Acknowledgment
This study was supported by the National Natural Science Foundation of China (92051110, 31971446), by National Key Research and Development Program of China (2019YFA0606700, 2020YFA0607600), by the Natural Science Foundation of Shandong Province (ZR2020YQ21), and by the Qilu Young Scholarship of Shandong University. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Conflict of interest: none declared.
Supplementary information is available via the publisher’s website.
Data availability: sequencing data generated in this study is deposited at NCBI SRA portal under project ID PRJNA836637.
References
Allouche, O., Kalyuzhny, M., Moreno-Rueda, G., Pizarro, M., & Kadmon, R. (2012). Area-heterogeneity tradeoff and the diversity of ecological communities. Proc Natl Acad Sci U S A, 109 (43), 17495-17500. doi:10.1073/pnas.1208652109
Bardgett, R. D., & van der Putten, W. H. (2014). Belowground biodiversity and ecosystem functioning.Nature, 515 (7528), 505-511. doi:10.1038/nature13855
Barreto, D. P., Conrad, R., Klose, M., Claus, P., & Enrich-Prast, A. (2014). Distance-decay and taxa-area relationships for bacteria, archaea and methanogenic archaea in a tropical lake sediment. PLoS One, 9 (10), e110128. doi:10.1371/journal.pone.0110128
Bickel, S., & Or, D. (2021). The chosen few-variations in common and rare soil bacteria across biomes.ISME J, 15 (11), 3315-3325. doi:10.1038/s41396-021-00981-3
Bradford, M. A., Wood, S. A., Bardgett, R. D., Black, H. I., Bonkowski, M., Eggers, T., . . . Jones, T. H. (2014). Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc Natl Acad Sci U S A, 111 (40), 14478-14483. doi:10.1073/pnas.1413707111
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data.Nat Methods, 13 (7), 581-583. doi:10.1038/nmeth.3869
Chao, A., Chiu, C.-H., & Jost, L. (2014). Unifying Species Diversity, Phylogenetic Diversity, Functional Diversity, and Related Similarity and Differentiation Measures Through Hill Numbers. Annual Review of Ecology, Evolution, and Systematics, 45 (1), 297-324. doi:10.1146/annurev-ecolsys-120213-091540
Chen, Q.-L., Ding, J., Zhu, D., Hu, H.-W., Delgado-Baquerizo, M., Ma, Y.-B., . . . Zhu, Y.-G. (2020). Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biology and Biochemistry, 141 . doi:10.1016/j.soilbio.2019.107686
Chen, W., Jiao, S., Li, Q., Du, N., & Yang, G. (2019). Dispersal limitation relative to environmental filtering governs the vertical small‐scale assembly of soil microbiomes during restoration. Journal of Applied Ecology, 57 (2), 402-412. doi:10.1111/1365-2664.13533
Chiu, C. H., & Chao, A. (2014). Distance-based functional diversity measures and their decomposition: a framework based on Hill numbers. PLoS One, 9 (7), e100014. doi:10.1371/journal.pone.0100014
Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., . . . Tiedje, J. M. (2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res, 37 (Database issue), D141-145. doi:10.1093/nar/gkn879
Connor, E. F., & Mccoy, E. D. (1979). Statistics and Biology of the Species-Area Relationship.American Naturalist, 113 (6), 791-833. doi:Doi 10.1086/283438
Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Jeffries, T. C., Gaitan, J. J., Encinar, D., . . . Singh, B. K. (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun, 7 , 10541. doi:10.1038/ncomms10541
Ellison, A. M. (2010). Partitioning diversity. Ecology, 91 (7), 1962-1963. doi:10.1890/09-1692.1
Feinsinger, P., Spears, E. E., & Poole, R. W. (1981). A Simple Measure of Niche Breadth. Ecology, 62 (1), 27-32. doi:Doi 10.2307/1936664
Feinstein, L. M., & Blackwood, C. B. (2012). Taxa-area relationship and neutral dynamics influence the diversity of fungal communities on senesced tree leaves. Environ Microbiol, 14 (6), 1488-1499. doi:10.1111/j.1462-2920.2012.02737.x
