References
Atkins, J.W., Fahey, R.T., Hardiman, B.H. & Gough, C.M. (2018). Forest Canopy Structural Complexity and Light Absorption Relationships at the Subcontinental Scale. J. Geophys. Res. Biogeosciences, 123, 1387–1405.
Bae, S., Müller, J., Lee, D., Vierling, K.T., Vogeler, J.C., Vierling, L.A., et al. (2018). Taxonomic, functional, and phylogenetic diversity of bird assemblages are oppositely associated to productivity and heterogeneity in temperate forests. Remote Sens. Environ., 215, 145–156.
Barnett, D.T., Duffy, P.A., Schimel, D.S., Krauss, R.E., Irvine, K.M., Davis, F.W., et al. (2019). The terrestrial organism and biogeochemistry spatial sampling design for the National Ecological Observatory Network. Ecosphere, 10, e02540.
Bouvier, M., Durrieu, S., Fournier, R.A. & Renaud, J.P. (2015). Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data. Remote Sens. Environ., 156, 322–334.
Cadotte, M.W., Carscadden, K. & Mirotchnick, N. (2011). Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol., 48, 1079–1087.
Carrasco, L., Giam, X., Pape_, M. & Sheldon, K. (2019). Metrics of Lidar-derived 3D vegetation structure reveal contrasting effects of horizontal and vertical forest heterogeneity on bird species richness. Remote Sens., 11, 1–19.
Carrasco, L., Norton, L., Henrys, P., Siriwardena, G.M., Rhodes, C.J., Rowland, C., et al. (2018). Habitat diversity and structure regulate British bird richness: Implications of non-linear relationships for conservation. Biol. Conserv., 226, 256–263.
Chu, C., Lutz, J.A., Král, K., Vr_ka, T., Yin, X., Myers, J.A., et al. (2019). Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecol. Lett., 22, 245–255.
Cooper, W.J., McShea, W.J., Forrester, T. & Luther, D.A. (2020a). The value of local habitat heterogeneity and productivity when estimating avian species richness and species of concern. Ecosphere, 11.
Cooper, W.J., McShea, W.J., Luther, D.A. & Forrester, T. (2020b). Incorporating local habitat heterogeneity and productivity measures when modelling vertebrate richness. Environ. Conserv., 47, 7–14.
Coops, N.C., Rickbeil, G.J.M., Bolton, D.K., Andrew, M.E. & Brouwers, N.C. (2018). Disentangling vegetation and climate as drivers of Australian vertebrate richness. Ecography (Cop.)., 41, 1147–1160.
Currie, D.J. (1991). Energy and large-scale patterns of animal- and plant- species richness. Am. Nat., 137, 27–49.
Davies-Colley, R.J., Payne, G.W. & Van Elswijk, M. (2000). Microclimate gradients across a forest edge. N. Z. J. Ecol., 24, 111–121.
Davies, A.B. & Asner, G.P. (2014). Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends Ecol. Evol., 29, 681–691.
Davis, K.T., Dobrowski, S.Z., Holden, Z.A., Higuera, P.E. & Abatzoglou, J.T. (2019). Microclimatic buffering in forests of the future: the role of local water balance. Ecography (Cop.)., 42, 1–11.
De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B.R., Hylander, K., Luoto, M., et al. (2019). Global buffering of temperatures under forest canopies. Nat. Ecol. Evol., 3, 744–749.
De Lombaerde, E., Vangansbeke, P., Lenoir, J., Van Meerbeek, K., Lembrechts, J., Rodríguez-Sánchez, F., et al. (2022). Maintaining forest cover to enhance temperature buffering under future climate change. Sci. Total Environ. , 810, 151338.
Ehbrecht, M., Seidel, D., Annighöfer, P., Kreft, H., Köhler, M., Zemp, D.C., et al. (2021). Global patterns and climatic controls of forest structural complexity. Nat. Commun., 12.
Fahey, R.T., Atkins, J.W., Gough, C.M., Hardiman, B.S., Nave, L.E., Tallant, J.M., et al. (2019). Defining a spectrum of integrative trait-based vegetation canopy structural types. Ecol. Lett., 22, 2049–2059.
Farwell, L.S., Elsen, P.R., Razenkova, E., Pidgeon, A.M. & Radeloff, V.C. (2020). Habitat heterogeneity captured by 30-m resolution satellite image texture predicts bird richness across the United States. Ecol. Appl., 30.
Ferger, S.W., Schleuning, M., Hemp, A., Howell, K.M. & Böhning-Gaese, K. (2014). Food resources and vegetation structure mediate climatic effects on species richness of birds. Glob. Ecol. Biogeogr., 23, 541–549.
Ferrer-Paris, J.R., Zager, I., Keith, D.A., Oliveira-Miranda, M.A., Rodríguez, J.P., Josse, C., et al. (2019). An ecosystem risk assessment of temperate and tropical forests of the Americas with an outlook on future conservation strategies. Conserv. Lett., 12.
