References
Atkins, J.W., Fahey, R.T., Hardiman, B.H. & Gough, C.M. (2018). Forest
Canopy Structural Complexity and Light Absorption Relationships at the
Subcontinental Scale. J. Geophys. Res. Biogeosciences, 123, 1387–1405.
Bae, S., Müller, J., Lee, D., Vierling, K.T., Vogeler, J.C., Vierling,
L.A., et al. (2018). Taxonomic, functional, and phylogenetic diversity
of bird assemblages are oppositely associated to productivity and
heterogeneity in temperate forests. Remote Sens. Environ., 215,
145–156.
Barnett, D.T., Duffy, P.A., Schimel, D.S., Krauss, R.E., Irvine, K.M.,
Davis, F.W., et al. (2019). The terrestrial organism and biogeochemistry
spatial sampling design for the National Ecological Observatory Network.
Ecosphere, 10, e02540.
Bouvier, M., Durrieu, S., Fournier, R.A. & Renaud, J.P. (2015).
Generalizing predictive models of forest inventory attributes using an
area-based approach with airborne LiDAR data. Remote Sens. Environ.,
156, 322–334.
Cadotte, M.W., Carscadden, K. & Mirotchnick, N. (2011). Beyond species:
functional diversity and the maintenance of ecological processes and
services. J. Appl. Ecol., 48, 1079–1087.
Carrasco, L., Giam, X., Pape_, M. & Sheldon, K. (2019). Metrics of
Lidar-derived 3D vegetation structure reveal contrasting effects of
horizontal and vertical forest heterogeneity on bird species richness.
Remote Sens., 11, 1–19.
Carrasco, L., Norton, L., Henrys, P., Siriwardena, G.M., Rhodes, C.J.,
Rowland, C., et al. (2018). Habitat diversity and structure regulate
British bird richness: Implications of non-linear relationships for
conservation. Biol. Conserv., 226, 256–263.
Chu, C., Lutz, J.A., Král, K., Vr_ka, T., Yin, X., Myers, J.A., et al.
(2019). Direct and indirect effects of climate on richness drive the
latitudinal diversity gradient in forest trees. Ecol. Lett., 22,
245–255.
Cooper, W.J., McShea, W.J., Forrester, T. & Luther, D.A. (2020a). The
value of local habitat heterogeneity and productivity when estimating
avian species richness and species of concern. Ecosphere, 11.
Cooper, W.J., McShea, W.J., Luther, D.A. & Forrester, T. (2020b).
Incorporating local habitat heterogeneity and productivity measures when
modelling vertebrate richness. Environ. Conserv., 47, 7–14.
Coops, N.C., Rickbeil, G.J.M., Bolton, D.K., Andrew, M.E. & Brouwers,
N.C. (2018). Disentangling vegetation and climate as drivers of
Australian vertebrate richness. Ecography (Cop.)., 41, 1147–1160.
Currie, D.J. (1991). Energy and large-scale patterns of animal- and
plant- species richness. Am. Nat., 137, 27–49.
Davies-Colley, R.J., Payne, G.W. & Van Elswijk, M. (2000). Microclimate
gradients across a forest edge. N. Z. J. Ecol., 24, 111–121.
Davies, A.B. & Asner, G.P. (2014). Advances in animal ecology from
3D-LiDAR ecosystem mapping. Trends Ecol. Evol., 29, 681–691.
Davis, K.T., Dobrowski, S.Z., Holden, Z.A., Higuera, P.E. & Abatzoglou,
J.T. (2019). Microclimatic buffering in forests of the future: the role
of local water balance. Ecography (Cop.)., 42, 1–11.
De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B.R.,
Hylander, K., Luoto, M., et al. (2019). Global buffering of temperatures
under forest canopies. Nat. Ecol. Evol., 3, 744–749.
De Lombaerde, E., Vangansbeke, P., Lenoir, J., Van Meerbeek, K.,
Lembrechts, J., Rodríguez-Sánchez, F., et al. (2022). Maintaining
forest cover to enhance temperature buffering under future climate
change. Sci. Total Environ. , 810, 151338.
Ehbrecht, M., Seidel, D., Annighöfer, P., Kreft, H., Köhler, M., Zemp,
D.C., et al. (2021). Global patterns and climatic controls of forest
structural complexity. Nat. Commun., 12.
