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Abstract

In this paper, we introduce a new notion of extended partial strong k-metric

spaces with controlled operators and provide some examples to show that is

different from extended k-metric spaces which initiated by Kamran et al. Fur-

thermore, we introduce the concept of extended partial fuzzy strong k-metric

spaces with controlled operators, which is a generalization of extended k-metric

in the sense of Mehmood given. Finally, we establish fixed point theorems for

self-mappings which satisfy Banach contraction principle on extended partial

fuzzy strong k-metric spaces. Also, we provide some examples to illustrate our

results.
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1. Introduction

Since Bourbaki [2] initiated the notion of b-metrics in 1989, which was in-

troduced formally by Czerwik [3] in 1993 (also called quasimetrics by Bakhtin

[1]). Many researchers expanded their work by replacing the triangle inequal-

ity d(x, z) ≤ s[d(x, y) + d(y, z)] (see, e.g., partial b-metrics [21], quasi-partial

b-metrics [5], strong b-metrics [8], strong partial b-metrics [15] etc). Recent-

ly, Kamran et al.[7] introduced the concept of extended b-metric spaces, which
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modified the constant s in the triangle inequality by a function θ(x, z), namely

dθ(x, z) ≤ θ(x, z)[dθ(x, y)+dθ(y, z)]. Following this view of extension, many au-

thors presented other generalized extended metric spaces ( see, e.g., controlled

metric type spaces [14], controlled partial metric type spaces [22] etc).

In addition, since Kramosi and Michálek [10] introduced the notion of fuzzy

metric spaces in 1975, basing on the concept of statistical metric spaces which

was initiated by Menger [13]. A number of literatures about fuzzy metric spaces

appeared, by constructing from metric spaces (see, e.g., fuzzy pseudo-metric

spaces [4], fuzzy b-metric spaces [16], fuzzy metric type spaces [19], fuzzy strong

b-metric spaces [17] etc). In 2017, Mehmood et al. [12] generalized the concept of

fuzzy b-metric spaces by introducing a type of extended fuzzy b-metric spaces,

which is an extension by a function α(x, z) depending on the parameters of

left-hand side of the triangle inequality. Later, some researchers established

other extensions fuzzy spaces different from extended fuzzy b-metric spaces and

Banach-type fixed point results in these spaces. For instance, µ-extended fuzzy

b-metric spaces [18], controlled fuzzy metric spaces [20] etc.

In this paper, we present the idea of extended partial strong k-metric spaces

and extended partial fuzzy strong k-metric spaces with controlled operators

k(x, y), which generalizes the concepts of extended b-metric spaces and extended

fuzzy b-metric spaces, respectively. Also, some examples of extended partial

(fuzzy) strong k-metric spaces with controlled operators are given to show that

our extension is different. Finally, we prove some fixed point results by Banach

contraction in extended partial fuzzy strong k-metric spaces.

We recall some basic notions and results that will be used in the following

sections (see more details in [4, 9–11]. Throughout this paper, the letters R,

R+, N+ always denote the set of real numbers, of positive real numbers and of

positive integers, respectively.
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2. Extended partial strong k-metric space

Definition 2.1. Let X be a nonempty set, k : X × X → [1,+∞) and the

mapping dek : X ×X → [0,+∞) satisfying the following conditions: ∀x, y, z ∈

X,

(EDK1) x = y ⇔ dek(x, y) = 0;

(EDK2) dek(x, y) = dek(y, x);

(EDK3) dek(x, z) ≤ k(x, z)[dek(x, y) + dek(y, z)];

(EDK4) dek(x, z) ≤ k(x, y)dek(x, y) + k(y, z)dek(y, z);

(EDK5) dek(x, z) ≤ dek(x, y) + k(y, z)dek(y, z).

If dek satisfies the conditions (EDK1)-(EDK3), then dek is called an extended k-

metric [7]. If dek satisfies the conditions (EDK1), (EDK2) and (EDK4), then dek

is called a controlled metric type [14]. If dek satisfies the conditions (EDK1),

(EDK2) and (EDK5), then dek is called an extended strong k-metric with a

controlled operator k.