Fuhrman, J. A., Cram, J. A., & Needham, D. M. (2015). Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol, 13 (3), 133-146. doi:10.1038/nrmicro3417
Gibbons, S. M., Caporaso, J. G., Pirrung, M., Field, D., Knight, R., & Gilbert, J. A. (2013). Evidence for a persistent microbial seed bank throughout the global ocean.Proc Natl Acad Sci U S A, 110 (12), 4651-4655. doi:10.1073/pnas.1217767110
Gilbert, B., & Lechowicz, M. J. (2004). Neutrality, niches, and dispersal in a temperate forest understory. Proc Natl Acad Sci U S A, 101 (20), 7651-7656. doi:10.1073/pnas.0400814101
Gilbert, J. A., Steele, J. A., Caporaso, J. G., Steinbruck, L., Reeder, J., Temperton, B., . . . Field, D. (2012). Defining seasonal marine microbial community dynamics.ISME J, 6 (2), 298-308. doi:10.1038/ismej.2011.107
Green, J. L., Holmes, A. J., Westoby, M., Oliver, I., Briscoe, D., Dangerfield, M., . . . Beattie, A. J. (2004). Spatial scaling of microbial eukaryote diversity. Nature, 432 (7018), 747-750. doi:10.1038/nature03034
Griffiths, R. I., Whiteley, A. S., O’Donnell, A. G., & Bailey, M. J. (2000). Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Applied and Environmental Microbiology, 66 (12), 5488-5491. doi:Doi 10.1128/Aem.66.12.5488-5491.2000
He, Z., Liu, D., Shi, Y., Wu, X., Dai, Y., Shang, Y., . . . Cui, Z. (2022). Broader environmental adaptation of rare rather than abundant bacteria in reforestation succession soil. Sci Total Environ, 828 , 154364. doi:10.1016/j.scitotenv.2022.154364
Horner-Devine, M. C., Lage, M., Hughes, J. B., & Bohannan, B. J. (2004). A taxa-area relationship for bacteria. Nature, 432 (7018), 750-753. doi:10.1038/nature03073
Horner-Devine, M. C., Lage, M., Hughes, J. B., & Bohannan, B. J. M. (2004). A taxa-area relationship for bacteria. Nature, 432 (7018), 750-753. doi:10.1038/nature03073
Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography . Princeton: Princeton University Press.
Huber, P., Metz, S., Unrein, F., Mayora, G., Sarmento, H., & Devercelli, M. (2020). Environmental heterogeneity determines the ecological processes that govern bacterial metacommunity assembly in a floodplain river system. ISME J, 14 (12), 2951-2966. doi:10.1038/s41396-020-0723-2
Islam, M. S., Sarker, M. J., Yamamoto, T., Wahab, M. A., & Tanaka, M. (2004). Water and sediment quality, partial mass budget and effluent N loading in coastal brackishwater shrimp farms in Bangladesh. Marine Pollution Bulletin, 48 (5-6), 471-485. doi:10.1016/j.marpolbul.2003.08.025
Jiang, Y., Lei, Y., Yang, Y., Korpelainen, H., Niinemets, Ü., & Li, C. (2018). Divergent assemblage patterns and driving forces for bacterial and fungal communities along a glacier forefield chronosequence. Soil Biology and Biochemistry, 118 , 207-216. doi:10.1016/j.soilbio.2017.12.019
Jiao, S., Chen, W., & Wei, G. (2017). Biogeography and ecological diversity patterns of rare and abundant bacteria in oil-contaminated soils. Mol Ecol, 26 (19), 5305-5317. doi:10.1111/mec.14218
Jiao, S., & Lu, Y. (2020). Abundant fungi adapt to broader environmental gradients than rare fungi in agricultural fields. Glob Chang Biol, 26 (8), 4506-4520. doi:10.1111/gcb.15130
Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., . . . Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology.Bioinformatics, 26 (11), 1463-1464. doi:10.1093/bioinformatics/btq166
Lefcheck, J. S., Byrnes, J. E. K., Isbell, F., Gamfeldt, L., Griffin, J. N., Eisenhauer, N., . . . Duffy, J. E. (2015). Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat Commun, 6 , 6936. doi:10.1038/ncomms7936
Luan, L., Jiang, Y., Cheng, M., Dini-Andreote, F., Sui, Y., Xu, Q., . . . Sun, B. (2020). Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nat Commun, 11 (1), 6406. doi:10.1038/s41467-020-20271-4
Lynch, J. M., & Barbano, D. M. (1999). Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products. Journal of Aoac International, 82 (6), 1389-1398.
Lynch, M. D., & Neufeld, J. D. (2015). Ecology and exploration of the rare biosphere. Nat Rev Microbiol, 13 (4), 217-229. doi:10.1038/nrmicro3400
Lyons, K. G., & Schwartz, M. W. (2001). Rare species loss alters ecosystem function - invasion resistance. Ecology Letters, 4 (4), 358-365. doi:DOI 10.1046/j.1461-0248.2001.00235.x
Ma, Z. S. (2018). DAR (diversity-area relationship): Extending classic SAR (species-area relationship) for biodiversity and biogeography analyses. Ecol Evol, 8 (20), 10023-10038. doi:10.1002/ece3.4425
Mo, Y., Zhang, W., Yang, J., Lin, Y., Yu, Z., & Lin, S. (2018). Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. ISME J, 12 (9), 2198-2210. doi:10.1038/s41396-018-0153-6
Mouillot, D., Bellwood, D. R., Baraloto, C., Chave, J., Galzin, R., Harmelin-Vivien, M., . . . Thuiller, W. (2013). Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol, 11 (5), e1001569. doi:10.1371/journal.pbio.1001569
Nekola, J. C., & White, P. S. (1999). The distance decay of similarity in biogeography and ecology.Journal of Biogeography, 26 (4), 867-878. doi:DOI 10.1046/j.1365-2699.1999.00305.x
Ning, D., Yuan, M., Wu, L., Zhang, Y., Guo, X., Zhou, X., . . . Zhou, J. (2020). A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat Commun, 11 (1), 4717. doi:10.1038/s41467-020-18560-z
O’Brien, S. L., Gibbons, S. M., Owens, S. M., Hampton-Marcell, J., Johnston, E. R., Jastrow, J. D., . . . Antonopoulos, D. A. (2016). Spatial scale drives patterns in soil bacterial diversity. Environ Microbiol, 18 (6), 2039-2051. doi:10.1111/1462-2920.13231
Pianka, E. R. (1974). Niche overlap and diffuse competition. Proc Natl Acad Sci U S A, 71 (5), 2141-2145. doi:10.1073/pnas.71.5.2141
Rosenzweig, M. L. (1995).Species diversity in space and time . Cambridge ; New York: Cambridge University Press.
Sogin, M. L., Morrison, H. G., Huber, J. A., Mark Welch, D., Huse, S. M., Neal, P. R., . . . Herndl, G. J. (2006). Microbial diversity in the deep sea and the underexplored ”rare biosphere”. Proc Natl Acad Sci U S A, 103 (32), 12115-12120. doi:10.1073/pnas.0605127103
Stegen, J. C., Lin, X., Fredrickson, J. K., Chen, X., Kennedy, D. W., Murray, C. J., . . . Konopka, A. (2013). Quantifying community assembly processes and identifying features that impose them. ISME J, 7 (11), 2069-2079. doi:10.1038/ismej.2013.93
Stegen, J. C., Lin, X., Konopka, A. E., & Fredrickson, J. K. (2012). Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J, 6 (9), 1653-1664. doi:10.1038/ismej.2012.22
Stein, A., Gerstner, K., & Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett, 17 (7), 866-880. doi:10.1111/ele.12277
Tilman, D. (1983). Some Thoughts on Resource Competition and Diversity in Plant-Communities.Ecological Studies, 43 , 322-336.