Fahey, R.T., Atkins, J.W., Gough, C.M., Hardiman, B.S., Nave, L.E.,
Tallant, J.M., et al. (2019). Defining a spectrum of integrative
trait-based vegetation canopy structural types. Ecol. Lett., 22,
2049–2059.
Farwell, L.S., Elsen, P.R., Razenkova, E., Pidgeon, A.M. & Radeloff,
V.C. (2020). Habitat heterogeneity captured by 30-m resolution satellite
image texture predicts bird richness across the United States. Ecol.
Appl., 30.
Ferger, S.W., Schleuning, M., Hemp, A., Howell, K.M. & Böhning-Gaese,
K. (2014). Food resources and vegetation structure mediate climatic
effects on species richness of birds. Glob. Ecol. Biogeogr., 23,
541–549.
Ferrer-Paris, J.R., Zager, I., Keith, D.A., Oliveira-Miranda, M.A.,
Rodríguez, J.P., Josse, C., et al. (2019). An ecosystem risk assessment
of temperate and tropical forests of the Americas with an outlook on
future conservation strategies. Conserv. Lett., 12.
Field, R., Hawkins, B.A., Cornell, H. V., Currie, D.J., Diniz-Filho,
J.A.F., Guégan, J.-F., et al. (2009). Spatial species-richness gradients
across scales: a meta-analysis. J. Biogeogr., 36, 132–147.
Fotis, A.T., Morin, T.H., Fahey, R.T., Hardiman, B.S., Bohrer, G. &
Curtis, P.S. (2018). Forest structure in space and time: Biotic and
abiotic determinants of canopy complexity and their effects on net
primary productivity. Agric. For. Meteorol., 250–251, 181–191.
Franklin, J.F., Spies, T.A., Pelt, R. Van, Carey, A.B., Thornburgh,
D.A., Berg, D.R., et al. (2002). Disturbances and structural development
of natural forest ecosystems with silvicultural implications, using
Douglas-fir forests as an example. For. Ecol. Manage., 155, 399–423.
Frey, S.J.K., Hadley, A.S. & Betts, M.G. (2016). Microclimate predicts
within-season distribution dynamics of montane forest birds. Divers.
Distrib., 22, 944–959.
Gagic, V., Bartomeus, I., Jonsson, T., Taylor, A., Winqvist, C.,
Fischer, C., et al. (2015). Functional identity and diversity of animals
predict ecosystem functioning better than species-based indices. Proc.
R. Soc. B Biol. Sci., 282, 20142620.
Goetz, S., Steinberg, D., Dubayah, R. & Blair, B. (2007). Laser remote
sensing of canopy habitat heterogeneity as a predictor of bird species
richness in an eastern temperate forest, USA. Remote Sens. Environ.,
108, 254–263.
Goetz, S.J., Steinberg, D., Betts, M.G., Holmes, R.T., Doran, P.J.,
Dubayah, R., et al. (2010). Lidar remote sensing variables predict
breeding habitat of a Neotropical migrant bird. Ecology, 91, 1569–1576.
Griesemer, J. R. (1994). Niche: Historical perspectives. In: Fox Keller,
E. and Lloyd, E. A., eds. Keywords in Evolutionary Biology. Cambridge,
MA: Harvard University Press, 231–240.
Hakkenberg, C.R. & Goetz, S.J. (2021). Climate mediates the
relationship between plant biodiversity and forest structure across the
United States. Glob. Ecol. Biogeogr., 30, 2245–2258.
Hanni, D.J., White, C.M., Van Lanen, N.J., Birek, J.J., Berven, J.M.,
Mclaren, M.F., et al. (2017). Field Protocol for Spatially Balanced
Sampling of Landbird Populations Integrated.
Hardiman, B.S., Bohrer, G., Gough, C.M., Vogel, C.S. & Curtis, P.S.
(2011). The role of canopy structural complexity in wood net primary
production of a maturing northern deciduous forest. Ecology, 92,
1818–1827.
Hawkins, B., Field, R., Cornell, H., Currie, D., Guégan, J.-F., Kaufman,
D., et al. (2003). ENERGY, WATER, AND BROAD-SCALE GEOGRAPHIC PATTERNS OF
SPECIES RICHNESS. CONCEP TS Synth. EMPHASIZING NEW IDEAS TO Stimul. Res.
Ecol. Ecol., 84, 3105–3117.
He, K. & Zhang, J. (2009). Testing the correlation between beta
diversity and differences in productivity among global ecoregions,
biomes, and biogeographical realms. Ecol. Inform., 4, 93–98.
Huang, Q., Swatantran, A., Dubayah, R. & Goetz, S.J. (2014). The
Influence of Vegetation Height Heterogeneity on Forest and Woodland Bird
Species Richness across the United States. PLoS One, 9, e103236.
Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. & Ferreira,
L.G. (2002). Overview of the radiometric and biophysical performance of
the MODIS vegetation indices. Remote Sens. Environ., 83, 195–213.
Huey, R.B., Kearney, M.R., Krockenberger, A., Holtum, J.A.M., Jess, M.
& Williams, S.E. (2012). Predicting organismal vulnerability to climate
warming: roles of behaviour, physiology and adaptation. Philos. Trans.
R. Soc. B Biol. Sci., 367, 1665–1679.
Hutchinson, G.E. (1957). Concluding Remarks. Cold Spring Harb. Symp.
Quant. Biol. Cold Spring Harbor Laboratory Press.
IUCN 2019. Conservation Actions Classification Scheme (Version 2.0).
IUCN, Gland, Switzerland. Downloadable from:
https://www.iucnredlist.org/resources/conservation-actions-classification-scheme
Jones, H.H., Barreto, E., Murillo, O. & Robinson, S.K. (2021).
Turnover-driven loss of forest-dependent species changes avian species
richness, functional diversity, and community composition in Andean
forest fragments. Glob. Ecol. Conserv., 32.
Kissling, W.D., Field, R., Böhning-Gaese, K. & Kissling, D. (2008).
Spatial patterns of woody plant and bird diversity: functional
relationships or environmental effects? Glob. Ecol. Biogeogr.
Laliberté, E., and P. Legendre (2010). A distance-based framework for
measuring functional diversity from multiple traits. Ecology 91:299-305.
Laliberté, E., Legendre, P., and B. Shipley. (2014). FD: measuring
functional diversity from multiple traits, and other tools for
functional ecology. R package version 1.0-12.
LaRue, E.A., Wagner, F.W., Fei, S., Atkins, J.W., Fahey, R.T., Gough,
C.M., et al. (2020). Compatibility of aerial and terrestrial LiDAR for
quantifying forest structural diversity. Remote Sens., 12.
Li, Y., Zhao, M., Motesharrei, S., Mu, Q., Kalnay, E. & Li, S. (2015).
Local cooling and warming effects of forests based on satellite
observations. Nat. Commun. 2015 61, 6, 1–8.
MacArthur, R.H. & MacArthur, J.W. (1961). On Bird Species Diversity.
Ecology, 42, 594–598.
Mittelbach, G.G., Steiner, C.F., Scheiner, S.M., Gross, K.L., Reynolds,
H.L., Waide, R.B., et al. (2001). What is the observed relationship
between species richness and productivity? Ecology, 82, 2381–2396.
Onaindia, M., Dominguez, I., Albizu, I., Garbisu, C. & Amezaga, I.
(2004). Vegetation diversity and vertical structure as indicators of
forest disturbance. For. Ecol. Manage., 195, 341–354.
Patil, I. (2021). Visualizations with statistical details: The
’ggstatsplot’ approach. Journal of Open Source Software, 6(61), 3167,
doi:10.21105/joss.03167
Pavoine S (2020). adiv: An r package to analyse biodiversity in ecology.
Methods in Ecology and Evolution, 11, 1106-1112.
URL:https://doi.org/10.1111/2041-210X.13430
Pavoine S (2021). adiv: Analysis of Diversity. R package version 2.1.1,
URL: https://CRAN.R-project.org/package=adiv.
Pavoine, S., Ricotta, C. (2019). A simple translation from indices of
species diversity to indices of phylogenetic diversity. Ecological
Indicators, 101, 552–561.
R Core Team (2021). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.
Rishmawi, K., Huang, C. & Zhan, X. (2021). Monitoring key forest
structure attributes across the conterminous united states by
integrating gedi lidar measurements and viirs data. Remote Sens., 13,
1–23.
Robert J. Hijmans (2021). raster: Geographic Data Analysis and Modeling.
R package version 3.4-13. https://CRAN.R-project.org/package=raster
Roll, U., Geffen, E. & Yom-Tov, Y. (2015). Linking vertebrate species
richness to tree canopy height on a global scale. Glob. Ecol. Biogeogr.,
24, 814–825.
Roussel, J.R. & Auty, D. (2021). Airborne LiDAR Data Manipulation and
Visualization for Forestry Applications. R package version 3.1.3.
https://cran.r-project.org/package=lidR
Roussel, J.R., Auty, D., Coops, N.C., Tompalski, P., Goodbody, T.R.H.,
Meador, A.S., et al. (2020). lidR: An R package for analysis of Airborne
Laser Scanning (ALS) data. Remote Sens. Environ.
Ruefenacht, B., Finco, M. V., Nelson, M.D., Czaplewski, R., Helmer,
E.H., Blackard, J.A., et al. (2008). Conterminous U.S. and Alaska forest
type mapping using forest inventory and analysis data. Photogramm. Eng.
Remote Sensing, 74, 1379–1388.
Stein, A., Gerstner, K. & Kreft, H. (2014). Environmental heterogeneity
as a universal driver of species richness across taxa, biomes and
spatial scales. Ecol. Lett., 17, 866–880.
Storch, D., Bohdalková, E. & Okie, J. (2018). The more-individuals
hypothesis revisited: the role of community abundance in species
richness regulation and the productivity–diversity relationship. Ecol.
Lett., 21, 920–937.
Storch, D., Davies, R.G., Zají_, S., David, C., Orme, L., Olson, V., et
al. (2006). Energy, range dynamics and global species richness patterns:
reconciling mid-domain effects and environmental determinants of avian
diversity. Ecol. Lett., 9, 1308–1320.
T. Hothorn, P. Buehlmann, T. Kneib, M. Schmid, and B. Hofner (2021).
mboost: Model-Based Boosting, R package version 2.9-5,
https://CRAN.R-project.org/package=mboost.
Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M.C.,
Schwager, M., et al. (2004). Animal Species Diversity Driven by Habitat
Heterogeneity/Diversity: The Importance of Keystone Structures. J.
Biogeogr., 31, 79–92.
Tobias, J.A., Sheard, C., Pigot, A.L., Devenish, A.J.M., Yang, J.,
Sayol, F., et al. (2022). AVONET: morphological, ecological and
geographical data for all birds. Ecol. Lett., 25, 581–597.
Torsten Hothorn, Peter Buehlmann, Thomas Kneib, Matthias Schmid and
Benjamin Hofner (2010). Model-based Boosting 2.0. Journal of Machine
Learning Research, 11, 2109-2113.
Vanwalleghem, T. & Meentemeyer, R.K. (2009). Predicting Forest
Microclimate in Heterogeneous Landscapes, 12, 1158–1172.
Vierling, K.T., Vierling, L.A., Gould, W.A., Martinuzzi, S. & Clawges,
R.M. (2008). Lidar: Shedding new light on habitat characterization and
modeling. Front. Ecol. Environ., 6, 90–98.
Violle, C., Enquist, B.J., Mcgill, B.J., Jiang, L., Albert, H., Hulshof,
C., et al. (2012). The return of the variance: intraspecific variability
in community ecology. Trends Ecol. Evol., 27, 245–253.
Von Arx, G., Graf Pannatier, E., Thimonier, A. & Rebetez, M. (2013).
Microclimate in forests with varying leaf area index and soil moisture:
potential implications for seedling establishment in a changing climate.
J. Ecol., 101, 1201–1213.
Voskamp, A., Baker, D.J., Stephens, P.A., Valdes, P.J. & Willis, S.G.
(2017). Global patterns in the divergence between phylogenetic diversity
and species richness in terrestrial birds. J. Biogeogr., 44, 709–721.
Whittaker, R. (1975). Communities and Ecosystems, 2nd ed., NY:
MacMillan.
Zellweger, F., Baltensweiler, A., Ginzler, C., Roth, T., Braunisch, V.,
Bugmann, H., et al. (2016). Environmental predictors of species richness
in forest landscapes: abiotic factors versus vegetation structure. J.
Biogeogr., 43, 1080–1090.
Figures: