Acknowledgment
This study was supported by the National Natural Science Foundation of
China (92051110, 31971446), by National Key Research and Development
Program of China (2019YFA0606700, 2020YFA0607600), by the Natural
Science Foundation of Shandong Province (ZR2020YQ21), and by the Qilu
Young Scholarship of Shandong University. The funders had no role in
study design, data collection and interpretation, or the decision to
submit the work for publication.
Conflict of interest: none declared.
Supplementary information is available via the publisher’s website.
Data availability: sequencing data generated in this study is deposited
at NCBI SRA portal under project ID PRJNA836637.
References
Allouche, O., Kalyuzhny, M.,
Moreno-Rueda, G., Pizarro, M., & Kadmon, R. (2012). Area-heterogeneity
tradeoff and the diversity of ecological communities. Proc Natl
Acad Sci U S A, 109 (43), 17495-17500. doi:10.1073/pnas.1208652109
Bardgett, R. D., & van der Putten, W.
H. (2014). Belowground biodiversity and ecosystem functioning.Nature, 515 (7528), 505-511. doi:10.1038/nature13855
Barreto, D. P., Conrad, R., Klose, M.,
Claus, P., & Enrich-Prast, A. (2014). Distance-decay and taxa-area
relationships for bacteria, archaea and methanogenic archaea in a
tropical lake sediment. PLoS One, 9 (10), e110128.
doi:10.1371/journal.pone.0110128
Bickel, S., & Or, D. (2021). The
chosen few-variations in common and rare soil bacteria across biomes.ISME J, 15 (11), 3315-3325. doi:10.1038/s41396-021-00981-3
Bradford, M. A., Wood, S. A.,
Bardgett, R. D., Black, H. I., Bonkowski, M., Eggers, T., . . . Jones,
T. H. (2014). Discontinuity in the responses of ecosystem processes and
multifunctionality to altered soil community composition. Proc
Natl Acad Sci U S A, 111 (40), 14478-14483. doi:10.1073/pnas.1413707111
Callahan, B. J., McMurdie, P. J.,
Rosen, M. J., Han, A. W., Johnson, A. J., & Holmes, S. P. (2016).
DADA2: High-resolution sample inference from Illumina amplicon data.Nat Methods, 13 (7), 581-583. doi:10.1038/nmeth.3869
Chao, A., Chiu, C.-H., & Jost, L.
(2014). Unifying Species Diversity, Phylogenetic Diversity, Functional
Diversity, and Related Similarity and Differentiation Measures Through
Hill Numbers. Annual Review of Ecology, Evolution, and
Systematics, 45 (1), 297-324. doi:10.1146/annurev-ecolsys-120213-091540
Chen, Q.-L., Ding, J., Zhu, D., Hu,
H.-W., Delgado-Baquerizo, M., Ma, Y.-B., . . . Zhu, Y.-G. (2020). Rare
microbial taxa as the major drivers of ecosystem multifunctionality in
long-term fertilized soils. Soil Biology and Biochemistry, 141 .
doi:10.1016/j.soilbio.2019.107686
Chen, W., Jiao, S., Li, Q., Du, N., &
Yang, G. (2019). Dispersal limitation relative to environmental
filtering governs the vertical small‐scale assembly of soil microbiomes
during restoration. Journal of Applied Ecology, 57 (2), 402-412.
doi:10.1111/1365-2664.13533
Chiu, C. H., & Chao, A. (2014).
Distance-based functional diversity measures and their decomposition: a
framework based on Hill numbers. PLoS One, 9 (7), e100014.
doi:10.1371/journal.pone.0100014
Cole, J. R., Wang, Q., Cardenas, E.,
Fish, J., Chai, B., Farris, R. J., . . . Tiedje, J. M. (2009). The
Ribosomal Database Project: improved alignments and new tools for rRNA
analysis. Nucleic Acids Res, 37 (Database issue), D141-145.
doi:10.1093/nar/gkn879
Connor, E. F., & Mccoy, E. D.
(1979). Statistics and Biology of the Species-Area Relationship.American Naturalist, 113 (6), 791-833. doi:Doi 10.1086/283438
Delgado-Baquerizo, M., Maestre, F.
T., Reich, P. B., Jeffries, T. C., Gaitan, J. J., Encinar, D., . . .