An extended strong k-metric space with a controlled operator k is a pair

(X, dek) such that dek is an extended strong k-metric on X.

Particularly, when k(x, y) = s for all x, y ∈ X and some number s ≥ 1, an

extended k-metric (controlled metric type) space (X, dek) is a k-metric space

and an extended strong k-metric space (X, dek) is a strong k-metric space [8],

respectively.

Definition 2.2. Let X be a nonempty set, k : X ×X → [1,+∞) and the map-

ping pek : X ×X → [0,+∞) satisfying the following conditions: ∀x, y, z ∈ X,

(EPK1) x = y ⇔ pek(x, x) = pek(x, y) = pek(y, y);

(EPK2) pek(x, x) ≤ pek(x, y);

(EPK3) pek(x, y) = pek(y, x);

(EPK4) pek(x, z) ≤ pek(x, y) + k(y, z)pek(y, z)− pek(y, y);

(EPK5) pek(x, z) ≤ k(x, y)pek(x, y) + k(y, z)pek(y, z).

If pek satisfies the conditions (EPK1)-(EPK4), then pek is called an extended

partial strong k-metric with a controlled operator k. If pek satisfies the condi-

tions (EPK1)-(EPK3) and (EPK5), then pek is called a controlled partial metric
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type [22]. An extended partial strong k-metric space with a controlled operator

k is a pair (X, pek) such that pek is an extended partial strong k-metric on X.

Particularly, when k(x, y) = s for all x, y ∈ X and some number s ≥ 1, an

extended partial strong k-metric space is called a partial k-metric space [21].

Apparently, when s = 1, an extended partial strong k-metric space (X, pek) is

a partial metric space [11].

Example 2.3. Let X = {1, 2, 3}. Define k : X × X → [1,+∞) by k(x, y) =

2 + x+ y for all x, y ∈ X and pek: X ×X → [0,+∞) as follows:

pek(1, 1) = pek(1, 2) = pek(2, 1) = pek(3, 3) = 8, pek(2, 2) = 0, pek(1, 3) =

pek(3, 1) = 100, pek(2, 3) = pek(3, 2) = 60. Then (X, pek) is an extended partial

strong k-metric space with a controlled operator k.

It is trivial to verify the conditions (EPK1)-(EPK3) one by one. We will

verify the condition (EPK4) in the following cases:

Case 1: Set x = 1, y = 3, z = 2. It follows that pek(1, 2) = 8, pek(1, 3) =

100, pek(3, 2) = 60, pek(3, 3) = 8 and k(3, 2) = 7. It is clear that pek(1, 2) ≤

pek(1, 3) + k(3, 2)pek(3, 2)− pek(3, 3). Similarly, we can deduce that pek(2, 1) ≤

pek(2, 3) + k(3, 1)pek(3, 1)− pek(3, 3).

Case 2: Set x = 1, y = 2, z = 3. It follows that pek(1, 3) = 100, pek(1, 2) =

8, pek(2, 3) = 60, pek(2, 2) = 0 and k(2, 3) = 7. It is clear that pek(1, 3) ≤

pek(1, 2) + k(2, 3)pek(2, 3)− pek(2, 2). Similarly, we can deduce that pek(3, 1) ≤

pek(3, 2) + k(2, 1)pek(2, 1)− pek(2, 2).

Case 3: Set x = 2, y = 1, z = 3. It follows that pek(2, 3) = 60, pek(2, 1) =

8, pek(1, 3) = 100, pek(1, 1) = 8 and k(1, 3) = 6. It is clear that pek(2, 3) ≤

pek(2, 1) + k(1, 3)pek(1, 3)− pek(1, 1). Similarly, we can deduce that pek(3, 2) ≤

pek(3, 1) + k(1, 2)pek(1, 2)− pek(1, 1).

