RNN models is evaluated using the testing set in each round. This new RNN

model is used in RNN-MPC to replace the last updated RNN model if its testing error is less than

the threshold γ|x − xsk |; otherwise, this new RNN model is discarded and the prediction model

in RNN-MPC remains unchanged. Online learning will continue by repeating Step 2 until a total

of TN RNN models satisfying the generalization error test are collected, which will lead to Step

4. Step 4 : The optimization problem of Eq. (16) for ensemble hypothesis is performed to find the

optimal weight λτ for each model hτ , and the final RNN model is given by h =
∑T

τ=1 λτhτ .

Algorithm 1 Implementation Strategy for Online Learning within RNN-MPC
Step 1: Use the initial RNN model in MPC and the controller Φnnk

for mode k ∈ ℓ.
Step 2: Given any current state measurement x(tq) ∈ Ωρ̂k , solve RNN-MPC with the latest RNN
model: if feasible: apply the optimal control action u⋆

k(t) else: apply uk(t)=Φnnk
(x(tq)−xsk).

Step 3: Update the RNN model and go back to step 2. Stop updating RNN models when a
total of TN RNN models are collected, and then go to step 4.
Step 4: Obtain the final RNN model by solving the optimization problem of Eq. (16).

Closed-loop stability under RNN-MPC
We next demonstrate that the RNN-MPCs of Eq. (27) and Eq. (29) using the initial offline-trained

RNN model can guarantee closed-loop stability and recursive feasibility simultaneously provided

that the modeling error is sufficiently small. However, when the RNN-MPCs of Eq. (27) and

Eq. (29) use online learning RNN models, we will demonstrate that closed-loop stability and recur-

sive feasibility can be guaranteed under the implementation strategy in Algorithm 1 (i.e., applying

the optimal solution of RNN-MPC whenever it is feasible and applying the stabilizing controller

uk(t) = Φnnk
(x(tq)− xsk) when RNN-MPC is infeasible).

Theorem 2. Consider the closed-loop nonlinear system of Eq. (1) switched between different modes

for some k, f ∈ ℓ under the RNN-MPC of Eq. (29) implemented following Algorithm 1, and ulti-

mately operated in a specific terminal mode for some z ∈ ℓ under the RNN-MPC of Eq. (27). Given

any initial state x(tink ) ∈ Ωρ̂k at t = tink , if the modeling error is constrained by |F (x, u)−Fnn(x, u))| ≤
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EM ≤ γ|x− xsk |, then for each sampling time step, closed-loop stability for the nonlinear system of

Eq. (1) under the RNN-MPCs of Eq. (27) and Eq. (29) is achieved with a probability at least 1−δ in

the sense that closed-loop state x(t) is bounded in Ωρ̂k for each switching interval t ∈ [tink , toutk ) and

enters the stability region Ωρ̂f of the subsequent mode f at t = toutk = tinf and ultimately converges

to the terminal set Ωρminz
defined by the terminal mode z.

Proof. The proof is divided into three parts. We first discuss recursive feasibility and closed-loop

stability for the nonlinear system of Eq. (1) under the RNN-MPC of Eq. (29) in Part 1 and Part 2,

respectively. Then, we discuss recursive feasibility and closed-loop stability for the nonlinear system

of Eq. (1) under the RNN-MPC of Eq. (27) in Part 3.

Part 1: We first discuss recursive feasibility of Eq. (29) when the initial offline-trained RNN

model is used for Eq. (29b). For x(tq) ∈ Ωρ̂k\Ωρnnk
at t = tq, the control action uk(t) = Φnnk

(x(tq)−
xsk) ∈ U , t ∈ [tq, tq+1) is a feasible solution to Eq. (29) since it satisfies the input constraint of

Eq. (29c) and the constraint of Eq. (29e) by using the equal sign. When x (tq) ∈ Ωρnnk
, as shown in

Proposition 2, the RNN predicted state x̃(t) is maintained within Ωρnnk
within one sampling period.