Tu, Q., Deng, Y., Yan, Q., Shen, L., Lin, L., He, Z., . . . Zhou, J. (2016). Biogeographic patterns of soil diazotrophic communities across six forests in North America. Mol Ecol, 25 (12), 2937-2948. doi:10.1111/mec.13651
van Schalkwyk, J., Pryke, J. S., & Samways, M. J. (2019). Contribution of common vs. rare species to species diversity patterns in conservation corridors. Ecological Indicators, 104 , 279-288. doi:10.1016/j.ecolind.2019.05.014
Vellend, M. (2010). Conceptual synthesis in community ecology. Q Rev Biol, 85 (2), 183-206. doi:10.1086/652373
Wan, W., Gadd, G. M., Yang, Y., Yuan, W., Gu, J., Ye, L., & Liu, W. (2021). Environmental adaptation is stronger for abundant rather than rare microorganisms in wetland soils from the Qinghai-Tibet Plateau. Mol Ecol, 30 (10), 2390-2403. doi:10.1111/mec.15882
White, H. J., Pakeman, R. J., & Buckley, Y. M. (2022). Common species contribute little to spatial patterns of functional diversity across scales in coastal grasslands.Journal of Ecology . doi:10.1111/1365-2745.13858
Xiong, C., He, J. Z., Singh, B. K., Zhu, Y. G., Wang, J. T., Li, P. P., . . . Zhang, L. M. (2021). Rare taxa maintain the stability of crop mycobiomes and ecosystem functions.Environ Microbiol, 23 (4), 1907-1924. doi:10.1111/1462-2920.15262
Xue, M., Guo, Z., Gu, X., Gao, H., Weng, S., Zhou, J., . . . Zhou, X. (2020). Rare rather than abundant microbial communities drive the effects of long-term greenhouse cultivation on ecosystem functions in subtropical agricultural soils.Sci Total Environ, 706 , 136004. doi:10.1016/j.scitotenv.2019.136004
Xue, Y., Chen, H., Yang, J. R., Liu, M., Huang, B., & Yang, J. (2018). Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. ISME J, 12 (9), 2263-2277. doi:10.1038/s41396-018-0159-0
Yang, Z., Liu, X., Zhou, M., Ai, D., Wang, G., Wang, Y., . . . Lundholm, J. T. (2015). The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient. Sci Rep, 5 , 15723. doi:10.1038/srep15723
Zhang, W., Pan, Y., Yang, J., Chen, H., Holohan, B., Vaudrey, J., . . . McManus, G. B. (2018). The diversity and biogeography of abundant and rare intertidal marine microeukaryotes explained by environment and dispersal limitation. Environ Microbiol, 20 (2), 462-476. doi:10.1111/1462-2920.13916
Zhang, X., Liu, S., Wang, J., Huang, Y., Freedman, Z., Fu, S., . . . Schuler, J. (2020). Local community assembly mechanisms shape soil bacterial beta diversity patterns along a latitudinal gradient. Nat Commun, 11 (1), 5428. doi:10.1038/s41467-020-19228-4
Zhou, J., & Ning, D. (2017). Stochastic Community Assembly: Does It Matter in Microbial Ecology?Microbiol Mol Biol Rev, 81 (4). doi:10.1128/MMBR.00002-17
Zinger, L., Boetius, A., & Ramette, A. (2014). Bacterial taxa-area and distance-decay relationships in marine environments. Mol Ecol, 23 (4), 954-964. doi:10.1111/mec.12640