Field, R., Hawkins, B.A., Cornell, H. V., Currie, D.J., Diniz-Filho, J.A.F., Guégan, J.-F., et al. (2009). Spatial species-richness gradients across scales: a meta-analysis. J. Biogeogr., 36, 132–147.
Fotis, A.T., Morin, T.H., Fahey, R.T., Hardiman, B.S., Bohrer, G. & Curtis, P.S. (2018). Forest structure in space and time: Biotic and abiotic determinants of canopy complexity and their effects on net primary productivity. Agric. For. Meteorol., 250–251, 181–191.
Franklin, J.F., Spies, T.A., Pelt, R. Van, Carey, A.B., Thornburgh, D.A., Berg, D.R., et al. (2002). Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For. Ecol. Manage., 155, 399–423.
Frey, S.J.K., Hadley, A.S. & Betts, M.G. (2016). Microclimate predicts within-season distribution dynamics of montane forest birds. Divers. Distrib., 22, 944–959.
Gagic, V., Bartomeus, I., Jonsson, T., Taylor, A., Winqvist, C., Fischer, C., et al. (2015). Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. B Biol. Sci., 282, 20142620.
Goetz, S., Steinberg, D., Dubayah, R. & Blair, B. (2007). Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA. Remote Sens. Environ., 108, 254–263.
Goetz, S.J., Steinberg, D., Betts, M.G., Holmes, R.T., Doran, P.J., Dubayah, R., et al. (2010). Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird. Ecology, 91, 1569–1576.
Griesemer, J. R. (1994). Niche: Historical perspectives. In: Fox Keller, E. and Lloyd, E. A., eds. Keywords in Evolutionary Biology. Cambridge, MA: Harvard University Press, 231–240.
Hakkenberg, C.R. & Goetz, S.J. (2021). Climate mediates the relationship between plant biodiversity and forest structure across the United States. Glob. Ecol. Biogeogr., 30, 2245–2258.
Hanni, D.J., White, C.M., Van Lanen, N.J., Birek, J.J., Berven, J.M., Mclaren, M.F., et al. (2017). Field Protocol for Spatially Balanced Sampling of Landbird Populations Integrated.
Hardiman, B.S., Bohrer, G., Gough, C.M., Vogel, C.S. & Curtis, P.S. (2011). The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology, 92, 1818–1827.
Hawkins, B., Field, R., Cornell, H., Currie, D., Guégan, J.-F., Kaufman, D., et al. (2003). ENERGY, WATER, AND BROAD-SCALE GEOGRAPHIC PATTERNS OF SPECIES RICHNESS. CONCEP TS Synth. EMPHASIZING NEW IDEAS TO Stimul. Res. Ecol. Ecol., 84, 3105–3117.
He, K. & Zhang, J. (2009). Testing the correlation between beta diversity and differences in productivity among global ecoregions, biomes, and biogeographical realms. Ecol. Inform., 4, 93–98.
Huang, Q., Swatantran, A., Dubayah, R. & Goetz, S.J. (2014). The Influence of Vegetation Height Heterogeneity on Forest and Woodland Bird Species Richness across the United States. PLoS One, 9, e103236.
Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. & Ferreira, L.G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 83, 195–213.
Huey, R.B., Kearney, M.R., Krockenberger, A., Holtum, J.A.M., Jess, M. & Williams, S.E. (2012). Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B Biol. Sci., 367, 1665–1679.
Hutchinson, G.E. (1957). Concluding Remarks. Cold Spring Harb. Symp. Quant. Biol. Cold Spring Harbor Laboratory Press.
IUCN 2019. Conservation Actions Classification Scheme (Version 2.0). IUCN, Gland, Switzerland. Downloadable from: https://www.iucnredlist.org/resources/conservation-actions-classification-scheme
Jones, H.H., Barreto, E., Murillo, O. & Robinson, S.K. (2021). Turnover-driven loss of forest-dependent species changes avian species richness, functional diversity, and community composition in Andean forest fragments. Glob. Ecol. Conserv., 32.
Kissling, W.D., Field, R., Böhning-Gaese, K. & Kissling, D. (2008). Spatial patterns of woody plant and bird diversity: functional relationships or environmental effects? Glob. Ecol. Biogeogr.
Laliberté, E., and P. Legendre (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299-305.
Laliberté, E., Legendre, P., and B. Shipley. (2014). FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12.
LaRue, E.A., Wagner, F.W., Fei, S., Atkins, J.W., Fahey, R.T., Gough, C.M., et al. (2020). Compatibility of aerial and terrestrial LiDAR for quantifying forest structural diversity. Remote Sens., 12.
Li, Y., Zhao, M., Motesharrei, S., Mu, Q., Kalnay, E. & Li, S. (2015). Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 2015 61, 6, 1–8.
MacArthur, R.H. & MacArthur, J.W. (1961). On Bird Species Diversity. Ecology, 42, 594–598.