As a result, the input constraint of Eq. (29c) and the constraint of Eq. (29f) are satisfied using

uk(t) = Φnnk
(x(tq)−xsk) ∈ U , t ∈ [tq, t

out
k ). Additionally, it has been shown in Proposition 3 that the

closed-loop state can enter the stability region Ωρ̂f under the controller uk(t) = Φnnk
(x(tq)− xsk) ∈

U , t ∈ [tink , toutk ), which implies that the constraint of Eq. (29g) is satisfied. Therefore, the RNN-

MPC of Eq. (29) using the initial RNN model is recursively feasible for any state in Ωρ̂k if the

conditions in Propositions 1-3 hold. When Eq. (29b) uses online learning RNN models, it is noted

that the LHS of the contractive constraint of Eq. (29e) uses the updated RNN models while the

RHS of Eq. (29e) still uses the initial RNN model trained offline. Due to the model inconsistency,

there may not exist a feasible solution that satisfies Eq. (29e). Additionally, the constraints of

Eq. (29f) and Eq. (29g) depend on the future states x̃ that are predicted by online learning RNN

models of Eq. (29b). However, as the results in Propositions 2-3 hold only for the controller

uk = Φnnk
(x(tq) − xsk) ∈ U designed using the initial RNN model (see Remark 7), the control

action uk(t) = Φnnk
(x(tq) − xsk) ∈ U may not be a feasible solution to Eq. (29f) and Eq. (29g)

either. Therefore, recursive feasibility of the RNN-MPC of Eq. (29) using online learning RNN

models is no longer guaranteed and a stabilizing controller u = Φnnk
(x(tq) − xsk) will be applied

when the RNN-MPC is infeasible as discussed in the previous section.

Part 2: Next, we discuss closed-loop stability of the nonlinear system of Eq. (1) under the

RNN-MPC of Eq. (29). We first consider the case when Eq. (29) has a feasible solution. For

each switching interval t ∈ [tink , toutk ), if x (tq) ∈ Ωρ̂k\Ωρnnk
at t = tq, the constraint of Eq. (29e) is
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activated such that the value of the Lyapunov function keeps decreasing for each sampling period

with probability at least 1−δ, which implies that the state can converge to Ωρnnk
in a finite number

of sampling times. After the state enters Ωρnnk
, the constraint of Eq. (29f) is activated such that

the predicted state is bounded in Ωρnnk
, and the actual state of the nonlinear system of Eq. (1) can

be maintained in Ωρmink
with a probability at least 1− δ as shown in Proposition 2. Therefore, the

constraints of Eq. (29e) and (29e) guarantee that the closed-loop state moves towards Ωρnnk
without

leaving the stability region Ωρ̂k during the switching interval t ∈ [tink , toutk ) for the mode k. At the

time of the mode transition, t = toutk = tinf , the constraint of Eq. (29g) ensures that the closed-loop

state enters the stability region Ωρ̂f of the subsequent mode f . In the event that Eq. (29) does not

yield a feasible solution, the controller uk(t) = Φnnk
(x(tq)− xsk) obtained by the initial model will

be applied to stabilize the nonlinear system of Eq. (1). It has been proven in Propositions 2-3 that

under uk(t) = Φnnk
(x(tq) − xsk), the closed-loop state x(t) remains inside in Ωρ̂k for t ∈ [tink , toutk )

and enters the stability region Ωρ̂f of the subsequent mode f at t = toutk = tinf .

Part 3: Finally, we discuss recursive feasibility and closed-loop stability of the nonlinear system

of Eq. (1) under the RNN-MPC of Eq. (27). When the nonlinear system of Eq. (1) is operated

in the terminal mode z of after which the switching schedule is terminated. The constraint of of

Eq. (29g) is removed and a fixed prediction horizon N is utilized due to toutk = ∞, and thus, the

RNN-MPC of Eq. (29) reduces to Eq. (27). Therefore, recursive feasibility and closed-loop stability

of the nonlinear system of Eq. (1) under the RNN-MPC of Eq. (27) follow the proof for the RNN-

MPC of Eq. (29). Specifically, when Eq. (27) has a feasible solution, the constraints of Eq. (27e)

and Eq. (27f) guarantee that the closed-loop state is maintained in Ωρ̂z and ultimately converges to

Ωρminz
in probability. However, when Eq. (27) is infeasible, the controller uk(t) = Φnnk

(x(tq)− xsk)

implemented in a sample-and-hold fashion will be used to drive the state towards the steady-state.

In Proposition 2, it has been shown that with a probability at least 1 − δ, the closed-loop state

under uk(t) = Φnnk
(x(tq)−xsk) can be bounded in Ωρ̂z and ultimately maintain it inside Ωρminz

.

Remark 9. In this work, we study the closed-loop performance of the nonlinear system with multiple

steady-states under RNN-MPC, where the system is required to switch between different steady-

states following a prescribed switched schedule. It is noted that while in general, switched systems

are defined as a class of continuous-time systems with discrete switching events that may evolve the

varying system dynamics, the system dynamics of Eq. (1) in this work does not change the between

mode transitions. This assumption on system dynamics allows us to develop a generalization error

bound for online learning RNN models with real-time data drawn i.i.d from the same distribution.

However, it should be pointed out that the stability results derived in this section can be generalized
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to the switched systems with varying dynamics and similar closed-loop stability results can be

developed following16,22 provided that a generalization error bound can be derived for the online

learning models using non-i.i.d samples. The non-i.i.d setting for developing RNN models is beyond

the scope of this study and will be explored in future work.

Remark 10. When the nonlinear system of Eq. (1) is switched between different modes, we consider

the case of a finite switching schedule only and do not require the boundedness of the closed-loop

state in the terminal set Ωρmink
for each mode k ∈ ℓ except for the terminal mode z. Specifically,

while the contractive constraint of Eq. (29e) in our RNN-MPC design of Eq. (29) can drive the

closed-loop state towards Ωρmink
, it is not possible to know how many sampling steps it needs to

drive the state into Ωρmink
beforehand, and whether it can be done within the switching interval

t ∈ [tink , toutk ). Instead we only require that the closed-loop states remain inside in the stability

region Ωρ̂k of the current mode k and enter the stability region Ωρ̂f of the subsequent mode f at

the switching time t = toutk . When the system enters the terminal mode z under the RNN-MPC

of Eq. (27), it has been shown in Theorem 2 that the closed-loop state can ultimately converge to

a small terminal set Ωρminz
. Note that this is different from the MPC scheme in22 that considers

the case of an infinite switching sequence, for which multiple Lyapunov function (MLF) constraints

were used to ensure that the value of the Lyapunov function is less than what it was when the

system was operated in mode k for the last time. Based on the stability conditions of the MLF, the

value of the Lyapunov function decreases all the time such that the closed-loop state can converge

to a small terminal set Ωρmink
for each mode k ∈ ℓ of the switched systems if the number of switches

is infinite.

Remark 11. Due to the lack of sufficient training samples and the limited range of data available

for offline training of the initial RNN model, the stability regions Ωρ̂k , k ∈ ℓ characterized using the

initial RNN model may be conservative for some steady-states. Additionally, since the terminal set

Ωρmink
is developed to ensure the boundedness of states by accounting for the modeling error between

the RNN model and the nonlinear system of Eq. (1), the terminal set may not be sufficiently close to

the steady-state if the generalization error for the initial RNN model is not small. Therefore, through

online learning of RNN models, the generalization performance could be further improved using the

process data around the steady-state. Although the stability region Ωρmink
remains unchanged

for RNN-MPC in this work, closed-loop performance can be improved through online learning by

maintaining the state in a smaller terminal set Ωρmink
with reduced modeling error, which will be

demonstrated using a chemical process example in the next section.
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Application to a Chemical Process Example
In this section, we present a chemical process example to illustrate the application of LMPC using

online learning of RNN models. Specifically, we consider a well-mixed and non-isothermal continu-

ous stirred tank reactor (CSTR) in which an irreversible second-order exothermic reaction A → B

takes place. A and B denote a reactant and a product, respectively. The inlet stream consists of a

pure reactant A at a concentration of CA0, a temperature T0, and a flow rate F . A heating jacket

is used to supply/remove heat from the reactor at a rate Q. The following material and energy

balance equations are used to develop a dynamic model for the CSTR:

dCA

dt
=

F

V
(CA0 − CA)− k0e

−E
RT C2

A,
dT

dt
=

F

V
(T0 − T ) +

−∆H

ρLCp
k0e

−E
RT C2

A +
Q

ρLCpV
(30)

where CA, T , and V denote the concentration of the reactant A, the temperature, and volume of

the reacting liquid in the reactor, respectively. ρL and Cp represent the constant density and the

heat capacity of the reacting liquid, respectively. The enthalpy of the reaction, the pre-exponential

constant, the activation energy, and the ideal gas constant are denoted by ∆H, k0, E, and R,

respectively. Q is the heat input rate. In this example, we consider two steady-states (CAs1 , Ts1) =

