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Abstract: A dynamical model of echinococcosis transmission with optimal control strate-
gies is presented. The basic reproduction number of the model is obtained and used to study
the stability of the disease-free and endemic equilibrium points. Sensitivity analysis of the
basic reproduction number to the model parameters and control variables is performed. It
finds that the natural death of dogs has a strong impact on the basic reproduction and the
only anthelmintic treatment against echinococcosis does not eliminate the disease. The op-
timal control problem is formulated and solved analytically. Numerical simulations show
that optimal control strategies could effectively eliminate the transmission of echinococco-
sis and the disinfection or cleaning of environment may shorten the time of eliminating the
disease. The cost-effectiveness analysis suggests that a combination of health education and
anthelmintic treatment could provide the best cost-effective strategy to control the trans-
mission of echinococcosis. The findings could be helpful for the prevention and control of
echinococcosis in Ganzi Tibetan Autonomous Prefecture, China and other areas of echinococ-
cosis.

Keywords: Echinococcosis; basic reproduction number; global stability; sensitivity analysis;
optimal control; cost-effectiveness.

1. Introduction

Echinococcosis, often referred to as hydatid disease, is a zoonotic parasitic disease, which
is distributed in most areas of the world and imposes a heavy economic and health bur-
den [1]. The life cycle of Echinococcus granulosus mainly relies on two different types of
hosts: definitive and intermediate. Carnivores, such as dogs, act as definitive hosts while
herbivores, such as sheep and cattle, are usually intermediate hosts. The definitive hosts are
infected through the consumption of viscera of intermediate hosts that contain the parasite
larvae. The parasite larvae develop into the mature tapeworm in the intestine of definitive
hosts. The adult worms release eggs that are passed in the feces of definitive hosts. The
intermediate hosts become infected by ingesting the parasite eggs in contaminated food and
water. The parasite eggs then develop into larval stages in the viscera. Humans act as ac-
cidental intermediate hosts that acquire an infection in the same way as other intermediate
hosts. However, humans are not involved in transmitting the infection to the definitive host
since they do not biologically contribute to perpetuating the parasite’s life cycle. For more
knowledge about echinococcosis, please refer to [1–3].

In [4], a deterministic compartment model that described the transmission of echinococ-
cosis among dogs, livestock, and human populations in Xinjiang was proposed to explore
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effective prevention and control measures. Their results showed that the basic reproduc-
tion number completely determined the dynamics of the model. A sensitivity analysis of
the parameters from the basic reproduction number implied that the health education for
people should be strengthened to reduce the transmission rate between livestock to dogs
and the anthelmintic treatment for infected dogs should be increased through increasing the
frequency of dog anthelmintic. Tang et al. [5] developed a discrete model from [4]. Based
on the model of Wang et al. [4], Li and Teng [6] discussed a delayed stochastic echinococ-
cosis epidemic model. In [7], the impact of dogs’ migration among patches on the spread of
echinococcosis was investigated by a patch model, which showed that the smaller diffusion of
dogs was beneficial for disease control. Liu et al. [8] presented a time-delayed echinococcosis
transmission model. In [9], an echinococcosis epidemic model with distributed delays was
proposed. Xu and Ai [10] investigated the stability and traveling waves of a time-delayed and
diffusive echinococcosis transmission model. Rong et al. [11] studied the special role of stray
dogs and the potential effect of disposing stray dogs on the transmission of echinococcosis.
They emphasized that without disposing of stray dogs, the disease became endemic even if
the domestic dogs were controlled. Zhu et al. [12] explored the dynamics of echinococcosis
transmission among multiple species and put forward that the interaction patterns among
these species played a key role in echinococcosis transmission.

Wu et al. [13] studied the transmission dynamics of echinococcus with human interven-
tion. In their model, the human interventions were considered as the implementation of
deworming echinococcosis eggs and killing wild dogs. Hassan and Munganga [14] considered
a new model for the transmission dynamics of echinococcus multilocularis that assessed the
impact of environment disinfection or cleaning as control strategies on the disease dynamics.
In their paper, the global sensitivity of parameters on the basic reproduction number of the
model showed that the rates of cleaning or disinfecting the environment and rate of treat-
ing red foxes had the most global influence on the basic reproduction number. they further
pointed out that the implementation of either of treatment on red foxes and the cleaning
or disinfecting the environment should not be adequate in eradicating the parasite from the
community and combining the two control strategies was more effective for controlling trans-
mission of disease in the populations. Khan et al. [15] presented a discrete mathematical
framework that describes the transmission dynamics and control measures of echinococcus
multilocularis in foxes. They pointed out that this model should be an accurate and robust
tool to analyze and control the parasite dynamics.