Mittelbach, G.G., Steiner, C.F., Scheiner, S.M., Gross, K.L., Reynolds, H.L., Waide, R.B., et al. (2001). What is the observed relationship between species richness and productivity? Ecology, 82, 2381–2396.
Onaindia, M., Dominguez, I., Albizu, I., Garbisu, C. & Amezaga, I. (2004). Vegetation diversity and vertical structure as indicators of forest disturbance. For. Ecol. Manage., 195, 341–354.
Patil, I. (2021). Visualizations with statistical details: The ’ggstatsplot’ approach. Journal of Open Source Software, 6(61), 3167, doi:10.21105/joss.03167
Pavoine S (2020). adiv: An r package to analyse biodiversity in ecology. Methods in Ecology and Evolution, 11, 1106-1112. URL:https://doi.org/10.1111/2041-210X.13430
Pavoine S (2021). adiv: Analysis of Diversity. R package version 2.1.1, URL: https://CRAN.R-project.org/package=adiv.
Pavoine, S., Ricotta, C. (2019). A simple translation from indices of species diversity to indices of phylogenetic diversity. Ecological Indicators, 101, 552–561.
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Rishmawi, K., Huang, C. & Zhan, X. (2021). Monitoring key forest structure attributes across the conterminous united states by integrating gedi lidar measurements and viirs data. Remote Sens., 13, 1–23.
Robert J. Hijmans (2021). raster: Geographic Data Analysis and Modeling. R package version 3.4-13. https://CRAN.R-project.org/package=raster
Roll, U., Geffen, E. & Yom-Tov, Y. (2015). Linking vertebrate species richness to tree canopy height on a global scale. Glob. Ecol. Biogeogr., 24, 814–825.
Roussel, J.R. & Auty, D. (2021). Airborne LiDAR Data Manipulation and Visualization for Forestry Applications. R package version 3.1.3. https://cran.r-project.org/package=lidR
Roussel, J.R., Auty, D., Coops, N.C., Tompalski, P., Goodbody, T.R.H., Meador, A.S., et al. (2020). lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sens. Environ.
Ruefenacht, B., Finco, M. V., Nelson, M.D., Czaplewski, R., Helmer, E.H., Blackard, J.A., et al. (2008). Conterminous U.S. and Alaska forest type mapping using forest inventory and analysis data. Photogramm. Eng. Remote Sensing, 74, 1379–1388.
Stein, A., Gerstner, K. & Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett., 17, 866–880.
Storch, D., Bohdalková, E. & Okie, J. (2018). The more-individuals hypothesis revisited: the role of community abundance in species richness regulation and the productivity–diversity relationship. Ecol. Lett., 21, 920–937.
Storch, D., Davies, R.G., Zají_, S., David, C., Orme, L., Olson, V., et al. (2006). Energy, range dynamics and global species richness patterns: reconciling mid-domain effects and environmental determinants of avian diversity. Ecol. Lett., 9, 1308–1320.
T. Hothorn, P. Buehlmann, T. Kneib, M. Schmid, and B. Hofner (2021). mboost: Model-Based Boosting, R package version 2.9-5, https://CRAN.R-project.org/package=mboost.
Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M.C., Schwager, M., et al. (2004). Animal Species Diversity Driven by Habitat Heterogeneity/Diversity: The Importance of Keystone Structures. J. Biogeogr., 31, 79–92.
Tobias, J.A., Sheard, C., Pigot, A.L., Devenish, A.J.M., Yang, J., Sayol, F., et al. (2022). AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett., 25, 581–597.
Torsten Hothorn, Peter Buehlmann, Thomas Kneib, Matthias Schmid and Benjamin Hofner (2010). Model-based Boosting 2.0. Journal of Machine Learning Research, 11, 2109-2113.
Vanwalleghem, T. & Meentemeyer, R.K. (2009). Predicting Forest Microclimate in Heterogeneous Landscapes, 12, 1158–1172.
Vierling, K.T., Vierling, L.A., Gould, W.A., Martinuzzi, S. & Clawges, R.M. (2008). Lidar: Shedding new light on habitat characterization and modeling. Front. Ecol. Environ., 6, 90–98.
Violle, C., Enquist, B.J., Mcgill, B.J., Jiang, L., Albert, H., Hulshof, C., et al. (2012). The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol., 27, 245–253.
Von Arx, G., Graf Pannatier, E., Thimonier, A. & Rebetez, M. (2013). Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. J. Ecol., 101, 1201–1213.
Voskamp, A., Baker, D.J., Stephens, P.A., Valdes, P.J. & Willis, S.G. (2017). Global patterns in the divergence between phylogenetic diversity and species richness in terrestrial birds. J. Biogeogr., 44, 709–721.
Whittaker, R. (1975). Communities and Ecosystems, 2nd ed., NY: MacMillan.
Zellweger, F., Baltensweiler, A., Ginzler, C., Roth, T., Braunisch, V., Bugmann, H., et al. (2016). Environmental predictors of species richness in forest landscapes: abiotic factors versus vegetation structure. J. Biogeogr., 43, 1080–1090.
Figures: