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Abstract

In the paper, we consider the penalty finite element methods (FEMs) for the stationary
Smagorinsky model. Firstly, a one-grid penalty FEM is proposed and analyzed. Since this
method is nonlinear, a novel linearized iteration scheme is derived for solving it. We also derived
the stability and convergence of numerical solutions for this iteration scheme. Furthermore, a
two-grid penalty FEM is developed for Smagorinsky model. Under ¢ << h, this method consist of
solving a nonlinear Smagorinsky model by the one-grid penalty FEM with the proposed linearized
iteration scheme on a coarse mesh with mesh width H, and then solving a linearized Smagorinsky
model based on the Newton iteration on a fine mesh with mesh width h = O(H?), respectively.
Stability and error estimates of numerical solutions for two-grid penalty FEM are presented.
Finally, some numerical tests are provided to confirm the theoretical analysis and the effectiveness
of the developed methods.
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1 Introduction

In this paper, we consider the penalty FEMs for the stationary Smagorinsky model

— Re 'Au—V - ((Cs0)*|Vu|Vu) + (u-V)u+ Vp=f inQ, (1a)
V-u=0 in €, (1b)
u=0 on 0. (1c)

where Q € R? (d=2 or 3) is a bounded and regular domain with a Lipschitz continuous bound-

ary 0€), u represents the velocity, p the pressure, f the spatially filtered forcing term, Cg the
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Smagorinsky constant, ¢ the radius of the spatial filter radius employed in large eddy simulation
(LES), |o| = \/szzl |oij|? the Frobenius norm of the tensor o and Re the Reynolds number
which is defined as Re = UL/v, where U, L and v represent the characteristic velocity, length
and the viscosity of fluid, respectively.

Nowadays, numerical simulation of turbulence is one of the most important but challenging
research topics in computational fluid dynamics since it is widely used in engineering and envi-
ronmental fields. The Smagorinsky model [1-5] is one of the most popular large eddy simulation
(LES) models [6-10]. This model has been widely used in many application fields, such as gas
dynamics [11] and geophysical flow [1]. The analysis of the model (1) can be found in [2,3], and we
can see [8-10] for the challenging simulations. Comparing the classical Navier-Stokes equations,
it is added an artificial viscosity term —V - ((C6)?|Vu|Vu), which induces the dissipated energy
in the large scale structures at the same rate as the discarded small scale structures in model (1).

In the last decades, more and more studies have been attracted for the numerical methods of
the Smagorinsky model (1). Among the studies, finite element method (FEM) is one of the most
popular methods. For example, in [5], the authors applied a two-level FEM to the Smagorinsky
model, in which a nonlinear problem was solved on the coarse mesh firstly and then solve a
Newton linearization problem on the fine mesh. In [12], the authors combined the lowest equal-
order stabilized FEM with the two-level Newton iteration to solve the steady Smagorinsky model.
In [13], the stabilized FEM based on Gaussian quadrature rule is used to penalize the instability
induced by the domination of convection term in the Smagorinsky model for simulating large
Reynolds numbers. In [14], three iterative stabilized FEMs for the Smagorinsky model were
proposed and analyzed. In [15], a low order nonconforming mixed FEM for the Smagorinsky
model was studied. In [16], a two-step stabilized FEM for solving the Smagorinsky model was
established.

Two-grid method is an efficient numerical scheme for the nonlinear partial differential equa-
tions, this method was pioneered by Marion and Xu [17-19]. The basic idea is to solve a nonlinear
problem on a very coarse mesh, and then solve one linearized system on a fine mesh. It is a good
strategy to reduce computing costs. So, two-grid method has been massively studied in recent
years. For example, we can refer to [20-26] for the research of the incompressible flow. Another
main difficulty is that velocity and pressure are coupled, while the penalty method is an effective
method to overcome this difficulty. There are more and more researches devoted to study the
penalty method in different problems. For example, we can refer to [27] for the pure Neumann
problem, [28,29] for the Stokes equations, and [30-37] for the Navier-Stokes equations. From
above literature, we know that combining two-grid method and penalty method is quite efficient
for the nonlinear and multi-physical quantity coupling problem. In this paper, we consider the
two-grid penalty FEMs for solving the Smagorinsky model (1). Setting the penalty parameter
0 < e << 1 as a real number. Firstly, a one-grid penalty FEM and the corresponding linearized
iteration scheme are proposed and analyzed. Furthermore, we develop a two-grid penalty FEM
for solving the Smagorinsky model, which consists of solving a nonlinear Smagorinsky model by
the one-grid penalty FEM with the proposed linearized iteration scheme on a coarse mesh with
mesh width H, and then solving a linearized Smagorinsky model based on the Newton iteration
on a fine mesh with mesh width h = O(H?), respectively. Stability and error estimates of nu-

merical solutions for two-grid penalty FEM are derived. Some numerical tests are provided to



confirm the theoretical analysis and the effectiveness of the proposed methods.

The rest of the article is organized as follows. In the next section, some basic statements
are provide. In Section 3, a two-grid penalty FEM for the Smagorinsky model is proposed
and analyzed. Meanwhile, a one-grid penalty FEM and the corresponding linearized iteration
scheme are also given out and analyzed. The numerical experiments are presented to validate
the theoretical predictions and the efficiency of the proposed method in Section 4. Finally, we

conclude the article.

2 Mathematical preliminaries

We first generalize some notations, definitions and preliminary lemmas which will be used
in the analysis. Let W*P(Q) and Wg’p(Q) (k€ N, 1 <p < +400) denote the standard Sobolev
spaces [38]. The norm and seminorm on W*?(Q) are denoted by || - ||, and | - |k, respectively.
The space H*(Q) is the standard Hilbertian Sobolev space of order k with norm | - [|z. All other
norms will be clearly labeled. The inner product and norm in L?(§2) are denoted by (-, -) and || - ||,
respectively. In addition, the vector spaces and vector functions will be indicated by boldface type
letters, e.g., the spaces H*(Q), W*P(Q) and LP(f2) represent the vector Sobolev spaces H* ()%,
WkP(Q)4 and LP(Q)?, respectively.