Although some mathematical models have included the prevention and control measures
of echinococcosis(health education [11], anthelmintic treatment [4, 7–9, 11, 14, 16] and disin-
fection or cleaning of environment [13, 14]), there are few models that consider all the three
control measures. Thus, a deterministic compartment model that includes all the three con-
trol measures will be studied. From [4, 11–13], human infection had no effect on the basic
reproduction number. Humans will be not considered in the model framework, since humans
are accidental intermediate hosts in echinococcosis transmission and they are not biologically
contributing to transmitting the infection to the definitive host. In [13], they assumed that
human efforts in deworming echinococcosis eggs and deeply buried dog feces should be propor-
tional to the human population. However, the implementation of deworming echinococcosis
eggs and deep buried dog feces is often planned regularly by the local government and there
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are people hired to carry out such this plan. So, the death rate induced by the disinfection
or cleaning of environment is assumed to be a constant in our model framework, which is
consistent with Hassan and Munganga [14]. Of course, the mortality rate induced by the
disinfection or cleaning of environment can be controlled by adjusting the frequency of the
disinfection or cleaning of environment. Although Hassan and Munganga [14] had shown that
the combined control effect was better than the single one, they did not consider how to make
the integrated control better. Therefore, the optimal control of all the three control measures
will be considered to explore the disease control strategy, which aims to reduce the number
of infected individuals at a lower cost level (see [17–22] for example). furthermore, the cost-
effectiveness analysis will be used to find the best cost-effective strategy (see [17,19,21,23–25]
for example). Hence, to reduce and eliminate the spread of echinococcosis between dogs and
livestock by comprehensive interventions with optimal control will be studied in the following.

In this paper, a mathematical model is proposed to study optimal control analysis of
echinococcosis infection that includes comprehensive interventions (the use of health edu-
cation, anthelmintic treatment, and disinfection or cleaning of environment). A dynamical
model of echinococcosis transmission with controls is formulated in Section 2. Mathematical
analysis of the model is presented in Section 3. The positivity and boundedness of solutions,
equilibrium points, stability analysis, and sensitivity of the basic reproduction number to
parameters and controls in the model are mainly considered. The optimal control problem
is formulated in Section 4. Comparison of different control strategies and cost-effectiveness
analysis are performed in Section 5. A brief conclusion and discussion are given in Section 6.

2. Model Formulation

The definitive host dog population is divided into susceptible Sd(t) and infected Id(t). As
intermediate hosts, the livestock population (mainly sheep and cattle) is decomposed into
susceptible Sl(t) and infected Il(t). The definitive host becomes infected by ingesting the
cyst-containing organs of the infected intermediate host.The intermediate host is infected by
ingesting echinococcosis eggs. The density of echinococcosis eggs that are released in the
feces of infected dogs is denoted by E(t). Since humans are aberrant intermediate hosts and
do not involve in the transmission of echinococcosis, humans as the accident intermediate
hosts are not considered in modeling framework. A schematic diagram for the dynamical
transmission of echinococcus is illustrated in Fig.1. Based on this schematic diagram, it is
established by the following transmission model:

Ṡd = Λd − (1− u1(t))βdSdIl − µdSd + σu2(t)Id,

İd = (1− u1(t))βdSdIl − µdId − σu2(t)Id,

Ṡl = Λl − βlSlE − µlSl,

İl = βlSlE − µlIl,

Ė = γId − µeE − chu3(t)E.

(1)

For the dog population, Λd is the annual recruitment rate of susceptible individuals, µd

represents the natural death rate.σ denotes the recovery rate of infectious dogs due to an-
thelmintic treatment. u2(t) ∈ [0, 1] is the control on the use of anthelmintic treatment.
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(1 − u1)βdSdIl describes the transmission of echinococcosis between susceptible definitive
hosts and infectious intermediate hosts, where u1(t) ∈ [0, 1] is the control on the use of
health education that refers to the imparting of echinococcosis knowledge. For the interme-
diate hosts, Λl represents the annual recruitment rate of susceptible individuals, µl is the
natural death rate, βlSlE depicts the transmission of echinococcosis eggs to intermediate
hosts by ingesting the parasite eggs in the environment. For echinococcus eggs, γ is the re-
leased rate of infectious definitive hosts, ch accounts for the losing rate of echinococcosis eggs
because of disinfection or cleaning of environment. u3(t) ∈ [0, 1] is the control on the use of
disinfection or cleaning of environment. Echinococcosis eggs released by infected dogs could
survive in the surroundings such as dog’s fur, water, vegetables, soil, fomites and pastures
(see [4, 12, 26]) for several weeks, and be assumed to die at a rate µe.
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Fig. 1. Schematic diagram of the transmission dynamics of echinococcus.

3. Model Analysis

Some mathematical analysis results of model (1) can be obtained when all the control
variables are supposed to be constant.

3.1. Positivity and boundary of solutions

Theorem 3.1 (i) The solution of model(1) with positive initial conditions remains positive
for all t > 0.
(ii) All positive solutions of model (1) with positive initial conditions ultimately have the
upper boundary in R5

+.

Proof. (i) Assume that (Sd(t), Id(t), Sl(t), Il(t), E(t)) is a solution of model (1) with positive
initial values. Define

t1 = sup
{
t > 0 : Sd(τ) > 0, Id(τ) > 0, Sl(τ) > 0, Il(τ) > 0, E(τ) > 0}

for all τ ∈ [0, t].
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Since min
{
Sd(0), Id(0), Sl(0), Il(0), E(0)} > 0, then there must be t1 > 0. If t1 < ∞, it

gives
min

{
Sd(t1), Id(t1), Sl(t1), Il(t1), E(t1)} = 0,

and Sd(t) > 0, Id(t) > 0, Sl(t) > 0, Il(t) > 0, E(t) > 0 for all t ∈ [0, t1).
On the other hand, the first equation of model (1) is equivalent to

d

dt

[
Sd exp

(∫ t

0

((1− u1)βdIl + µd) ds

)]
= (Λd + σu2Id) exp

(∫ t

0

((1− u1) βdIl + µd) ds

)
.