Singh, B. K. (2016). Microbial diversity drives multifunctionality in
terrestrial ecosystems. Nat Commun, 7 , 10541.
doi:10.1038/ncomms10541
Ellison, A. M. (2010). Partitioning
diversity. Ecology, 91 (7), 1962-1963. doi:10.1890/09-1692.1
Feinsinger, P., Spears, E. E., &
Poole, R. W. (1981). A Simple Measure of Niche Breadth. Ecology,
62 (1), 27-32. doi:Doi 10.2307/1936664
Feinstein, L. M., & Blackwood, C. B.
(2012). Taxa-area relationship and neutral dynamics influence the
diversity of fungal communities on senesced tree leaves. Environ
Microbiol, 14 (6), 1488-1499. doi:10.1111/j.1462-2920.2012.02737.x
Fuhrman, J. A., Cram, J. A., &
Needham, D. M. (2015). Marine microbial community dynamics and their
ecological interpretation. Nat Rev Microbiol, 13 (3), 133-146.
doi:10.1038/nrmicro3417
Gibbons, S. M., Caporaso, J. G.,
Pirrung, M., Field, D., Knight, R., & Gilbert, J. A. (2013). Evidence
for a persistent microbial seed bank throughout the global ocean.Proc Natl Acad Sci U S A, 110 (12), 4651-4655.
doi:10.1073/pnas.1217767110
Gilbert, B., & Lechowicz, M. J.
(2004). Neutrality, niches, and dispersal in a temperate forest
understory. Proc Natl Acad Sci U S A, 101 (20), 7651-7656.
doi:10.1073/pnas.0400814101
Gilbert, J. A., Steele, J. A.,
Caporaso, J. G., Steinbruck, L., Reeder, J., Temperton, B., . . . Field,
D. (2012). Defining seasonal marine microbial community dynamics.ISME J, 6 (2), 298-308. doi:10.1038/ismej.2011.107
Green, J. L., Holmes, A. J., Westoby,
M., Oliver, I., Briscoe, D., Dangerfield, M., . . . Beattie, A. J.
(2004). Spatial scaling of microbial eukaryote diversity. Nature,
432 (7018), 747-750. doi:10.1038/nature03034
Griffiths, R. I., Whiteley, A. S.,
O’Donnell, A. G., & Bailey, M. J. (2000). Rapid method for coextraction
of DNA and RNA from natural environments for analysis of ribosomal DNA-
and rRNA-based microbial community composition. Applied and
Environmental Microbiology, 66 (12), 5488-5491. doi:Doi
10.1128/Aem.66.12.5488-5491.2000
He, Z., Liu, D., Shi, Y., Wu, X.,
Dai, Y., Shang, Y., . . . Cui, Z. (2022). Broader environmental
adaptation of rare rather than abundant bacteria in reforestation
succession soil. Sci Total Environ, 828 , 154364.
doi:10.1016/j.scitotenv.2022.154364
Horner-Devine, M. C., Lage, M.,
Hughes, J. B., & Bohannan, B. J. (2004). A taxa-area relationship for
bacteria. Nature, 432 (7018), 750-753. doi:10.1038/nature03073
Horner-Devine, M. C., Lage, M.,
Hughes, J. B., & Bohannan, B. J. M. (2004). A taxa-area relationship
for bacteria. Nature, 432 (7018), 750-753. doi:10.1038/nature03073
Hubbell, S. P. (2001). The
unified neutral theory of biodiversity and biogeography . Princeton:
Princeton University Press.
Huber, P., Metz, S., Unrein, F.,
Mayora, G., Sarmento, H., & Devercelli, M. (2020). Environmental
heterogeneity determines the ecological processes that govern bacterial
metacommunity assembly in a floodplain river system. ISME J,
14 (12), 2951-2966. doi:10.1038/s41396-020-0723-2
Islam, M. S., Sarker, M. J.,
Yamamoto, T., Wahab, M. A., & Tanaka, M. (2004). Water and sediment
quality, partial mass budget and effluent N loading in coastal
brackishwater shrimp farms in Bangladesh. Marine Pollution
Bulletin, 48 (5-6), 471-485. doi:10.1016/j.marpolbul.2003.08.025
Jiang, Y., Lei, Y., Yang, Y.,
Korpelainen, H., Niinemets, Ü., & Li, C. (2018). Divergent assemblage
patterns and driving forces for bacterial and fungal communities along a
glacier forefield chronosequence. Soil Biology and Biochemistry,
118 , 207-216. doi:10.1016/j.soilbio.2017.12.019
Jiao, S., Chen, W., & Wei, G.