We introduce the following Sobolev spaces:

X := W(Q) = {ve W"3(Q) : v=0on 00},
V:=H}(Q) = {veH(Q):v=0o0n0Q},

Q:=L3N) = {qe L*(9) : / gdz =0}.
Q

Due to X C V, the weak formulation of the Smagorinsky model (1) is given by: Find (u,p) €
(X, Q) satisfying for all (v, q) € (X, Q)

a(u V) + (055)2(|Vu]Vu, V’U) + b(uv u, V) - d(pa V) = (f> V)a

’ 2
d(g,u) =0, @)

where
a(u,v) = Re_l/ Vu:Vvdx Vu,velX,
Q
d(p,v) = / pdivvdx VveX, peq,
Q
1
b(u,v,w) = /(u-V)v-wdx—i— 2/(V -u)v - wdx
Q Q

1 1
:/(u-V)v-de—/(u-V)w-de Vu,v,w € X,
2 Ja 2 Ja

with Vu: Vv =37, Ju. ov.

Define the following divergence-free function spaces:

Vo= {veH}Q):V-v=0}, Xg:={veW*Q):V-v=0}



An equivalent weak formulation of the Smagorinsky model (1) reads as follows: Find u € X

satisfying for all v € X
a(u,v) + (Cs6)?(|Vu|Vu, Vo) + b(u,u,v) = (f,v). (3)

Following [5], the following three finite quantities are defined by

(£, v)] . Vv
. Y3 = -
Vi3 vex |V]i3

f,v
6= sup S0 e = sup
veni@) V]| vex |

It is easy to verify that the the trilinear b(-,-,-) has the following properties [42]:

b(u,v,w) = —=b(u,w,v) VYu,v,w eV, (4)
and
b(w, v, w)| < N[[Vul[[Vv[[[[Vw] Vu,v,w eV, ()
where b, v, w)|
N = sup

uvwev [Vull[[VV[[[[Vw(
We will use the following strong monotonicity and Lipschitz continuity of the r-Laplacian

[5,39]:

Lemma 2.1 For all uy,us,v € W7 (Q), there exists a generic constant Cy depending on d, r

and 2, but not on uy, uy or v, such that the following inequalities hold:

(!Vul\T_QVul, V(u1 — UQ)) — (‘VUQ‘T_QVUQ7V(U1 — UQ)) Z 01HV<111 — UQ)
(|VU.1|T72V111, VV) — (|Vu2\”*2Vug, VV) < C’lMHV(ul — U_Q)HOJ» ‘VVHU,T’?

‘7"
0,r>

where M = max{HVung;Q, HVUQHS;Q}.

Then we recall the well-posedness of the solution for the problem (3) in the following lemma
[2,4,5]:

Lemma 2.2 There exists a weak solution u € X to problem (8) satisfying
_ 1/2
ulys < (Cs8)£]L5,

[Val < ¥(f]l),

where W is defined as the inverse function of ® : (0,+00) — R:

®(x) := Re 'z + (Cg8)?y3 222, (6)
Furthermore, if the following inequality holds,

NU(|[f]+) < Re™ 1, (7)

then the problem (8) has a unique solution.



Next, we recall the strong monotonicity, for all u,v,w € X, we define
(F(u),v) = (Cs0)*(|Vu|Vu, Vv).
Then F is strongly monotone and satisfies the following property [5,39]:
(F'(w)u,u) >0, (8)

where

/ <[VW : Vuj

(F (w)u,v) = (Cs0)*(|Vw|Vu, Vv) + (Cs6)? Vvl Vw, Vv>.

Let 7, = {Q,} is a quasi-uniform family of triangular partition of Q with mesh size . The
real parameter p > 0 takes h or H (h < H) tending to 0. We take the fine grid partition 7,
as a mesh refinement generated from the coarse grid 7. Define the following conforming finite

element subspaces of X and @), respectively, by

W,u = {Vﬂ S C(Q) : Vu‘K S PQ(K),VK € Th},
V,=W,NV, X,=W,nX,

Qu=19.€C) : qu|lx € PI(K),VK € 1,} N Q,

where P.(K) (r = 1,2) is the space of the r-th order polynomial on K. With the choices of the
finite element spaces (V,, Q,), we know that the spaces (V,,Q,,) is a pair of conforming finite
element space which satisfy the discrete inf-sup condition [43,44], i.e., there exists a constant
B > 0 independent of u such that

,V‘
inf sup U
0 €Quvy,ev, [9ulll Vvl

> B. (9)
The discrete divergence-free function spaces is defined as:
Vou :={v, € X, :(qn,V-v,) =0Vq, € Mp}.
We define the projection operations R, : V — V, and @, : Q — Q, by
a(u—Ru,v,) —d(p—Qup,vy) =0 Vv, € Vy,
d(qu,u— R,u) =0 Vg, € Q.
Then the following approximation properties hold [40-42]:
IV = Ruv]| + 1| V(v = Ruv)l +llg = Quall < Cr*([Ivlls + llpll2),
_d
IV = Ruvlis < Cu? s vlls,

(11)

for any v € H3(Q) UV and ¢ € H?(Q) U Q.

Furthermore, the Young’s inequality and the Poincaré’s inequality as follows will be used
frequently

ab < CaP + 6_q/pbq, a,b,p,q,ee€R, 1

p q p

VI < Gl Vi, vv eV, Cp = Cp(Q).

+

To this end, we recall the following inverse inequality from [40]:

_d
Vulz < Cinyp "8 |V VL] v € X (12)



3 Two-grid penalty FEM for the Smagorinsky model

The proposed method consist of solving a nonlinear Smagorinsky model by the one-grid penal-
ty FEM on a coarse mesh, and then solving a linearized Smagorinsky model based on the Newton
iteration on a fine mesh. Before presenting the two-grid penalty FEM, we first give out the

one-grid penalty FEM.

3.1 One-grid penalty FEM
The one-grid penalty FEM for the problem (2) reads as the following algorithm.

Algorithm 3.1 (One-grid penalty FEM) Find (Uep, pep) € (Xy, Qu) such that for all (v, qu) €
(X, @)

a(“sm V,u) + (055)2(|vu5u|vusm VVM) =+ b(uw, Uy Vu) - d(psm Vu) (13)

+ d(Qua ua,u) + 5(p6m Q,u) = (f7 V,u)v
where 0 < € K 1 is a penalty parameter.