Consequently,

Sd(t1) =Sd(0) exp

(
−
∫ t1

0

((1− u1) βdIl + µd) dt

)
+ exp

(
−
∫ t1

0

((1− u1) βdIl + µd) dt

)
×

∫ t1

0

[
(Λd + σu2Id)

(
exp

(∫ t

0

((1− u1) βdIl + µd) ds

))]
dt,

which implies that Sd(t1) > 0. A similar approach could be applied to show that Id(t1) >
0, Sl(t1) > 0, Il(t1) > 0 and E(t1) > 0, which is a contradiction. So, t1 = ∞.

Hence, all solutions of model (1) with positive initial conditions remain positive when
t > 0.

(ii) From the first two equations of model (1), it follows that

d (Sd + Id)

dt
= Λd − µd (Sd + Id) ⩽ Λd − µd (Sd + Id) .

Then lim sup
t→∞

(Sd + Id) ⩽ Λd

µd
.

Therefore, from the last equation of model(1), there is

dE

dt
= γId − (µe + chu3)E ⩽ γΛd

µd

− (µe + chu3)E.

It follows that lim sup
t→∞

E ⩽ γΛd

µd(µe+chu3)
⩽ γΛd

µdµe
.

Considering the third and fourth equations of model (1), it gives

d (Sl + Il)

dt
= Λl − µl (Sl + Il) ⩽ Λl − µl (Sl + Il) ,

which results in lim sup
t→∞

(Sl + Il) ⩽ Λl

µl
.

Let

Ω =

{
(Sd, Id, Sl, Il, E) ∈ R5

+ : Sd + Id ⩽
Λd

µd

, Sl + Il ⩽
Λl

µl

, E ⩽ γΛd

µdµe

}
. (2)

All positive solutions of model (1) with positive initial conditions ultimately turn into
Ω. Thus, the closed set Ω is positively invariant and globally attractive for model (1). This
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completes the proof.

3.2. Equilibrium points and stability analysis

The disease-free equilibrium of model (1) is denoted by

Edfe =
(
S0
d , 0, S

0
l , 0, 0

)
=

(
Λd

µd

, 0,
Λl

µl

, 0, 0

)
.

In the following steps, the concept of next-generation matrix approach [27] will be used
to compute the basic reproduction number R0. Define the matrix of new infection F and
the matrix of transition V as follows

F =

(1− u1)βdSdIl
βlSlE
γId

 , V =

(µd + σu2) Id
µlIl

(µe + chu3)E

 .

Then the Jacobian matrices of F and V at the disease-free equilibrium Edfe are respectively
given by

F =

0 (1−u1)βdΛd

µd
0

0 0 βlΛl

µl

γ 0 0

 , V =

µd + σu2 0 0
0 µl 0
0 0 µe + chu3

 .

Moreover, the spectral radius ρ of FV −1 is the largest eigenvalue with large domain of the
next generation matrix. Therefore, the basic reproduction number of model (1) is obtained
by

R0 = ρ
(
FV −1

)
= 3

√
R0d · R0l · R0e, (3)

where

R0e =
γ

µe + chu3

, R0d =
1

µd + σu2

· Λd

µd

· (1− u1) βd, R0l =
1

µl

· Λl

µl

· βl.

Here, R0e indicates the average number of echinococcosis eggs that might be ingested by
the intermediate host livestock. R0l accounts for the average number of infected livestock
by echinococcosis eggs. R0d represents the average number of infected dogs by infectious
livestock. The third root of (3) is a geometric mean that measures the average change rate
of R0e,R0d and R0l (see [29]). For more ecological and epidemiological significance in (3),
please refer to [4, 13, 27].

Suppose Eee = (S∗
d , I

∗
d , S

∗
l , I

∗
l , E

∗) should be the endemic equilibrium of model (1). Let
all of the right-hand sides of model (1) be zero. Solving these equations, it follows that

S∗
d =

(µd + σu2) I
∗
d

(1− u1)βdI∗l
, I∗d =

µe + chu3

γ
E∗, S∗

l =
Λl

βlE∗ + µl

,

I∗l =
βl

µl

S∗
l E

∗, E∗ =
(µd + σu2)µ

2
l

βl [(µd + σu2)µl + (1− u1)βdΛl]

(
R3

0 − 1
)
.
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Hence, model (1) has a uniquely endemic equilibrium Eee if and only if R0 > 1.

Using the method similar to [4, 11],the following results can be obtained. In Appendix
A, the proof of Theorem 3.2 is in detail presented. Appendix B gives the specific proof of
Theorem 3.3. The concrete proof of Theorem 3.4 can be displayed in Appendix C.

Theorem 3.2 The disease-free equilibrium Edfe is locally asymptotically stable if R0 < 1
and is unstable if R0 > 1.

Theorem 3.3 The disease-free equilibrium Edfe is globally asymptotically stable if R0 < 1.

Theorem 3.4 The uniquely endemic equilibrium Eee of model(1) is globally asymptotically
stable if R0 > 1.