Therefore, pek is an extended partial strong k-metric. However, it is not an

extended k-metric since pek(1, 1) = 8 6= 0.

Furthermore, we can claim that each extended k-metric space may not be

an extended partial strong k-metric space as follows:

Example 2.4. Let X = {1, 2, 3}. Define k : X × X → [1,+∞) by k(x, y) =
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1 + x + y for all x, y ∈ X and pek: X × X → [0,+∞) as follows: pek(1, 1) =

pek(2, 2) = pek(3, 3) = 0, pek(1, 2) = pek(2, 1) = 80, pek(1, 3) = pek(3, 1) = 1000,

pek(2, 3) = pek(3, 2) = 600.

In [8], the authors proved that (X, pek) is an extended k-metric space, but

it is not an extended partial strong k-metric space with the same controlled

operator k. Indeed, for x = 3, y = 2, z = 1, we have pek(1, 1) = 0, pek(3, 1) =

1000, pek(3, 2) = 600, pek(2, 1) = 80 and k(2, 1) = 4. It implies that pek(3, 1) =

1000 > 920 = pek(3, 2) + k(2, 1)pek(2, 1)− pek(1, 1).

Remark 2.5. By Definition 2.2, it is obvious that pek(x, z) ≤ pek(x, y) +

k(y, z)pek(y, z) − pek(y, y) ≤ k(x, y)pek(x, y) + k(y, z)pek(y, z) for k(x, y) ≥ 1

∀x, y ∈ X. Then, each extended partial strong k-metric space is a controlled

partial metric type space, but the converse is not true.

Example 2.6. Let X = {0, 1, 2}. Define k : X × X → [1,+∞) by k(x, y) =

1 + x + y for all x, y ∈ X and pek: X × X → [0,+∞) as follows: pek(x, y) =

max {x, y} + d(x, y) for all x, y ∈ X, where d(0, 0) = d(1, 1) = d(2, 2) =

0, d(0, 1) = d(1, 0) = 2, d(1, 2) = d(2, 1) = 11, d(0, 2) = d(2, 0) = 1.

It is not difficult to pove that (X, pek) is a controlled partial metric type

space. However, it is not an extended partial strong k-metric space with the

same controlled operator k. Indeed, for x = 1, y = 0, z = 2, we have pek(0, 0) =

0, pek(1, 0) = 3, pek(0, 2) = 3, pek(1, 2) = 13 and k(0, 2) = 3. It implies that

pek(1, 2) = 13 > 12 = pek(1, 0) + k(0, 2)pek(0, 2)− pek(0, 0).

With the following proposition, more examples of the extended partial strong

k-metric can be constructed by partial metric and extended strong k-metric.

Proposition 2.7. Let X be a nonempty set, (X, p) be a partial metric space

and (X, dek) be an extended strong k-metric space with a controlled operator k.

Define pek: X ×X → [0,+∞) as follows:

pek(x, y) = p(x, y) + dek(x, y),∀x, y ∈ X.

Then (X, pek) is an extended partial strong k-metric space with the controlled

operator k.
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Proof. By assumption, (X, p) be a partial metric space and (X, dek) be a ex-

tended strong k-metric space with a controlled operator k. Then (EPK1), (EP-

K2) and (EPK3) are obvious. We will verify condition (EPK4) in the following.

(EPK4): By Definition 2.1 and Definition 2.2, we have that

pek(x, z) ≤ [p(x, y) + p(y, z)− p(y, y)] + [dek(x, y) + k(y, z)dek(y, z)]

≤ [p(x, y) + dek(x, y)] + k(y, z)[p(y, z) + dek(y, z)]− [p(y, y) + dek(y, y)]

= pek(x, y) + k(y, z)pek(y, z)− pek(y, y),

for all x, y, z ∈ X.

Hence, (EPK4) holds.

3. Extended partial fuzzy strong k-metric space

Recently, Mehmood, Ali, Ionescu and Kamran [12] introduced the notion

of extended fuzzy b-metric spaces. As a extension of fuzzy metric spaces, the

authors replaced the triangularity axiom of the fuzzy metric spaces [10] by using

a function α(x, z) ≥ 1 in the corresponding triangle inequality. Following their

work, in this section, we introduce a concept of extended partial fuzzy strong

k-metric spaces, which is a generalization of extended fuzzy b-metric spaces.

First, we recall some aspects on continuous t-norms, which will be used in

the following section (see more details in [9]).

Definition 3.1. [21] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called a

continuous triangular norm (briefly t-norm) if it satisfies the following condi-

tions:

(1) ∗ is associative and commutative;

(2) ∗ is continuous;

(3) a ∗ 1 = a for all a ∈ [0, 1];

(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

The most commonly used t-norms are: minimum and usual product t-norm

which are given as follows: ∀a, b ∈ [0, 1], a ∗M b = min{a, b} and a ∗P b = a · b.
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Definition 3.2. [16] Let X be a nonempty set, α, µ : X × X → [1,+∞), ∗

be a continuous t-norm , and M be a fuzzy set in X ×X × [0,+∞) is called a

fuzzy k-metric on X if ∀x, y, z ∈ X and t, s > 0, the following conditions hold

for some number k ≥ 1:

(FKM1) M(x, y, 0) = 0;

(FKM2) M(x, y, t) = 1, ∀t > 0 if and only if x = y;

(FKM3) M(x, y, t) = M(y, x, t);

(FKM4) M(x, z, k(t+ s)) ≥M(x, y, t) ∗M(y, z, s);

(FKM5) The function M(x, y, ·) : [0,+∞)→ [0, 1] is left-continuous;

(FKM6) limt→+∞M(x, y, t) = 1.

Then (X,M, ∗) is called a fuzzy k-metric space.

In [12], Mehmood et al. introduced the ideal of an extended fuzzy k-metric

space by replacing the condition (FKM4) with the condition (FKMα4:)

(FKMα4) M(x, z, α(x, z)(t+ s)) ≥M(x, y, t) ∗M(y, z, s).

Recently, Rome et al. [18] introduced the notion of µ-extended fuzzy k-

metric space, whichM satisfies the conditions (FKM1)-(FKM3),(FKM6), (FKMαµ4)

and (FKMαµ5):

(FKMαµ4) M(x, z, α(x, z)t+ µ(x, z)s) ≥M(x, y, t) ∗M(y, z, s);

(FKMαµ5) The function M(x, y, ·) : (0,+∞)→ [0, 1] is continuous.

Apparently, when α(x, y) = µ(x, y) = k, for some number k ≥ 1 and

α(x, y) = µ(x, y), µ-extended fuzzy k-metric is fuzzy k-metric and extended

fuzzy k-metric, respectively.

Definition 3.3. Let X be a nonempty set, k : X × X → [1,+∞), ∗ is a

continuous t-norm, and Mpesk is a fuzzy set on X ×X × [0,+∞), satisfying the

following conditions: ∀x, y, z ∈ X and t, s > 0:

(EPFSK1) Mpesk(x, y, 0) = 0;

(EPFSK2) Mpesk(x, x, t) ≥Mpesk(x, y, t);

(EPFSK3) Mpesk(x, y, t) = Mpesk(y, x, t);

(EPFSK4) Mpesk(x, x, t) = Mpesk(x, y, t) = Mpesk(y, y, t) if and only if x = y;

(EPFSK5) Mpesk(x, z, t+ k(x, z)s) ≥Mpesk(x, y, t) ∗Mpesk(y, z, s);
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(EPFSK6) The function Mpesk(x, y, ·) : [0,+∞)→ [0, 1] is left-continuous.

If Mpesk satisfies the conditions (EPFSK1)-(EPFSK6), then Mpesk is called

an extended partial fuzzy strong k-metric, the mapping k is called a controlled

operator. A 3-triple (X,Mpsk, ∗) is called an extended partial fuzzy strong k-

metric space with a controlled operator k if Mpesk is an extended partial fuzzy

strong k-metric.