Now, we give and derive the stability and error estimations for Algorithm 3.1.
Theorem 3.2 Under the condition of (7), the discrete problem (13) admits a unique solution
(Uep, Pep) € (Xp, Qu), which satisfies
“1ien3 _1 Clies

luculis < (Csd)fllZs, [Vacull < W([E[l),  [lpeull < e72(Cs8)™>[[f]| 1. (14)
Proof. Choosing (v,,qu) = (Uepy,pepu) in (13), using (4) gives

Re™Y|Vueu]|* + (Cs0)*[ueuli 5 + ellpeyl® < [1E[lslueulrs (or [I£[] ] Vaeul)- (15)

Thus,
1
eyl < (Csé) I f112,
and

3
2

13 < (Cs6)HIF)|2,,

5”p€u”2 <[] 3]y

3
which yields [[peu|| < £~ 3 (Cs8)~ 3[|£]| ;.
From Re !|Vu.,|? + (Csd)?|u.,

?73 < ||fll«|IVueul|, we can derive that
Vel < W(if].),

where ¥ is defined in (6). To sum up, the proof is completed. O

Theorem 3.3 Under the discrete inf-sup condition (9) and the uniqueness condition (7), if the
solution of (2) satisfies u € X NH3(Q), p € QU H?(Q), and ||Vul|oo does not depend on §, then
the solution of problem (13) satisfies the following estimates:

d _d
IV (u =)l + p6[u— vz < C(pu” +e+6p°5), (16)

Ip — peull < C(1 4+ 61>5 + 6%ep™3 + 83> %), (17)



Proof. Subtracting (13) from (2), we obtain the following error equation
a(u —ugy,v,) + (Cs6)?(|Vu|Vu, Vv,,) — (Cs6)?*(|Vue,|Vue,, Vv,)
+b(u,u, vy) — b(Uep, ey, Vi) — d(p — Pep, Vi) (18)
+ d(Q,ua u-— us,u) - 5(ps,ua Q;L) =0,

for all (v, pu) € (X, My). Set

€y = Ugy — Ryu, ey =u— Ryu, &y = pey — Qup, 1p = p — Qup-
Choose (v, pu) = (€cu,&ep) in (18), using (4) we have
aleqy, ecp) + (055)2(]Vu5“|Vu5u, Ve.,) — (Cgé)Q(WRMu]VRMu, Ve,)
+ b(ecy, Uey, €cp) + €[ Eepl®
= a(ey, ez,) + b(u, ey, ec,) + (Cs8)?(|Vu|Vu, Ve.,) — (Csd)*(|[VR,u|VR,u, Ve,,,)
+ b(€u, Uy, €cp) = d(p — Xpu» €epr) — (Qup, &epn),

(19)

where x, € M,,. By (5) and Theorem 3.2, the terms on the left-hand side of (19) can be bounded

as:
_ po—1 2
a(ezy,ecn) = Re || Ve,

(20)
b(esu’uameau) > _N”vuau”Hveaqu > _N\IJ(Hf”*)HveEMHZ-

By Lemma 2.1, we find
(Cs6)*(|Vueu| Vuey, Vee,) — (Cs6)*(|VR,u|VR,u, Ve,,) > CI(C35)2|esu|z1g,3 >0, (21)

Next, we bound the terms on the right-hand side of (19) as follows. Using (5) and Theorem 3.2,

we have
a(eu, ezu) < Re™!|[Veu || Veeyll,
b(u, ey, ecy) < N|[Vull[|[Vey|[[[Vee,ll, (22)
e ey €21) < N[Vt [ Vel Vel < NU(IE]L) [ Ve, [ Ves,.

Following (4.21) in [5], we have
(Cs6)*(|Vu|Vu, Ve.,) — (Cs6)*(|[VR,u|VR,u, Ve.,)
< C1(Cs0)*([IVulloe + VR0 | Ve[| Vee,ll (23)
< C(Cs0)?||Veul|l| Veeyl.

For the next term, we know
Cl(p - Xua esu) S \/ng - X,u” Hvea,uH7 (24)

e(Qup: &eu) < ellQupllliéenll < ellQupll(llp — Qupll + llp — peul))- (25)

Choosing ¢, = 0 in (18), we have

(p— Deps V - V,u)
< Re7 |V (u = ug) [[IVvull + N([Vull + [ Vue, IV (a = ue) [ Vv
+ (Cs8)*(|Vu|Vu, Vv,,) — (Cs6)?(|Vue,| Ve, Vv,).

7



By Lemma 2.1 and the inverse inequality (12), we can derive that
(Cs6)*(|Vu|Vu, Vv,) = (C50)?(|Vue, Ve, Vv,)

< (i (C55)2 max{|uli 3, [usy

134w —ueuliglvalis
_d
< C1Cipyps™ 6 (055)2 max{|uly 3, ]u5“|173}\u - Ruu’1,3”vqu

d
+ C1CE 13 (Cs0)? max{|ul1 3, 1 3}V (ue, — Ruu) [Vl

By the discrete inf-sup condition (9), one has
Blip = peull < Re™ Y| Veu| + Re™([Vewul| + O Veu|| + O Ve, |
d _d
+CuT5(Cs0)?leu)1s + C(Cs0)* ™3 || Veeyl.
Combining the estimates (20)-(26) into (19), we have

(26)

ol Veeul? + £l &epll?

< (Re™!(|Veu| + N[ Vul[[Veu|l + NU([E]L) [ Veull + C(C50)?* [ Veu|l + Vllp = x,
+ OB Qupll + CB7'e(Cs6)*u™5) [Vewl| + <l Quplling | + CB~ el Qupl| Vel
+ CA el Quplli (Cs0)?leulr s

< ZIVeuul? + C(IVeull? + (Cs8) IVeull® + lp = xall* + £ + 2(Cst) %)

d
6

+ Cellny|| + Ce || Veu|| + Cep™5 (Csd)?|en

1,3,
where 0 = Re™! — NU(||f|l.) > 0.
From (27), we find
IVeeul? < C(IVeul? + (Cs0) [ Veul? + lIp — xull? + €% + €2(Cs8) %)
+ Cellmpll + Cel|Veu|| + Cep™8 (Cs8)leulrs
< C(IVeull + npll +& + 6+ 61~ [eu]rs)’
< C(IVeull + lmpll + & + 075 leul13) .