Table 1
Description of parameters of of model (1).

Parameters Interpretation Units Source
Λd Recruitment rate of dogs 21.1× 104 year−1 Estimated
βd Transmission rate from livestock to dogs 5.8× 10−8 year−1 [4]
µd Natural death rate of dogs 0.08 year−1 [4]
σ Recovery rate of infected dogs 0.21 year−1 Estimated

with anthelmintic treatment
Λl Recruitment rate of livestock 54.33× 104 year−1 Estimated
βl Transmission rate from 7.4× 10−8year−1 [4]

echinococcosis eggs to livestock
µl Natural death rate of livestock 0.152 year−1 [11]
γ Released rate from infected dogs 9.7 year−1 [4]
µe Parasite egg mortality rate 1 year−1 [13]
ch Disinfection or cleaning of environment 10 year−1 Assumed

induced parasite egg mortality rate
u1(t) Effectiveness of health education 0− 1 Assumed
u2(t) Effectiveness of anthelmintic treatment 0− 1 Assumed
u3(t) Effectiveness of disinfection or 0− 1 Assumed

cleaning of environment

3.3. Sensitivity of basic reproduction numbers to parameters and controls

Sensitivity analysis of the basic reproduction number to parameters and control variables
is needed to estimate the parameters of model (1). Some of the parameter values in model (1)
are adopted from references (see Table 1). Λd and Λl are estimated by using the data from
Ganzi Tibetan Autonomous Prefecture, Sichuan Province of China, which are respectively
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based on Statistics Bureau of Ganzi Tibetan Autonomous Prefecture [32] and Zou [33]. σ is
computed according to [33]. The death rate of echinococcus eggs due to the behavior of dis-
infection or cleaning of environment cannot be directly measured. The parasite egg mortality
rate induced by disinfection or cleaning of environment is assumed to reach ten times that
of the natural death rate. Λd, βd, µd,Λl, βl,µl, γ, and µe are regarded as random variables.
Each of these random variables takes a normal distribution with the mean value listed in
Table 1 and standard deviation that is assumed to be one-tenth of its mean value. With
2000 runs of Latin hypercube sampling, the frequency distribution of R0 without controls is
shown in Fig.2 (a). It displays that echinococcosis is statistically prevalent when there is no
prevention and control for this disease. The partial rank correlation coefficients (PRCCs) [34]
are computed to analyze the sensitivity of R0 without control measures since the model pa-
rameters may exhibit some uncertainty in determining or selecting experimental data. Fig.2
(b) displays the bar chart of PRCCs. The PRCC value close to +1 or −1 means that there
exists a strong correlation between the input parameters and the outcome measures. The
natural death rate of dogs shown in Fig.2 (b) has the greatest influence on the basic repro-
duction number. It agrees with that removal or reduction in worm biomass in definitive hosts
(usually dogs) will have the greatest and quickest effect to reduce active transmission [35].
It should be emphasized that the parameters with large PRCC values (> 0.5 or < −0.5) as
well as corresponding small p-values are the most important [34]. Fig.2(b) shows that each
of the parameters Λd, βd, µd,Λl, βl,µl, γ, and µe is very important for the basic reproduction
number R0 without control measures.

To assess the impact of control measures on the basic reproduction number R0, nu-
merical experiments are implemented by varying the effectiveness of health education (u1),
anthelmintic treatment(u2) and disinfection or cleaning of environment (u3) ranging from 0 to
1. Fig.3 shows that the basic reproduction number R0 is considered as a function of u1, u2, u3,
respectively. With the use of control measures strengthened, R0 tends to get smaller. It is
worth noting that R0 is the most sensitive to u1 than u2 and u3, which could decrease to
below the critical threshold unity along with u1 increasing. Conversely, as u2 increases, R0

cannot decrease to below the critical threshold. When u3 increases, R0 cannot attain its crit-
ical value. This suggests that health education should be a very effective preventive against
transmission of echinococcosis. Meanwhile, disinfection or cleaning of environment has the
greatest impact on R0 when u1, u2, and u3 change on the left side of point B. By contrast,
health education has the slowest control effectiveness when u1, u2 and u3 vary on the left side
of point A. It motivates me to find the optimal solutions for all the controls.

4. Optimal control

To achieve the optimal control strategy, an objective functional is defined as follows:

J(u1, u2, u3) =

∫ tf

0

[
Id + Il + E +

1

2

(
k1u

2
1 + k2u

2
2 + k3u

2
3

)]
dt, (4)

subject to the state system (1). k1, k2 and k3 represent the weight constants on the benefit
and cost. k1u2

1

2
,
k2u2

2

2
, and k3u2

3

2
denote costs of health education, anthelmintic treatment and
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Fig. 2. (a) Frequency distribution of the basic reproduction number R0 without control mea-
sures. (b) Partial rank correlation coefficients of the basic reproduction number R0 without control
measures. Parameters with a PRCC significantly p < 0.005 are indicated with (*).
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disinfection or cleaning of environment,respectively.

The goal of optimal control is to determine a control set that minimizes the infected
dogs, the infected livestock and parasite eggs when minimizing the control costs. Assume
that U = {(u1, u2, u3) : 0 ⩽ ui(t) ⩽ 1, t ∈ [0, tf ], i = 1, 2, 3} is a measurable control set. Then
there is a need to find the optimal controls u∗

1, u
∗
2 and u∗

3 satisfying

J(u∗
1, u

∗
2, u

∗
3) = min {J(u1, u2, u3) : (u1, u2, u3) ∈ U} . (5)

Pontryagin’s Maximum Principle [36] is used to deduce the necessary conditions that de-
termine the optimal controls u∗

1, u
∗
2 and u∗

3 satisfying condition (5) with constraint model
(1). This principle transforms the optimal control problem into minimizing the Hamiltonian
function that represents

H = Id + Il + E +
1

2

(
k1u

2
1 + k2u

2
2 + k3u

2
3

)
+

5∑
i=1

λifi, (6)

with fi, i = 1, 2, 3, 4, 5 denoting the right-hand sides of model (1). λi, i = 1, 2, 3, 4, 5 are the
adjoint variables that satisfy the following co-state system:

λ̇1 = − ∂H
∂Sd

= λ1

[
(1− u1)βdIl + µd

]
− λ2(1− u1)βdIl,

λ̇2 = − ∂H
∂Id

= −1− λ1σu2 + λ2(µd + σu2)− λ5γ,

λ̇3 = − ∂H
∂Sl

= λ3(βlE + µl)− λ4βlE,

λ̇4 = −∂H
∂Il

= −1 + λ1(1− u1)βdSd − λ2(1− u1)βdSd + λ4µl,

λ̇5 = −∂H
∂E

= −1 + λ3βlSl − λ4βlSl + λ5(µe + chu3),

(7)

with boundary conditions λi(tf ) = 0, i = 1, 2, 3, 4, 5. Additionally, the optimality conditions
∂H
∂ui

= 0, i = 1, 2, 3 yield the optimal controls:

u∗
i = min {1,max {0, uc

i}} , i = 1, 2, 3, (8)

where
uc
1 =

βdSdIl(λ2 − λ1)

k1
, uc

2 =
σId(λ2 − λ1)

k2
, uc

3 =
λ5chE

k3
. (9)

5. Comparison of different control strategies and cost-effectiveness analysis

5.1. Comparison of different control strategies

To study the effectiveness of optimal control, numerical simulations of different optimal
controls scenarios are presented. The forward-backward sweep method [36] is used to find the
numerical solutions of the optimality system. The state system (1) is solved numerically by
Matlab (ode45 solver). The initial condition is assumed to be taken as Sd(0) = 1.686× 105,
Id(0) = 4× 104, Sl(0) = 3.335× 106, Il(0) = 5× 105, and E(0) = 2× 107, where Sd(0) can be
estimated from [32] and Sl(0) can be estimated from [33]. The other initial values of model
(1) are assumed. The backward Runge-Kutta scheme is implemented to solve the co-state
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Fig. 4. Simulations depicting the effect of health education and anthelmintic treatment only on
the transmission of echinococcosis.

system (7) with boundary conditions. The control variables (8) are updated by substituting
the state and adjoint values until the current state, the adjoint and the control values are
sufficiently close. It is the fact that the cost of anthelmintic treatment is more expensive than
disinfection or cleaning of environment, while the cost of health education is cheaper than
disinfection or cleaning of environment. So, the weighting constants are taken as k1 = 50,
k2 = 90 and k3 = 70. All other parameters are listed in Table 1. In particular, the four
control strategies: Strategy A(Health education and anthelmintic treatment), Strategy
B(Health education and disinfection or cleaning of environment), Strategy C(anthelmintic
treatment and disinfection or cleaning of environment), and Strategy D(Health education,
anthelmintic treatment, and disinfection or cleaning of environment) will be considered in
the following.

For Strategy A, the health education control u1 and the anthelmintic treatment control
u2 are utilized to optimize the objective functional (6) while the disinfection or cleaning of
environment control is not used, i.e.,u3 = 0. Fig.4(a) displays the control profiles of u∗

1 and
u∗
2. The health education (blue dash-dot line in Fig.4(a)) should be executed 100% for al-

most 63 years and thereafter, the control effort oscillates till the 86th year and then finally
decreases gradually to zero in 14 years. Meanwhile, the anthelmintic treatment (red dotted
line inFig.4(a)) keeps a 100% use for 20 years and then declines to a lower level. Thereafter,
the control effort u∗

2 oscillates till the 95th year and finally decreases to zero in 5 years. Re-
markably, the control effort u∗

1 in the oscillation mode decreases (increases) while the control
effort u∗

2 almost increases (decreases). This is anticipated because when the control effort u∗
1

is reduced, the control effort u∗
2 should be increased, and vice versa. Fig.4(b-d) show that the
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Fig. 5. Simulations depicting the effect of health education and disinfection or cleaning of envi-
ronment only on transmission of echinococcosis.

number of infected dogs, infected livestock and echinococcosis eggs under Strategy A (blue
dash-dot line) is significantly reduced to a lower level compared to the outputs of running
model (1) without controls (red dotted line).