(1.22 kmol/m3, 438 K) for mode 1 and (CAs2 , Ts2) = (1.95 kmol/m3, 402 K) for mode 2 under the

steady-state input values (CA0s Qs) = (4 kmol/m3, 0 kJ/hr). The values of the process parameters

can be found in34 and are omitted here. The CSTR is operated in each mode by manipulating

the inlet concentration of species A and the rate of heat input Q. The manipulated inputs are

subject to the constraints given by 0.5 kmol/m3 ≤ CA0 ≤ 7.5 kmol/m3 and |Q| ≤ 5 × 105 kJ/hr.

Therefore, the dynamic model of the CSTR of Eq. (30) can be represented in the form of the

nonlinear system of Eq. (1) with xT = [CA T ] and uT = [CA0 Q], such that the equilibrium points

of the system are given by (xsk , us), where k ∈ ℓ = {1, 2}, i.e., xT
s1

= [1.22 kmol/m3 438 K],

xT
s2
= [1.95 kmol/m3 402 K], and uT

s = [4 kmol/m3 0 kJ/hr]. The control objective is to initially

operate the CSTR in the stability region of mode 1 for all t ∈ [0, tout1 ) and to drive the closed-loop

state into the stability region of mode 2 by the time of switch t = tout1 = tin2 and ultimately stabilize

the CSTR at the unstable equilibrium point xT
s2

= [1.95 kmol/m3 402 K] under RNN-MPC. The

dynamic model of the CSTR of Eq. (30) is numerically integrated using the explicit Euler method

with a sufficiently small integration time step of h̄c = 10−4 hr. The nonlinear optimization problems

of the RNN-MPCs of Eq. (27) and Eq. (29) are solved using PyIpopt (the Python module of the

IPOPT software package29) with the sampling period ∆ = 10−2 hr.
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Data generation
For both modes, we consider quadratic Lyapunov functions Vk(x − xsk) = (x − xsk)

TPk(x − xsk)

designed with the positive definite matrix: P1 = P2 =

[
1060 22
22 0.52

]
. Then, following the con-

struction method in,33 the closed-loop stability regions Ωρk for the CSTR operated in mode k,

k ∈ {1, 2}, are characterized as level sets of the Lyapunov function Vk with ρ1 = 485 and ρ2 = 372,

respectively. We assume that the CSTR is initially operated in a small region (denoted by Ω0 and

marked as a black rectangle in Figure 1) around the steady-state xs1 for safe and stable opera-

tion, where Ω0 :=
{
x ∈ R2 | [1.05 kmol/m3 420 K] ≤ xT ≤ [1.35 kmol/m3 450 K]

}
. Open-loop

simulations are carried out under various initial conditions x0 ∈ Ω0 and manipulated inputs u ∈ U

to generate the dataset for training the initial RNN model, where the control actions are imple-

mented in a sample-and-hold fashion, i.e., u(t) = u (tq) ,∀t ∈ [tq, tq +∆). Each simulation runs

for one sampling period ∆ that includes 100 integration time steps h̄c. Based on the dataset, an

initial RNN model is developed to predict future states for one sampling period with a total of 100

integration time steps using Keras. Specifically, a hidden layer consisting of 16 recurrent units is

designed for the initial RNN model and the tanh function is used as the activation function. After

the initial RNN model is developed, the Lyapunov function V̂k(x−xsk) for the RNN model is set to

be the same as Vk(x− xsk), k ∈ {1, 2}. Based on the method in,33 the closed-loop stability regions

Ωρ̂k for the initial RNN model operated in mode k, k ∈ {1, 2}, are estimated as a level set of the

Lyapunov function V̂k with ρ̂1 = 480 and ρ̂2 = 368, respectively. Additionally, ρnn1 = ρnn2 = 1.6

and ρmin1 = ρmin2 = 2 are determined by conducting extensive simulations for u ∈ U .

Since the initial RNN model is trained using the limited dataset collected from a small region

Ω0 around the steady-state xs1 of mode 1, we will apply the online learning algorithm to update

the RNN models after the CSTR is switched to mode 2 at t = tin2 . In this example, we update the

RNN models using the previous RNN models and the most recent process data collected at every

five sampling periods. It should be noted that the updated RNN model is incorporated into LMPC

to replace the previous RNN models only if the new RNN model satisfies the generalization error

condition; otherwise, the new RNN model is discarded, and the predictive model in LMPC remains

unchanged.