By the approximation properties (11), we have

_d
Vel < C(IIVeull + [Inp]l + & + o™ ¢ lew

1,3)
<C(u?+e+ 5,}—%).
Applying the triangle inequality we obtain
V(= ue)|| < C(u? + &+ p>75). (30)
Combining (26) with (29), the pressure error can be bounded by
p— peull < C (42 + &+ 06p> 5 + 6%ep™5 + 635> %), (31)
Finally, by the triangle inequality and the inverse inequality (12) we gain
lu—uclis < lu—Ruulis+ [Ryu —uglis
< Ju— Ryulig + Ciaypr” 5| V(Ryu — usy) | (32)
< COp 6 (p +e+0u>9)

and complete the proof. O



d
3

Remark 1 If we choose ¢ < p? and § = O(pu3) in Theorem 3.3, then we can derive

d
IV (w0 = e[|+ o o = wepfi s + [p — pell < Cui®s (33)

3.2 The linearized iteration scheme of one-grid penalty FEM

Since the one-grid penalty FEM (13) is a nonlinear scheme. In practice computation, iterative
methods are needed to solve it. In this section, we give a linearized iteration scheme for solving
the solution (uc,,pe,) of the one-grid penalty FEM (13). The iteration initial value (u,,p?,) is
selected by solving the following Stokes problem:

a(ug;u Vu) - d(pg;u ) + d(QM) ) + g(ps;u QM) (f7 v,u) v(vu) qu) € (Xua QM) (34)
Then we solve (u?u’ pgu), n=1,2,--- M, by the following linearized problem:
" VuZ; " :vVul,]_
a(us,w VM) + (056) (|vu |vu5;u vvu) + (055)2< ‘vun 1‘ -+ Vu E,u 17 vvﬂ)
cp

n n u” n (35)
+ b( su 7us,u’ v ) - d(ps,w VN) + d(ql“ e,u) + 5(p5,u7 qu)

= (favﬂ) (CS(S) (|vu |vu€,u ,VVM) \V/(VLHQ,U) € (Xquu)'
The stability of solution of above iteration scheme (34)-(35) is given out in the following theorem.

d

Theorem 3.4 If Cg,6,Ciny, N and p satisfy (Cs0)*C3 =2 < N and the following condition
holds that

TNRE?|f||. < 1, (36)
then we have
[VaZ, || < 2Re|/f]l, [Pzl < 2(Re/e)?f]].. (37)

Proof. We prove it by mathematical induction method. Firstly, we choose (v,,q,) = (ugw pgﬂ)
n (34) and deduce that

Re™H|[Vul, |I” + ellp2|I” < [I£]][IVud, [l

Thus, [|[Vul,| < Rellf]. and sHpSMHQ Rel|f||?, which implies that the conclusions hold for
n = 0.

Next, assuming the conclusions hold for n < k — 1, that
IV, || < 2Refll., [lpZ ]| < 2(Re/2)2||f]. for n<k—1. (38)

Finally, we prove that the conclusion hold for n = k. Set n = k in (35) and choose (v,,q,) =

(ulgu,plgu), we have

vubol: vub
Re Y||Vub,||? + (Csé Vu vut,  vu¥ )+ (Csé 2<[ vt 1,Vu )
IVuz, 1> + (Cs0)%( g ep) 1 (Cs0) IVuM | en (30)

€L

k k k— k— k
+ellpfl? = (F,uf,) + (Cs8)?(Jul, Hugt ul).



By (8) and the inverse inequality (12), we have

Re™ | Vg, | + ellpk,|1*
_d _

< IV ul, [+ (Cs)?Chon™2 [ Vul, H[*[|Vud, |

< (IE]l [ Vb, || + 4Re? (C50)2Ch, pm 2 |£]2 Vu

< £l VU, || + 4N Re?|[£]Z] Vu
< 2||f][[[Vu

Eull (40)

k
eul
k

cull

From (40), we know that
IVul, |l < 2Re|lf]l.,
and
ellpE,|I* < 2[£]IVus, || < 4Rellf[]2.

To sum up, the proof is completed. O

Remark 2 According to Lemma 6.1 in [4], we know ¥(||f||.) < Rel|f||«, thus, from Theorem 3.2,

we can get another upper bound of ||Vug,|| as follows:
IVue,| < Rel[£]].. (41)
The iteration error estimates of scheme (34)-(35) is presented in the following theorem.

Theorem 3.5 Under the assumptions of Theorem 3.4, then the solution of (13) and the solution
of (35) satisfy

d n 2 n
IV (ue, —ug )l + pelug, —ug,fis < ;RerH*WNReQHfH*) : (42)

(TN Re?||f||+)". (43)

N (18 +201)3 ' Re™ !
|pep — P2l < 7

Proof. Subtracting (34) from (13), we obtain

a(uau - ugw Vu) - d(pau - pgw Vu) + d(Q,u: Ugy — ug#) + 5(pau - pgw qM)

(44)
= _b(usm us,u»V,u) - (085)2(‘vus,u’vus,u, Vvu)a

Setting (v, qu) = (Uey — ugﬂ,pw — pgu) and using (5), the Holder inequality and the inverse
inequality (12), we get

Re™ Y|V (ug, — ug,)|* + ellpen — p2 17

< NHVUWHQHV(UE# - ug,u)H + (055)2’u6#|%,3|u6# - ugu|1,3

< N[V 219 (acy — 00,) ]| + (€56 Chop™ 4 [Ty ¥ vy — )] .
< 2N |V 2V 1y, — )|

This lead to
IV (acy = 0,)|| < ZRe(TNRAE].)E]. < = Rellf].. (46)

10



Choosing ¢, = 0 in (44), by the inf-sup condition (9), the inverse inequality (12) and (41), we
have

Hpsu pgu” < B ( _1||v(u5/1« - ug,u)H + N||Vu6u||2 =+ (OS(S) Caniu 2 HVUENHQ)
< B7H(Re M|V (e — ud)|| + 2N[|Vue,|?)

(47)
4,1
= £
L5
Next, we consider iteration error of (35). Subtracting (35) from (13), we obtain
(usu - u?“, v ) - d(psu - p?p,? V,u) + d(Q,ua Ugy — ?'u) + 5(105# - p?w qM)
- b( au 7uauv V,LL) b(uauv uz—:,u,v V,LL) + (CS(S) (|vu |vu5u7 Vv,u)
vu?,;!l: Vu (48)
+ (Cg0)? ([ o o vul, VV“> (Cs0)*(|Vul t|Vul !, Vvy)
Nusu
— (CS(S)QOVuw]Vuw, Vvy).
Setting (v, qu) = (Uep — 0l pep — PE,) in (48), we obtain
Re Y|V (ugy, — uZ,)|* + ellpen — plu1?
= —b(uey, — U?;la Usy, ey —ug,) + (Cs0)? (|VuZ,; ]V( —ugy), V(ue, —ug,))
vu?l:v(u?, —u
+ (055)2 <[ © (n_lu 6/1)] Yu g“ 1’ V(uw — u&))
‘vueﬂ ‘ (49)
+ (Cs6)? (|Vu |V(uau u?;l), V(ug, — u?u))

[Vulit:Vu,]_ "
+ (055)2< Féun_ll i Vu e,u 17 V(ueu - uau))
Ep

— (C0)*(|Vuey| Ve, V(ue, — u,) =N+ +T+ITi+Ts+ Te.