For Strategy B, the health education control u1 and the disinfection or cleaning of envi-
ronment control u3 are utilized to optimize the objective function (6) while the anthelmintic
treatment control u2 is not used, i.e., u2 = 0. Fig.5(a) displays the control profiles of u∗

1 and
u∗
3. The health education (blue dash-dot line in Fig.5(a)) should be done 100% intensively

for almost 67 years and then the control effort is gradually decreased till the end of the
intervention. Meanwhile, the disinfection or cleaning of environment control (green dashed
line in Fig.5(a)) keeps a 100% use for almost 100 years and then declines to zero in the 100th
year. It follows from Fig.5(b-d) that there is a significant difference among the number of
infected dogs, infected livestock and echinococcosis eggs between the controlled cases (blue
dash-dot line) and the cases without control (red dotted line).

For Strategy C, the anthelmintic treatment control u2 and the disinfection or cleaning of
environment control u3 are utilized to optimize the objective function (6) while the health
education control u1 is not used, i.e., u1 = 0. Fig.6(a) displays the control profiles of u∗

2 and
u∗
3. The anthelmintic treatment (red dotted line in Fig.6(a)) should be kept a 100% use for

almost 96 years and then declines gradually till the end of this intervention. The control
effort u∗

3 needs to be kept a 100% use for almost 100 years and then declines to zero in the
100th year. It’s based on the fact that the anthelmintic treatment control aims to reduce the
number of infected dogs and then echinococcus eggs could be reduced. Fig.6(b-d) depict that

12



a combination of u∗
2 and u∗

3 has a significant difference for reducing the number of infected
dogs, infected livestock and echinococcosis eggs (blue dash-dot line) than the cases without
control (red dotted line).

For Strategy D, the health education control u1, the anthelmintic treatment control u2

and the disinfection or cleaning of environment control u3 are implemented simultaneously
to optimize the objective function (6). The optimal controls are displayed in Fig.7(a). The
health education (blue dash-dot line in Fig.7(a)) should be done 100% intensively for almost
52 years and then declines gradually till the end of this intervention. While the anthelmintic
treatment (red dotted line in Fig.7(a)) needs to be kept a 100% use for 17 years and then
decrease to a lower level until the 52nd year. Thereafter, the control effort u∗

2 increases from
1.03% in the 52nd year to 15.94% in the 68th year and then finally decreases gradually to
zero in 32 years. Meanwhile, the disinfection or cleaning of environment control effort u∗

3

(green dashed line in Fig.7(a)) should be done 100% intensively for almost 27 years and
then declines to 25.22% in the 52nd year. Thereafter, the control effort u∗

3 increases to an
almost 100% use in the 60th year and keep 100% until the 97th year. After that u∗

3 finally
decreases gradually to zero until the end of this intervention. It can be observed in Fig.7(b-d)
that Strategy D (blue dash-dot line) provides a significant reduction in infected dogs, infected
livestock and echinococcosis eggs compared to the scenario without controls (red dotted line).

Table 2
Benefits and costs of different optimal control strategies.

Strategy Total infection Total cost ICER relative to ICER relative to
averted No control next best strategy

No control 0 0 - -
Strategy A 4.3626× 108 6.3535× 103 1.4564× 10−5 2.2961× 10−4

Strategy B 4.5234× 108 1.0629× 104 2.3637× 10−5 Dominated
Strategy C 4.4443× 108 1.5798× 104 3.5547× 10−5 Dominated
Strategy D 4.5323× 108 1.0250× 104 2.2614× 10−5 Dominated

5.2. Cost-effectiveness analysis

To identify the best cost-effective strategy, it needs to compare all control strategies.
Cost-effectiveness analysis can quantify and compare the benefits and the costs with dif-
ferent control measures. Consequently, the most appropriate strategy can be further de-
termined to be implemented according to the cost-effectiveness analysis. The incremental
cost-effectiveness ratio (ICER) stated by Buonomo and Marca [17,24] is used to perform the
cost-effectiveness analysis for different control measures.

∫ tf
0

∑3
i=1 kiu

2
i dt is supposed to rep-

resent the total cost. The total infection averted is considered as
∫ tf
0

[
(Id− I∗d)+ (Il− I∗l )

]
dt,

where I∗d and I∗l denote the optimal solutions associated with the corresponding strategy.

If there is no control, both the total infection averted and the cost will be equal to be
zero. The cost-effectiveness of strategy A and B will be first compared. Then the ICERs are
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Fig. 6. Simulations depicting the effect of anthelmintic treatment and disinfection or cleaning of
environment only on transmission of echinococcosis.
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Fig. 7. Simulations depicting the effect of health education, anthelmintic treatment and disinfection
or cleaning of environment on transmission of echinococcosis.
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computed by

ICER(A) =6.3535× 103

4.3626× 108
≈ 1.4564× 10−5,

ICER(B) =1.0629× 104 − 6.3535× 103

4.5234× 108 − 4.3626× 108
≈ 2.6589× 10−4.

From ICER(A) and ICER(B), Strategy A saves 2.6589×10−4 than Strategy B. So, Strat-
egy B is dominated by Strategy A, i.e., Strategy B is more costly and less effective than
Strategy A. Similarly, it could be computed from Table 2 that Strategy C is dominated by
Strategy A and Strategy D is dominated by Strategy A. As is clear, Strategy A (a combina-
tion of health education and anthelmintic treatment) is deduced to be the best cost-effective
of all the control strategies. It can be shown in a similar way that Strategy D is the next best
cost-effective strategy, followed by Strategy C. Strategy B is the least cost-effective strategy.

6. Conclusion and disccusion

In this paper, an echinococcosis transmission model with the intervention of health edu-
cation, anthelmintic treatment, and disinfection or cleaning of environment is formulated and
analyzed. The basic reproduction number R0 is obtained by using the next-generation matrix
method [27]. When R0 < 1, the disease-free equilibrium is globally asymptotically stable,
i.e., this disease will be extinction. Conversely, when R0 > 1, the disease-free equilibrium is
unstable and the endemic equilibrium is globally asymptotically stable, i.e., this disease will
persist at that point and be endemic. Fig.2(a) shows that if there is no prevention and control
for echinococcosis transmission, this disease will be endemic in Ganzi Tibetan Autonomous
Prefecture. Although in the western China Echinococcosis Control Programme is working by
the dog-dosing frequency monthly, however, this is very difficult to achieve especially in scat-
tered semi-nomadic remote communities [35]. If the monthly deworming for all dogs in the
control of echinococcus infection is only carried out, it can be observed from Fig.3 that in this
case this disease is still prevalent. The anthelmintic treatment against echinococcosis does
not eliminate the infection and most of the time when the treatments cease there is a rebound
in the infection (see [35] for example). Thus, it is difficult to eliminate echinococcosis by only
using the anthelmintic treatment. Instead, the comprehensive interventions (health educa-
tion, anthelmintic treatment, and disinfection or cleaning of environment ) are put into effect.

To effectively control the spread of echinococcosis, an optimal control problem is formu-
lated and solved. Figs.4-7 display that each of Strategies A, B, C and D could reduce the
number of infected dogs, infected livestock and echinococcus eggs to a low level. By consider-
ing the decline rate of infected livestock and echinococcosis eggs in Figs.4-7, Strategy A takes
the longest time to reduce the number of infected dogs, infected livestock and echinococcus
eggs to a low level. Therefore, u3 (disinfection or cleaning of environment) may be critical for
the time of eliminating the disease. The cost-effectiveness analysis has shown that Strategy
A is the best cost-effective of all the control strategies. However, to eradicate echinococcosis,
the total number of averted infections may be more convincing than ICERs. It could be
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observed from Table 2 that Strategy D has the most total infection averted among all control
strategies and Strategy A has by contrary the least total infection averted. If the budget is
sufficient, Strategy D will be the best choice.

This work highlights the following facts: (a) The only anthelmintic treatment against
echinococcosis does not eliminate the infection; (b) The disinfection or cleaning of environ-
ment may reduce the time of eliminating the disease; (c) The control policy implementing
either of the scenarios presented in this paper could eliminate this disease. Nevertheless, the
system studied has some limitations. The life cycle of the parasite is not fully considered.
Roberts et al. [37–40] pointed out that the life cycle of the parasite would be important
for the model framework of echinococcosis transmission. In [35], they emphasized that the
home slaughter inspection should be a key control measure to reduce the transmission of
echinococcosis between dogs and livestock. Besides, although humans are dead-end hosts
of an animal-centered parasite life cycle, human behaviors seriously affect the spread of
echinococcosis. In the future work, the roles of the life cycle of the parasite, home slaughter
inspection and human behaviors on the echinococcosis transmission dynamics will be dis-
cussed. Since Shiqu County in Ganzi Tibetan Autonomous Prefecture has an extremely high
prevalence, the findings are expected to be helpful for prevention and control of echinococ-
cosis and significantly reduce the infection rate of echinococcosis in Shiqu County.
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Appendix A. Proof of Theorem 3.2

The Jacobian matrix of model (1) evaluated at the disease-free equilibrium Edfe is given
by

J0 =


−µd σu2 0 − (1−u1)βdΛd

µd
0

0 − (µd + σu2) 0 (1−u1)βdΛd

µd
0

0 0 −µl 0 −βlΛl

µl

0 0 0 −µl
βlΛl

µl

0 γ 0 0 − (µe + chu3)

 .

Then the characteristic polynomial of J0 is

P (λ) = (λ+ µd) (λ+ µl)
(
λ3 + a2λ

2 + a1λ+ a0
)
,

where

a0 =µl (µd + σu2) (µe + chu3)
(
1− R3

0

)
,

a1 =µl (µd + σu2) + (µd + σu2) (µe + chu3) + µl (µe + chu3) ,

a2 =µl + (µd + σu2) + (µe + chu3) .

(A.1)
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Let Q(λ) = λ3+a2λ
2+a1λ+a0. It is evident from (A.1)that there are a1 > 0 and a2 > 0.

If R0 < 1, then a0 > 0. Furthermore,

a1a2 − a0 = [µl + (µd + σu2)]
[
a1 + (µe + chu3)

2
]
+ µl(µd + σu2)(µe + chu3)R

3
0 > 0.

Using Routh–Hurwitz conditions [28], all roots of Q(λ) have negative real parts. Then
it is clear that all roots of P (λ) are also negative real parts0. Therefore, the disease-free
equilibrium Edfe is locally asymptotically stable when R0 < 1. By contrary, Q(0) = a0 < 0
if R0 > 1. Since lim

λ→+∞
Q(λ) = +∞, there must be a positive root of Q(λ) from the Interme-

diate Value Theorem. So, Edfe is unstable if R0 > 1.