Closed-loop simulation results
We next carry out closed-loop simulations under the following switching schedule: the CSTR is

operated in mode 1 from time t = 0 to t = 0.2 hr, and the CSTR is switched from mode 1

to mode 2 at t = 0.2 hr and to be stabilized at the steady-state xs2 for the remaining time.

We consider the CSTR starting from an initial state that belongs to the stability region Ωρ̂1 of
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mode 1, i.e., xT
0 = [0 kmol/m3 500 K], for which the closed-loop state trajectories, the state and

the manipulated input profiles for the CSTR of Eq. (30) are displayed in Figures 1- 2. Since the

stability region Ωρ̂1 of mode 1 may include physically infeasible initial conditions (i.e., negative

concentration values), the initial conditions should be chosen accounting for physical feasibility.

We first discuss the case when the RNN-MPCs of Eq. (27) and Eq. (29) use the initial offline-

trained RNN model for all times. Figure 1(a) shows that the closed-loop state remains inside

the stability region Ωρ̂1 of mode 1 and ultimately converges to a small neighborhood (denoted by

Ωρmin1
) around the steady-state xs1 for t ∈ [0, 0.2 hr) under the RNN-MPC of Eq. (29) using

the initial RNN model. Additionally, while the closed-loop state enters the stability region Ωρ̂2 of

mode 2 at t = 0.2 hr and remains inside Ωρ̂2 after t = 0.2 hr under the RNN-MPC of Eq. (27)

using the initial RNN model, it cannot converge to a small neighborhood (denoted by Ωρmin2
)

around the steady-state xs2 . It can be seen more clearly from Figure 2(a) that the concentration

CA (top figure) shows an oscillation between the interval [1.62 kmol/m3 1.78 kmol/m3] and the

temperature T (bottom figure) converges to nearly 410 K when the CSTR is operated in mode 2

after t = 0.2 hr, while the CSTR is required to be stabilized within Ωρmin2
around the steady-state

xT
s2
= [1.95 kmol/m3 402K]. Figure 2(b) shows the manipulated input profiles, where the upper and

lower bounds for the constraints of the manipulated input are represented by the dashed horizontal

lines. It is shown that the input constraints are not violated for all times under RNN-MPC using

the initial model. However, it is observed in Figure 2(b) that CA0 (top figure) shows an oscillation

at all times for the CSTR operated in mode 2. It is noted that the initial RNN model is trained

using the dataset Ω0 collected from a small region around xs1 , and thus, the initial RNN model

is able to capture the nonlinear dynamics of the CSTR around xs1 . Therefore, it is not surprising

to see that under RNN-MPC using the initial model, the CSTR is successfully stabilized at Ωρmin1

for mode 1. To further demonstrate why closed-loop stability does not hold for mode 2, Figure 3

shows the prediction error that calculates the squared error between the outputs predicted by the

RNN models and the true outputs measured by the CSTR at every sampling time when the CSTR

is operated in mode 2. It is shown in Figure 3 that the prediction error of the initial RNN model

is considerably large as the closed-loop state moves towards the steady-state xs2 of mode 2, which

implies that the true outputs substantially deviate from the predicted outputs. The poor prediction

of the initial RNN model results in the undesired closed-loop performance of RNN-MPC using the

initial RNN model for mode 2.

We next investigate the case when online learning of RNN models is carried out for the CSTR

operated in mode 2. Specifically, it is shown in Figure 1(b) that the closed-loop state is successfully
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driven into a small neighborhood Ωρmin2
around the steady-state xs2 under the RNN-MPC of Eq. (27)

using online learning RNN models. Additionally, Figure 2 shows that the closed-loop states and

manipulated inputs are stabilized at their steady-states (xs2 , us) under the RNN-MPC of Eq. (27)

using the updated RNN models, while those under the RNN-MPC of Eq. (27) using the initial

RNN model fail to converge to (xs2 , us), showing a considerable oscillation in the state and input

profiles (i.e., CA, CA0). Therefore, the closed-loop performance of the CSTR operated in mode 2

under the RNN-MPC of Eq. (27) is significantly improved via online learning of RNN models.

Similarly, Figure 3 shows the prediction error of the updated RNN models at every sampling time.

Specifically, the online update of RNN models is activated three times at t = 0.25 hr, t = 0.3 hr, and

t = 0.35 hr, respectively, according to the model update strategy that activates an online update

of RNN models every five sampling periods. It is observed in Figure 3 that the prediction error is

identical for both the initial and the updated RNN models from t = 0.2 hr to t = 0.25 hr. It is

demonstrated that the prediction errors of the updated RNN models are always lower than those of

the initial RNN model for the subsequent sampling periods. The gap in the prediction error for the

initial RNN model and the updated RNN models is more apparent after the second update of the

RNN models is activated. Additionally, it is demonstrated in the zoomed graph (top left figure) of

Figure 3 that the prediction error of the updated RNN models gradually decreases and converges

to a sufficiently small number. This declining trend implies that the prediction performance of

updated RNN models is improved as real-time process data is used for online learning.

During the closed-loop simulations, a testing dataset that has not been used in the initial training

stage is used to evaluate the generalization performance of all the RNN models. The obtained testing

errors (MSE) for the initial RNN model, and the three updated RNN models are 4.6676, 0.6186,

0.4814, and 0.1575, respectively, which demonstrates that the generalization performance of the

three online learning RNN models gradually improves and is much better than that of the initial

RNN model. Furthermore, the optimization problem of Eq. (16) with α = 0.6 is performed using

the training errors of the three online learning RNN models to find the optimal weights λτ for each

model hτ , which yields λ1 = 0.0333, λ2 = 0.3334, and λ3 = 0.6333. The final RNN model developed

using an ensemble model h =
∑3

τ=1 λτhτ can be used in MPC for the remaining operation time.

However, if the CSTR is switched to another steady-state at some point in the future and the final

ensemble RNN model does not perform well, an online update of RNN models will be activated

again using real-time process data.

Through comparisons of prediction and testing errors between the initial and three online learn-

ing RNN models, it is demonstrated that the prediction performance of the three online learning
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RNN models significantly outperforms that of the initial RNN model. Additionally, through closed-

loop simulations under RNN-MPC, we have demonstrated that RNN-MPC using online learning

RNN models successfully stabilizes the CSTR in a small neighborhood around the steady-state of

mode 2, which outperforms the RNN-MPC using the initial offline learning RNN model.

Conclusion
This work proposed a Lyapunov-based MPC design with online learning RNN models for nonlinear

systems that transit between their multiple operating regions according to the prescribed switching

times. Specifically, an RNN model was initially developed offline using a limited dataset that was

collected in a small operating region around a certain steady-state, and then an online update

of RNN models was performed using the real-time process data when the nonlinear system was

switched to another operating region following a prescribed switching schedule. The generalization

error bound for online learning models was derived based on the regret bound analysis. Probabilistic

closed-loop stability was developed for the switched nonlinear system under RNN-MPC. A chemical

process example was utilized to demonstrate that the RNN-MPC using online learning RNN models

achieved superior closed-loop performance compared with that using the offline learning RNN model.
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Figure 1: Closed–loop state trajectories for an initial state xT
0 = [0 kmol/m3 500 K] when the

CSTR is operated in mode 1 for t ∈ [0, 0.2 hr) under the RNN-MPC of Eq. (29) (dashed pink
line), and when the CSTR is switched to mode 2 at t = 0.2 hr under the RNN-MPC of Eq. (27)
(solid blue line), (a) using the initial RNN model for both mode 1 and 2, and (b) using the initial
RNN model for mode 1 and online learning RNN models for mode 2.
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Figure 2: (a) Closed–loop state and (b) manipulated input profiles for an initial state xT
0 =

[0 kmol/m3 500 K] when the CSTR is operated in mode 1 for t ∈ [0, 0.2 hr) under the RNN-
MPC of Eq. (29), and when the CSTR is switched to mode 2 at t = 0.2 hr under the RNN-MPC
of Eq. (27), using the initial RNN model for both mode 1 and 2 (dashed line), and using the initial
RNN model for mode 1 and online learning RNN models for mode 2 (solid line).
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Figure 3: Prediction error for each sampling step when the CSTR is switched to mode 2 at t = 0.2 hr
under the RNN-MPC of Eq. (27) using the initial RNN model (marked as blue + ), and the online
learning RNN models (marked as red circle).
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