Using (5) and (41), we know

Ji < NIV (ug, — iy Yl Vueull|V (v, — ug,)|
< NRe|[f[[ ||V (ue — uZ D[V (uzy — uf,)-

By (8), we find

Jo+ J3 <0.

11



From the Frobenius norm inequality |A||B| —[A : B] < |A — B|?, the inequality |a| — [b| < |a —b],
the inverse inequality (12), Theorem 3.4 and (41), we have
Ji+Ts + To = (Cs6)* (IVul, [V (uey — ul,h), Ve, — uZ,))
— (055) (\Vuw\V(uw — u"_l), V(ue, — ugﬂ))

em
|Vu.,|[VuZ,; . "
— (Cs0)? (Euv ul, V(usy, - uau))

Vul; " :Vug]_ "
+ (055)2< ‘Eéu 1‘ - Vu U, 17 V(UE# - ueu))
e

< (Cs0)*(IV(uey — uly M2 [V (ugy — ul,)|)
u n 1\|2
n (035)2<|v( o )

e ) a9 (s — ug,m)
< 2A(Cs8)CB 4 [V ey — )2V (e — )|

’vuau |
ep

< 2N([|[Vuull + [ Vul DIV (e — uZ DIV (uey — ul,) |
< 6N Re[£1[|V (ue — uZ |1V (uey — u, ).

Combining these estimates for J; to Jg into (49), we derive

IV (uey —uZ)|l < (TNRe?|[£]1)[IV (uey — uZ )|

n 2 n
<o < (TNRE )"V (e — )| < ZRelfll (TN Re?|[£].)"
Choosing ¢, = 0 in (48), we know
(peu - p?/u % V,u)
< Re_lHV(uw —ul, )HHVV#H + [b(uw, Ucy, V) — b(u”_1 u” ,V“)]

e ) Ep
[C’S(S) ([Vue,|Vue,, Vv,) — (Cs6)? (IVuZ,; L Vu? Vv

eps

[Vult:val]_
(Cs8)*(IVul, | Vul,t, Vv,) — (035)2< N |5“ v wl,vVﬂﬂ

= Re™ |V (ugy —uf )MVl + Jr + Ts + To.
Using (5) and (41), we have

Jr = b(uw - u?u_l: uem"u) + b(u ?u_la Uey — u?;u )
< NV (uey = HIIVueu Vvl + NIVaZ IV (e, — u2,) [ Vvl (52)
< NRellfll*HV(uau = DIVl + 2N Re|f]]|V (g, — uZ,) [V V).
By the Hélder inequality and the inverse inequality (12) and Lemma 2.1, one has
Jg = (C35)2(lvu6ulvuew Vv,) — (Cs6)? (IVul,[Vul,, Vv,)
+ (Cs6)?(]Vu” vVuag,, Vvy,) — (Cs0)? (|Vuz, Hvu? Vv,)
< C1(Cs6)?

e eI

35 [uly st uey —udyfislvulis
+ (Csd)?|ul, )1 3\115“ ul sl vl
< C1(C50)2CE ™2 max{ | Ve, [[Vul, [ IV (uz, — ) [[|9v,]
+ (C50)2C3 ™2 |Vl 19 (w2, — uly )| Vv,
< 201N Re|f|[]|V (uep — uZ ) IVvp|| + 2N Rel|£[|[|V (0, — ul)[[[[VVll
+ 2N Re| ]|V (e — ul, DIV,

(53)
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and

vui b Vet —ul
Ty = (035)2<[ VI - )] vul Vvu>
< (Cso)?|ul, islul, b —ul,lis|valis

< 2N Re|f [ ([[V (ug — uf) | + IV (uee — a7 ) DIV,

Combining estimates J7, Js and Jy into (51), and using the discrete inf-sup condition (9), one
has
Ipeye = PENl < 87 (Re™! + 6N Re|f]|« + 201N Re|f].)[|V (v, — uz,) |
+ 567 ReN||f|| ]|V (uy — uf )|
2
< B HRe '+ Ope1 4 201
7 7
5 1, _ n—
+ =87 R (TN REIE]L) [V (e — iz, |
- (18 +201)3 1 Re™ !
- 7

Finally, we derive the estimate |us, — ug,[1,3 by the inverse inequality (12) and complete the

Re™ )| V(uey —ul,)|

(TNRE|£].)".

proof. O

As a direct consequence of Theorems 3.3 and 3.5, we immediately obtain the following theorem.

Theorem 3.6 Under the assumptions of Theorems 3.3 and 3.5, then we have the following esti-

mates:
d n _d 2 n
1900 — w2+ fu— s < (pﬂ ve+au2S 4 ZRelf) (TN RE].) ) (56)

(18 +2C1)p 1 Re~!
7

Ip — p, || < <,ﬁ Lo our s oty 4 032 F & (7NReZHfH*)”>. (57)

3.3 Two-grid penalty FEM
The two-grid penalty FEM for the problem (2) reads as the following algorithm.

Algorithm 3.7 (Two-grid penalty FEM)
Step 1: Solve a nonlinear Smagorinsky model on the coarse mesh tg: Find (Uep,per) €
(Xw,Qm) such that for all (vi,qn) € (Xg, Q)

a(ueg, vy) + (Cs8)*(IVuey|Vuey, Vvy) + b(Uer, ey, Vi) — d(pen, Vi) (58)
+d(qu,ven) + e(Per, qu) = (£,vu).
Step 2: Solve the following linearized Smagorinsky model on the fine mesh 1p,: Find (Ucp, pep) €
(X, Qn) such that for all (vi,qn) € (Xn, Qn)
[VU%I : Vuah]
[Vuly|
+ b(ulfy, v, vi) + b(ueh, ulfy, vi) — d(pen, Vi) + d(gn, ueh) + €(pen, qn)
= (f7 Vh) + (055)2(|Vu%{|vu%[a vvh) + b(u%{a u%{? Vh) + E(p%{7 qh)v

a(uep, vi) + (Cs6)*(|Vuly|Vue,, Vvy,) + ((755)2< vuly, VVh)

(59)

where uM; is the solution of (58) solved by the iteration scheme (35).