Appendix B. Proof of Theorem 3.3

Assume that (Sd(t), Id(t), Sl(t), Il(t), E(t)) is a solution of model (1) in Ω. Then it implies
that Id(t) ⩽ Λd

µd
, Il(t) ⩽ Λl

µl
for all t ⩾ 0. Consider a Lyapunov function defined by

L (Id, Il, E) = Id +
(1− u1)βdΛd

µdµl

Il +
µd + σu2

γ
E.

By computing the derivative of L along with the solutions of model (1), it leads to

dL
dt

=İd +
(1− u1)βdΛd

µdµl

İl +
µd + σu2

γ
Ė

=

(
(1− u1)βdSd −

(1− u1)βdΛd

µd

)
Il

+

(
(1− u1)βdβlΛd

µdµl

Sl −
µd + σu2

γ
(µe + chu3)

)
E

⩽
(
(1− u1)βdβlΛd

µdµl

Λl

µl

− µd + σu2

γ
(µe + chu3)

)
E

=
µd + σu2

γ
(µe + chu3)

(
R3

0 − 1
)
E.

So that L̇ < 0 if R0 < 1, E > 0. Furthermore, L̇ = 0 when R0 < 1, and E = 0. As a
consequence, the only invariant set satisfying L̇ = 0 is the singleton Edfe when R0 < 1. By
Lasalle’s invariance principle [30], the disease-free equilibrium Edfe is globally asymptotically
stable if R0 < 1.

Appendix C. Proof of Theorem 3.4

Since Ṡd+İd = Λd−µd (Sd + Id), Ṡl+İl = Λl−µl (Sl + Il), it suggests that lim
t→∞

(Sd + Id) =
Λd

µd
, lim
t→∞

(Sl + Il) =
Λl

µl
. So that the long-term dynamical behaviors of Sd(t) and Sl(t) can be

represented by Λd

µd
− Id(t) and Λl

µl
− Il(t), respectively. Consider the subsystem of model (1)
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as follows: 
İd = (1− u1)βdSdIl − µdId − σu2Id,

İl = βlSlE − µlIl,

Ė = γId − µeE − chu3E.

(C.1)

Let
∆ =

{
(Id, Il, E) ∈ R3

+ : Id ⩽
Λd

µd

, Il ⩽
Λl

µl

, E ⩽ γΛd

µdµe

}
.

The dynamics of model (C.1) could be focused on this region ∆ because Ω is positively
invariant for model (1). To study the global stability of model (C.1) at (I∗d , I

∗
l , E

∗), the
method in [31] is adopted. Define

h(v) =

h1 (v1, v2, v3)
h2 (v1, v2, v3)
h3 (v1, v2, v3)

 =


− (µd + σu2) v1 + (1− u1)βd

(
Λd

µd
− v1

)
v2

−µlv2 + βl

(
Λl

µl
− v2

)
v3

− (µe + chu3) v3 + γv1

 .

Then h : R3
+ 7→ R3

+ is a continuously differential map. It thus leads to h(0) = 0,and
hi(v) ⩾ 0, i = 1, 2, 3 for all v ∈ ∆ when vi = 0. Furthermore, there is ∂hi

∂vj
⩾ 0, i ̸= j for

v ∈ ∆. So, h is cooperative on ∆.
For p ∈ (0, 1) and v ∈ ∆, it follows that

h1 (pv1, pv2, pv3) =− (µd + σu2) pv1 + (1− u1)βd

(
Λd

µd

− pv1

)
pv2

⩾− (µd + σu2) pv1 + (1− u1)βd

(
Λd

µd

− v1

)
pv2

=ph1 (v1, v2, v3) .

Similarly, it is found that hi (pv1, pv2, pv3) ⩾ phi (v1, v2, v3) , i = 2, 3. Hence, h is strictly
sublinear on ∆.

By calculating Dh(v) =
(

∂hi

∂vj

) ∣∣
1≤i,j⩽3

, it gives rise to

Dh(v) =


− (µd + σu2)− (1− u1)βdv2 (1− u1)βd

(
Λd

µd
− v1

)
0

0 −µl − βlv3 βl

(
Λl

µl
− v2

)
γ 0 − (µe + chu3)

 .

Then Dh(v) is irreducible on v ∈ ∆ because |Dh(v)| ̸= 0. A straightforward computation
shows that

Dh(0) =

− (µd + σu2) (1− u1)βd
Λd

µd
0

0 −µl βl
Λl

µl

γ 0 − (µe + chu3)

 .

Therefore, the characteristic polynomial of Dh(0) is

Q(λ) = λ3 + a2λ
2 + a1λ+ a0,
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where a0, a1 and a2 are known from (A.1). Then a0 < 0 when R0 > 1. According to the proof
process of Theorem 3.3, there must exist a positive root of Q(λ). So, s(Dh(0)) = max{Reλ :
Q(λ)} > 0.

From Corollary 3.2 in [31], it could be concluded that the positive equilibrium point
(I∗d , I

∗
l , E

∗) of model (C.1) is globally asymptotically stable. Hence, it is further obtained
that the endemic equilibrium Eee of model (1) is globally asymptotically stable.
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