(2017). Biogeography and ecological diversity patterns of rare and
abundant bacteria in oil-contaminated soils. Mol Ecol, 26 (19),
5305-5317. doi:10.1111/mec.14218
Jiao, S., & Lu, Y. (2020). Abundant
fungi adapt to broader environmental gradients than rare fungi in
agricultural fields. Glob Chang Biol, 26 (8), 4506-4520.
doi:10.1111/gcb.15130
Kembel, S. W., Cowan, P. D., Helmus,
M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., . . . Webb, C. O.
(2010). Picante: R tools for integrating phylogenies and ecology.Bioinformatics, 26 (11), 1463-1464.
doi:10.1093/bioinformatics/btq166
Lefcheck, J. S., Byrnes, J. E. K.,
Isbell, F., Gamfeldt, L., Griffin, J. N., Eisenhauer, N., . . . Duffy,
J. E. (2015). Biodiversity enhances ecosystem multifunctionality across
trophic levels and habitats. Nat Commun, 6 , 6936.
doi:10.1038/ncomms7936
Luan, L., Jiang, Y., Cheng, M.,
Dini-Andreote, F., Sui, Y., Xu, Q., . . . Sun, B. (2020). Organism body
size structures the soil microbial and nematode community assembly at a
continental and global scale. Nat Commun, 11 (1), 6406.
doi:10.1038/s41467-020-20271-4
Lynch, J. M., & Barbano, D. M.
(1999). Kjeldahl nitrogen analysis as a reference method for protein
determination in dairy products. Journal of Aoac International,
82 (6), 1389-1398.
Lynch, M. D., & Neufeld, J. D.
(2015). Ecology and exploration of the rare biosphere. Nat Rev
Microbiol, 13 (4), 217-229. doi:10.1038/nrmicro3400
Lyons, K. G., & Schwartz, M. W.
(2001). Rare species loss alters ecosystem function - invasion
resistance. Ecology Letters, 4 (4), 358-365. doi:DOI
10.1046/j.1461-0248.2001.00235.x
Ma, Z. S. (2018). DAR (diversity-area
relationship): Extending classic SAR (species-area relationship) for
biodiversity and biogeography analyses. Ecol Evol, 8 (20),
10023-10038. doi:10.1002/ece3.4425
Mo, Y., Zhang, W., Yang, J., Lin, Y.,
Yu, Z., & Lin, S. (2018). Biogeographic patterns of abundant and rare
bacterioplankton in three subtropical bays resulting from selective and
neutral processes. ISME J, 12 (9), 2198-2210.
doi:10.1038/s41396-018-0153-6
Mouillot, D., Bellwood, D. R.,
Baraloto, C., Chave, J., Galzin, R., Harmelin-Vivien, M., . . .
Thuiller, W. (2013). Rare species support vulnerable functions in
high-diversity ecosystems. PLoS Biol, 11 (5), e1001569.
doi:10.1371/journal.pbio.1001569
Nekola, J. C., & White, P. S.
(1999). The distance decay of similarity in biogeography and ecology.Journal of Biogeography, 26 (4), 867-878. doi:DOI
10.1046/j.1365-2699.1999.00305.x
Ning, D., Yuan, M., Wu, L., Zhang,
Y., Guo, X., Zhou, X., . . . Zhou, J. (2020). A quantitative framework
reveals ecological drivers of grassland microbial community assembly in
response to warming. Nat Commun, 11 (1), 4717.
doi:10.1038/s41467-020-18560-z
O’Brien, S. L., Gibbons, S. M.,
Owens, S. M., Hampton-Marcell, J., Johnston, E. R., Jastrow, J. D., . .
. Antonopoulos, D. A. (2016). Spatial scale drives patterns in soil
bacterial diversity. Environ Microbiol, 18 (6), 2039-2051.
doi:10.1111/1462-2920.13231
Pianka, E. R. (1974). Niche overlap
and diffuse competition. Proc Natl Acad Sci U S A, 71 (5),
2141-2145. doi:10.1073/pnas.71.5.2141
Rosenzweig, M. L. (1995).Species diversity in space and time . Cambridge ; New York:
Cambridge University Press.
Sogin, M. L., Morrison, H. G., Huber,
J. A., Mark Welch, D., Huse, S. M., Neal, P. R., . . . Herndl, G. J.
(2006). Microbial diversity in the deep sea and the underexplored ”rare
biosphere”. Proc Natl Acad Sci U S A, 103 (32), 12115-12120.
doi:10.1073/pnas.0605127103
Stegen, J. C., Lin, X., Fredrickson,
J. K., Chen, X., Kennedy, D. W., Murray, C. J., . . . Konopka, A.
(2013). Quantifying community assembly processes and identifying
features that impose them. ISME J, 7 (11), 2069-2079.
doi:10.1038/ismej.2013.93
Stegen, J. C., Lin, X., Konopka, A.
E., & Fredrickson, J. K. (2012). Stochastic and deterministic assembly
processes in subsurface microbial communities. ISME J, 6 (9),
1653-1664. doi:10.1038/ismej.2012.22
Stein, A., Gerstner, K., & Kreft, H.
(2014). Environmental heterogeneity as a universal driver of species
richness across taxa, biomes and spatial scales. Ecol Lett,
17 (7), 866-880. doi:10.1111/ele.12277
Tilman, D. (1983). Some Thoughts on
Resource Competition and Diversity in Plant-Communities.Ecological Studies, 43 , 322-336.
Tu, Q., Deng, Y., Yan, Q., Shen, L.,
Lin, L., He, Z., . . . Zhou, J. (2016). Biogeographic patterns of soil
diazotrophic communities across six forests in North America. Mol
Ecol, 25 (12), 2937-2948. doi:10.1111/mec.13651
van Schalkwyk, J., Pryke, J. S., &
Samways, M. J. (2019). Contribution of common vs. rare species to
species diversity patterns in conservation corridors. Ecological
Indicators, 104 , 279-288. doi:10.1016/j.ecolind.2019.05.014
Vellend, M. (2010). Conceptual
synthesis in community ecology. Q Rev Biol, 85 (2), 183-206.
doi:10.1086/652373
Wan, W., Gadd, G. M., Yang, Y., Yuan,
W., Gu, J., Ye, L., & Liu, W. (2021). Environmental adaptation is
stronger for abundant rather than rare microorganisms in wetland soils
from the Qinghai-Tibet Plateau. Mol Ecol, 30 (10), 2390-2403.
doi:10.1111/mec.15882
White, H. J., Pakeman, R. J., &
Buckley, Y. M. (2022). Common species contribute little to spatial
patterns of functional diversity across scales in coastal grasslands.Journal of Ecology . doi:10.1111/1365-2745.13858
Xiong, C., He, J. Z., Singh, B. K.,
Zhu, Y. G., Wang, J. T., Li, P. P., . . . Zhang, L. M. (2021). Rare taxa
maintain the stability of crop mycobiomes and ecosystem functions.Environ Microbiol, 23 (4), 1907-1924. doi:10.1111/1462-2920.15262
Xue, M., Guo, Z., Gu, X., Gao, H.,
Weng, S., Zhou, J., . . . Zhou, X. (2020). Rare rather than abundant
microbial communities drive the effects of long-term greenhouse
cultivation on ecosystem functions in subtropical agricultural soils.Sci Total Environ, 706 , 136004.
doi:10.1016/j.scitotenv.2019.136004
Xue, Y., Chen, H., Yang, J. R., Liu,
M., Huang, B., & Yang, J. (2018). Distinct patterns and processes of
abundant and rare eukaryotic plankton communities following a reservoir
cyanobacterial bloom. ISME J, 12 (9), 2263-2277.
doi:10.1038/s41396-018-0159-0
Yang, Z., Liu, X., Zhou, M., Ai, D.,
Wang, G., Wang, Y., . . . Lundholm, J. T. (2015). The effect of
environmental heterogeneity on species richness depends on community
position along the environmental gradient. Sci Rep, 5 , 15723.
doi:10.1038/srep15723
Zhang, W., Pan, Y., Yang, J., Chen,
H., Holohan, B., Vaudrey, J., . . . McManus, G. B. (2018). The diversity
and biogeography of abundant and rare intertidal marine microeukaryotes
explained by environment and dispersal limitation. Environ
Microbiol, 20 (2), 462-476. doi:10.1111/1462-2920.13916
Zhang, X., Liu, S., Wang, J., Huang,
Y., Freedman, Z., Fu, S., . . . Schuler, J. (2020). Local community
assembly mechanisms shape soil bacterial beta diversity patterns along a
latitudinal gradient. Nat Commun, 11 (1), 5428.
doi:10.1038/s41467-020-19228-4
Zhou, J., & Ning, D. (2017).
Stochastic Community Assembly: Does It Matter in Microbial Ecology?Microbiol Mol Biol Rev, 81 (4). doi:10.1128/MMBR.00002-17
Zinger, L., Boetius, A., & Ramette,
A. (2014). Bacterial taxa-area and distance-decay relationships in
marine environments. Mol Ecol, 23 (4), 954-964.
doi:10.1111/mec.12640