13



The stability and error estimates of solution of Algorithm 3.7 in step 1 are obtained in The-
orems 3.2 and 3.3. Here, we only need to consider the theoretical results of the solution of

Algorithm 3.7 in step 2. We first give out the stability of solution in the following theorem.

Theorem 3.8 Under the assumptions of Theorem 3.6, the solution solved by (59) satisfies
2 2 1 _d 2 2
o1[|[Vuen|” + &l[penll” < ;1(2||f||*+(h/H) 6[|£]l.)” + 4Re] £]1%, (60)

where o = Re™' — 2N Rel|f|[. > 0.

Proof. Setting (vy,qn) = (Ucn, pen) in (59), we have

[Vup : Vuey)

a(uen, wer) + (C0)2(IVuh [ Vch, Vuey) + <CS‘”2< A
eH

Vu%{, Vu5h>

61
+ b(ueha u%{v U—eh) + E(psh’pah) ( )

= (f,uz) + (Cs6)*(|Vuly|Vully, Vua) + b(ulfy, ulfy, uen) + e(plfy, pen)-
By (8), (5), Theorem 3.4, the Holder inequality and the inverse inequality (12), one has
1|V |* + ellpenl
< £l Vuenll + (Cs6)? iy [f slucnlis + NIVl 1V + ellp2 | [pon|
_d
<LV ucnll + N (h/H) 7S [VaZ [P Vue |l + NIValy |2 Vo + ellp2lpenll - (62)
_d

< IEN+ (W/H) 75 E]) | Vacnll + ellp oo

o1 9 1 _d 2 € 2 €y M 2
< 5 IVuenll® + 5 Cliflle + (2/H) SIIE]1)” + 5 lIpenll® + S P2k,

where 01 = Re™! — 2N Re||f|| > 0. From the bound of pressure in Theorem 3.4, we can derive

estimate (60) and complete the proof. O

Next, the error estimate of solution of Algorithm 3.7 in step 2 is presented in the following

theorem.

Theorem 3.9 Under the assumptions of Theorem 3.6, and the following condition holds

(Cs6)2C,H™5h™5 < Cy, (63)

then we have
1900 = )|l + A ju = a3 + 1o = pen
< O + [V (a—ulf)|? +ellp — p2hll + (Cs6)*h 5 ju— ulfy 4 (64)
+(Cs9)’ [V (u — ulfy) | + (Cs0)H™Eh*5 + (Cs8)* H5h™ 8 u — ulfy 1]).
Proof. Subtracting (59) from (2), we obtain
a(u —ugp, vp) + (Cs0)%(|Vu|Vu, Vvy) — (Cs0)%(|Vuly |V, Vvy)

|Vul,

+b(u,u,vy) — b(u%{, Ucp, Vi) — b(ugp, u%{, vi) + b(u%{, u%l, Vi)

vul,, vVh) T (Cs0) IVl [V, v) .

— d(p — Pen, Vi) + d(qn, 0 — Ucn) — €(Den, qn) + €(Per, qn) = 0.

14



Set,
e = Ug — Rpu, e, =u— Rpu, § =pn — Qup, mp =p — Qup-

Choose (vp, qn) = (ep,&n) in (65) gives

[VU%I : Veh]

R e+l + (Cs0)(Tulf Ter. Ver) + (Csty? (e
eH

Vu%{, Veh)

= a(Nu, en) + b(nu, ully, en) — blen, ulty en) + b(ull, nu, en) — b(ull; en, en)

+ b(ll - u%]a u-— ugfv eh) - d(p — Xh eh) + (056)2(|vu|vu’ veh)

[Vul, . V(ud, — Ryu)] (66)
 (CadP(Vuth TRy, Vo) + (Coo? (0 T =ty e, )
’vusH‘
11
—e(@Qup — 21, &) = > _ T
i=1
From (8), we know
C56)2(|Vu,|Vey, V ooy (Vo Vel g g0\ 5 g 67
(Cs0)*(|Vucy|Venr, Vey) + (Csé) WusH7 en ) =0 (67)
eH
Next, we estimate Z;,7 = 1,-- -, 11, one by one below. It is easy to verify the following estimates:
T < Re™ [ Vnu|l[|Venl,
Ty + s < 2N|| V||| Valf || [ Ven|l < 4N Re|[f]l.| Vo[l Venll,
Iy < N||Vulp[l|Ven|* < 2N Re|/f[|.|[Ven|?, (68)
I5 = 07
Is < N||V(u—ulp)|(|Venl,
I < Vd|lp — xall| Vel
Following (6.11)-(6.16) in [5], we have
Ts + Iy + Tro < 2(Cs0)*|u — ulf; |3 slenl1,s + 2(Csd)*[ulfy |1 3]nul1,3len|1s (69)
d d
< 2Ciny (C56)*h ™o (lu — ulfy [ 5 + 2Ci H 8 Rel|f]|<]nul1,3) [ Ven]|.
For the term Z1;, we have
Tin < e(llp = Qupll + llp — p2411) (Ilp — perll + [lp — Qnpll).- (70)

Choosing g; = 0 in 65, we have

(P = pen, V- V1)
= a(u — ug, vp) + (Cs6)?(|Vu|Vu, Vvy,) — (Cs0)?(|Vuls, | Vugy, Vvy)

Vué\g{] : Vugy,]

+ (C58)2(IVuty | vuls,, Vvy,) — (055)2<[ Vull vuly,, Vvh>
[

+ b(u — ugy, uJ\H/[, vi) + b(u%{, u — ugp, vi) + b(u — ug{, u-— ué\fq, V)

8
= A
i=1
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where A;,i =1, -+, 8, can be bounded below. Firstly,
Al < Re7H[V(u— ) [[[Vva]-
By the Holder inequality and the inverse inequality (12), we get

As + Az < (Cs6)?(|V(u — ul)|Vu, Vvy,) — (C50)%(|Vuly |V (u — ugp), Vvy)

(Cs8)?|V(u = uli) [Vl oo [ Vva ]| + (Cs6)*|ulfr | zu — wenl13val13

< (Cs8)? |V (u — w1Vl oo [V V3| +2(Cs8)2CR  H 515 Rellf |« a1, Vvl
+2(Cs8)*Ch H 55 e[| Ve[ Vvl

IN

and

Vué\j{l : V(u%{ —u.p)]
[Vuly|

Ay + A5 = (055)2 <[ Vu%{, Vvh>

< (Cs0)? \uaH|13!uaH—uah!13\Vh|13

< (Cs8)2C2 H 5 h™5 [ Vudh || (ju — w15 + [0 — upls]) [ Vval
< 2(Cs0) c?nv “o k78 Re ]l Ju — w15 VVal| + 2(Cs0)2CR H 5B Rellf |+ [nul1.5] Vvl
+2(Cs8)2C H™ 5 h™ 5 Re|£||.|[Ver ||| Vvl

From (5), we know

As + A7 < 2NV (u — uep) ||| Vi || Vvall
< AN Re|[|[«[[Vru[l[[VVill + 4N Re|[f]| | Veu|[[Vvall,

and
Ag < N[V(a—uli)[*|Vvall.

Now, using the discrete inf-sup condition (9), we have

Ip = penl

< BT (Re ™[Vl + Re ™[ Ve + (Cs0)(V (u — ulfy)[[| Va1~
+ 4(Cy0)2C2 H 6 h & Re|[f]|.|nul1s + 4(Cs0)2CE, H™h™5 Re||£]..[| Ve (71)
+2(Cs8)2C2 H™5 h™ 5 Ref[|,Ju — w15 + Re ™| Vi

+ Re” Y| Veu|| + N[V (u— ulfy)?,
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Combining the estimates (67)-(71) into (66), we have

01| Venl|? + €llénl?

< [2Re™ Y|Vl + NV (u — ) |2 + Vallp — xal
+ 2G5y (C50)*h 5 (Ju — w2 4 + 205 H 5 Rel|f |+ [nu1.3)
+ 57 (llp — Qupll + llp — p2 1) (2Re ™ + 4(C6)2CE H=5h™5 Rel|£][.)] [ Ve
+ 67 e(Ilp — Qupll + llp — P2 11) (Re ™ [V ull + (C8)2(1V (u — udp) || V] g
+ 4(Cs8)2C2 H™ 8 h™ 8 Re[[f[|. |15 + 2(C's8)2CE H™ 6 h™ 6 Re[[f]|.Ju — wh |y

+ N[V (u—ulfp)|* + p — Qupl))
o1
< S IVen|* + C(IVnll* + [V (a = wZg)[I* + o — xal|*

(72)

+(Cs0)*h5 (Ju — uMg[d s+ H 5 |nul? 5) +2(Ilp — Qupll? + llp — 925 1%)
+Ce(llp — Qupll + o — PX11) (IVnll + (Cs6)?( ¥ (u — uh)|| + (Cs8)2H ™5 15 |3
+(Cs8)?H s h™ 5[ — w15+ [ V(u— w2+ [p — Qupl)

< SVenl + C(I9nll + 1V (a = 2> + llp = xall +(llp = Qupll + Ip = 2 )
+(Cs0)*h 5 (Ju — w25 + H % |ul1s) + (C8)? |V (u — )|
+(Cs8)PH™ 5 h™8|nulis + (Cs8)PH S h™ 6 )%,

here (63) is used. Thus, By the approximation properties (11), we have

\Vehu<0(um|+uv<u u€H>||2+||p xill + (o = Qupll + o — p24 1)
+(Cs6)%h <|u—u5H|13+H Sul1,3) + (Cs0)2|[V (u — udp)|

+(Cs8)?H™5h™% |nalus + (Cs8)?H5h7% [u — ulf|1.5]) (73)
< (A% + |V(u— M) +ellp — P24 | + (Cs8)2h 5 ju —ulfy2
+(Cs0)?|V (u — ulh)|| + (Cs0)2H 5h>™5 + (Cs0)2H~5h75 [u — ully|1 3).

(
(

Combining (73) with (71), we get the pressure error bound.

_d
lp = penll < C(B* + IV (u — ulip) > +ellp — 2l + (Cs0)*h ™5 [u —ulf 2 4

(74)
+ (Cs0)?(|V (u = ulfp)| + (Cs6)H81°75 4 (Csd)*H™6h™ 6 [u = ulfy|1).
Finally, by the triangle inequality and the inverse inequality (12) we obtain
lu— w13 < |u— Rpuli3+ len|is
d
<|u— Rpuli 3+ Cinyh™ 6 || Vey|| (75)

< Ch™%||Vey|],

and complete the proof. O

Remark 3 If we choose ¢ < H? and § = O(H%) in Theorem 3.6, for sufficient large iterations
M, thanks to the stable condition (36), then we have

(76)

IV (u—wdf)| + HE[u—ufy
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Thus, we can derive that

d
IV(u = uep)|| + hefu—uepli3 + [lp = penl

d d da d d d (77)
<C(h*+H*'+cH? +8h 6 H" 5 + 0°H? + 6*H 6h* 3 + 6°H* 3h™6),
if we choose ¢ < h and H = (’)(h%), J= (’)(h¥), then we have
d
IV (a = )| + hslu— |z + [[p — penll < Ch%. (78)

4 Numerical experiments

In this section, we will present some numerical experiments to confirm our theoretical analysis
and to verify the stability and effectiveness of the presented methods. We first present some
numerical experiments to verify the optimal rate of convergence derived in this paper and verify
the high efficiency of the proposed two-grid penalty FEM. Next, we will test a popular benchmark
problem lid driven cavity flow in both two and three dimensional. In all the experiments, we
choose the Smagorinsky constant C's = 0.17, which is the most commonly used choice in practice
for simulating turbulence, and the iteration tolerance as 1078. All computations are carried out

by the public finite element software package Freefem++ [45].

4.1 Rates of convergence study

In this test, we take 2 = [0,1]? and the analytical solution for the velocity u = (uy,uz2) and

the pressure p are given as follows:

ur = 102°(z — 1)%y(y — 1)(2y - 1),

uy = —10z(x — 1)(2z — 1)y (y — 1),

p=a%—y?

where the forcing function f = (fi, f2) and the boundary values of (u,p) are determined by (1).
We consider the case of the Reynolds number Re = 1.0. In order to verify the optimal rates of
convergence, we select § = 0.12%/3 and ¢ = 0.000142 for one-grid penalty method, and § = h5/6,
e = 0.0001h% and h = H? for two-grid penalty FEM, respectively. The numerical results of the
one-grid penalty FEM and two-grid penalty FEM are displayed in Tables 1 and 2, respectively.
We can see from Tables 1 and 2 that these results are in good agreement with the theoretical
convergence rates predictions for the proposed methods. What’more, corresponding the mesh size
h=4+ L L L L L the two-grid penalty FEM can save 11.32%, 41.84%, 50.01%, 50.68%,
51.80%, 52.23% CPU time comparing with the one-grid penalty FEM.

Further more, we shall discuss the dependency upon the spatial filter radius §. The conver-
gence rates of the solutions for the velocity and pressure computed by two-grid penalty FEM with
o = h2,h5/% h1/2.1,2.5, 10 and 30 are displayed in Fig. 1, which shows that no obvious difference
was observed between the accuracy of the solutions when § < 1, while when ¢ > 1, the accuracy
and the convergence rates of the solutions are getting worse and worse. From this numerical
experiment we summarize that, the proposed two-grid penalty FEM seems to be less sensitive to
the choices of § when § < 1. However, when the value of ¢ is large, the proposed method can not

do well. One guess reason is that the small data condition (7) may be dissatisfied.
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Fig. 1: Convergence rates of the velocity and the pressure by two-grid penalty FEM with different

Table 1: Numerical results by using one-grid penalty FEM.

1/h ”“H—u‘m”l w1 -Rate Ilp”—pzﬂhll pr2-Rate it CPU(s)
4 0.164752 0.0159364 2 0.053
16 0.0113162  1.93191  0.000976974 2.01393 2  0.717
36 0.00225199  1.99083  0.000192908 2.00048 2  3.639
64 0.000713519 1.99762  6.10356e-005 2.00005 2 11.484
100 0.000292371 1.99913  2.50001e-005 2.00001 2 28.867
144 0.000141017 1.99961 1.20563¢-005 2.00000 2 62.585

4.2 The 2D lid-driven cavity flow

The 2D lid-driven cavity flow is a popular benchmark problem for testing the numerical
schemes of incompressible flow, which has been analyzed in [46]. In this problem, computations
are carried out in the domain Q = [0,1]2. Flow is driven by the tangential velocity field on
the top boundary and imposed no-slip boundary conditions on other boundaries. The presented
numerical results are compared to the benchmark datum of Ghia et al [46].

We use the present two-grid penalty FEM to compute solution for the lid-driven cavity flow at
Re = 1000, 3200, 5000 and 7500, where h = 1/100 and H = 1/50 are used. We have tested various
values of § = 4h, h,0.1h and 0.1A? in this experiment. This test shows that at Re = 5000, 7500
with both 6 = 0.1h and 0.1h2, the two-grid penalty FEM failed to compute a solution and
diverges; see Table 3 for details. With 6 = h, the computed streamlines at Re = 1000, 3200, 5000
and 7500 are plotted in Fig. 2, showing that our results are comparable to those of Ghia et
al. [46]. Figs. 3 and 4 draw the computed u;-velocity along the vertical centerline and ua-velocity
along the horizontal centerlines by the two-grid penalty FEM compared with the benchmark data
of Ghia et al. [46]. From Figs. 2-4 one can observe that good consistency with the data of Ghia

et al. [46] verifies effectiveness of the proposed method.
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Fig. 2: The streamline of velocity of the 2D lid-driven cavity flow at Re = 1000, 3200, 5000 and
7500.
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Fig. 3: A comparison of the wui-velocity along vertical centerline for Re = 1000, 3200, 5000 and

7500.
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Table 2: Numerical results by using two-grid penalty FEM.

1/h 1/H HuH_ulﬂ’Inl uyi-Rate % pr2-Rate it CPU(s)
4 2 0.16477 0.0159383 2 0.047
16 4 0.0113195 1.93178  0.000976975  2.01402 2  0.417
36 6 0.00225311  1.99058  0.000192908 2.00048 2 1.819
64 8 0.00071404  1.99722 6.10356e-005 2.00005 2  5.664
100 10  0.000292658 1.99857  2.50001e-005 2.00001 2 13.914
144 12 0.000141193 1.99887 1.20563e-005 2.00000 2 29.896

Table 3: Nonlinear iterations number and CPU time (s) of the 2D lid-driven cavity flow by using
two-grid penalty FEM.
§ 4h h 0.1h 0.1h?
Re =1000  34(71.435) 30(65.03) 30(74.56) 30(72.095)
Re = 3200 37(77.4) 59(138.331) 264(595.596) 281(625.383)
Re =5000 55(111.57) 126(284.613) diverges diverges
Re = 7500 165(311.477) 521(1024.09) diverges diverges

4.3 The 3D lid-driven cavity flow

Our final numerical example is the 3D lid-driven cavity flow problem, which is tested in [47].
The domain of this problem is the unit cube [0, 1]3, equipped with horizontal velocity as boundary
conditions for the top face (z = 1) and homogeneous Dirichlet boundary conditions on the other
faces. We implement the present two-grid penalty FEM with the mesh width h = 1/10, H =1/5
and choose § = h.

In Fig. 5, we draw the centerline x-velocity at Re = 100,400 and 1000, respectively, which
shows that our results are comparable to the reference values given by Wone and Baker [47].
Figs. 6-8 plot the mid-plane velocity streamline pictures for Re = 100,400 and 1000, respectively,
which illustrate the effectiveness of our proposed method. All those numerical results are in good

agreement with the reference solution in [47].

The u;-velocity at vertical centerline with Re = 100 The u;-velocity at vertical centerline with Re = 400 The uy-velocity at vertical centerline with Re = 1000
1

——Wong and Baker ——Wong and Baker
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Fig. 5: The centerline x-velocities of the 3D lid-driven cavity flow at Re = 100,400 and 1000.
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X X X

Fig. 6: The zz-plane velocity streamline pictures of the 3D lid-driven cavity flow at y = 0.5:
Re = 100,400 and 1000 (from left to right).

&

Fig. 7: The zy-plane velocity streamline pictures of the 3D lid-driven cavity flow at z = 0.5:
Re = 100,400 and 1000 (from left to right).

y

<
<

Fig. 8: The yz-plane velocity streamline pictures of the 3D lid-driven cavity flow at x = 0.5:
Re = 100,400 and 1000 (from left to right).
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5

Conclusions

In the paper, a two-grid penalty FEM has been developed and investigated for the Smagorin-

sky model. This method consist of solving a nonlinear Smagorinsky model by the one-grid penalty

FEM with the proposed linearized iteration scheme on a coarse mesh, and then solving a linearized

Smagorinsky model based on the Newton iteration on a fine mesh. Stability and error estimates of

numerical solutions for two-grid penalty FEM are presented. Some numerical tests are provided

to confirm the theoretical analysis and the effectiveness of the developed methods.
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