Example 3.4. Let X = [0, 1] and define k : X × X → [1,+∞) by k(x, y) =

1 + x+ y. Define a fuzzy set on X ×X × [0,+∞) as follows:

Mpesk(x, y, t) = e−
|x−y|

t ,∀x, y ∈ X, t > 0

and Mpesk(x, y, t) = 0 when t = 0. Then (X,Mpesk, ∗P ) is an extended partial

fuzzy strong k-metric space with a controlled operator k.

It is trivial to check that (X,Mpesk, ∗P ) satisfies (EPFSK1)-(EPFSK4) and

(EPFSK6). We check the condition (EPFSK5) in the following:

(EPFSK5): We claim that c+d
a+b ≤

c
a + d

b for all a, b > 0 and c, d ≥ 0.

Note thatMpesk(x, y, t) = e−
|x−y|

t , Mpesk(y, z, s) = e−
|y−z|

s , andMpesk(x, z, t+

k(x, z)s) = e−
|x−z|

t+(1+x+z)s . Since

|x− z|
t+ (1 + x+ z)s

≤ |x− y|+ |y − z|
t+ (1 + x+ z)s

and
|x− y|+ |y − z|
t+ (1 + x+ z)s

≤ |x− y|+ |y − z|
t+ s

≤ |x− y|
t

+
|y − z|
s

for all x, y, z ∈ X, t, s > 0, this implies that e−
|x−z|

t+(1+x+z)s ≥ e−
|x−y|

t − |y−z|
s . Thus,

we have that Mpesk(x, z, t+ k(x, z)s) ≥Mpesk(x, y, t) ∗P Mpesk(y, z, s).

Hence, (EPFSK5) holds.

Example 3.5. Let X = {10, 20, 30} and define k : X × X → [1,+∞) by

k(x, y) = 1 + x+ y. Define a fuzzy set on X ×X × [0,+∞) as follows:

Mpesk(x, y, t) =
t

max{x, y}+ (x− y)2 + t
,

for all x, y ∈ X, t > 0 and Mpesk(x, y, t) = 0 when t = 0. Then (X,Mpesk, ∗M )

is an extended partial fuzzy strong k-metric space with a controlled operator k.
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Since (EPFSK1)-(EPFSK4) and (EPFSK6) are straightforward, we prove

only (EPFSK5). Note that k(10, 10) = 21, k(20, 20) = 41, k(30, 30) = 61,

k(10, 20) = k(20, 10) = 31, k(10, 30) = k(30, 10) = 41, k(20, 30) = k(30, 20) =

51, Mpesk(x, y, t) = t
max{x,y}+(x−y)2+t , Mpesk(y, z, s) = s

max{y,z}+(y−z)2+s , and

Mpesk(x, z, t+ k(x, z)s) = t+(1+x+z)s
max{x,z}+(x−z)2+t+(1+x+z)s .

To verify that Mpesk satisfies (EPFSK5), we will distinguish in the following

cases:

Case 1: Set x = 10, y = 30, z = 20. We have that Mpesk(10, 30, t) =

t
430+t = 1 − 430

430+t , Mpesk(30, 20, s) = s
130+s = 1 − 130

130+s , and Mpesk(10, 20, t +

k(10, 20)s) = t+31s
120+t+31s = 1− 120

120+t+31s . Since

1− 120

120 + t+ 31s
≥ 1− 120

120 + t
≥ 1− 430

430 + t
,∀t, s > 0,

this implies that

1− 120

120 + t+ 31s
≥ min {1− 430

430 + t
, 1− 130

130 + s
}.

Therefore, Mpesk(10, 20, t+ k(10, 20)s) ≥Mpesk(10, 30, t) ∗M Mpesk(30, 20, s).

Similarly, we can deduce thatMpesk(20, 10, t+k(20, 10)s) ≥Mpesk(20, 30, t)∗M
Mpesk(30, 10, s).

Case 2: Set x = 10, y = 20, z = 30. We have that Mpesk(10, 20, t) =

1 − 120
120+t , Mpesk(20, 30, s) = 1 − 130

130+s , and Mpesk(10, 30, t + k(10, 30)s) =

1− 430
430+t+41s . Since

1− 430

430 + t+ 41s
≥ 1− 430

430 + 41s
≥ 1− 130

130 + s
,∀t, s > 0,

this implies that

1− 430

430 + t+ 41s
≥ min {1− 120

120 + t
, 1− 130

130 + s
}.

Therefore, Mpesk(10, 30, t+ k(10, 30)s) ≥Mpesk(10, 20, t) ∗M Mpesk(20, 30, s).

Similarly, we can deduce thatMpesk(30, 10, t+k(30, 10)s) ≥Mpesk(30, 20, t)∗M
Mpesk(20, 10, s).

Case 3: Set x = 20, y = 10, z = 30. We have that Mpesk(20, 10, t) =

1 − 120
120+t , Mpesk(10, 30, s) = 1 − 430

430+s , and Mpesk(20, 30, t + k(20, 30)s) =
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1− 130
130+t+51s . Since

1− 130

130 + t+ 51s
≥ 1− 130

130 + 51s
≥ 1− 430

430 + s
,∀t, s > 0,

this implies that

1− 130

130 + t+ 51s
≥ min {1− 120

120 + t
, 1− 430

430 + s
}.

Therefore, Mpesk(20, 30, t+ k(20, 30)s) ≥Mpesk(20, 10, t) ∗M Mpesk(10, 30, s).

Similarly, we can deduce thatMpesk(30, 20, t+k(30, 20)s) ≥Mpesk(30, 10, t)∗M
Mpesk(10, 20, s).

Hence, (EPFSK5) holds.

However, it is not a fuzzy metric space. Indeed, consider x = 10, y = 20, z =

30, and t = s = 1. We have Mpesk(10, 30, 1 + 1) = 1
216 , Mpesk(10, 20, 1) = 1

121 ,

Mpesk(20, 30, 1) = 1
131 . Thus, we have thatMpesk(10, 30, 1+1) < Mpesk(10, 20, 1)∗M

Mpesk(20, 30, 1).

Remark 3.6. By Definition 3.3, if (X,Mpesk) is an extended partial fuzzy

strong k-metric space and satisfies Mpesk(x, y, t) = 1 ⇒ x = y for all x, y ∈

X, t > 0, then (X,Mpesk) is an extended fuzzy k-metric space.

Example 3.7. Let X = {1, 2, 3} and define k : X ×X → [1,+∞) by k(x, y) =

2 + x+ y. Define a fuzzy set on X ×X × [0,+∞) as follows:

Mpesk(x, y, t) =
t

t+ pek(x, y)
,

for all x, y ∈ X, t > 0 and Mpesk(x, y, t) = 0 when t = 0, where pek is defined in

Example 2.3 i,e., pek(1, 1) = pek(1, 2) = pek(2, 1) = pek(3, 3) = 8, pek(2, 2) = 0,

pek(1, 3) = pek(3, 1) = 100, pek(2, 3) = pek(3, 2) = 60.

It is not difficult to prove that (X,Mpesk, ∗P ) is an extended partial fuzzy

strong k-metric space with a controlled operator k. However, it is not a µ-

extended fuzzy k-metric space. Indeed, we have Mpesk(x, x, t) = t
t+pek(x,x)

.

Thus, it implies that Mpesk(1, 1, t) = t
t+8 6= 1 for all t > 0.
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Proposition 3.8. Let X be a nonempty set and (X,Mpesk, ∗P ) be an extended

partial strong fuzzy k-metric space with a controlled operator k. Define a fuzzy

set on X ×X × [0,+∞) as follows:

M(x, y, t) =
t ·Mpesk(x, y, t)

t+ 1
,

for all x, y ∈ X and t ≥ 0. Then (X,M, ∗P ) is an extended partial strong fuzzy

k-metric space with the same controlled operator k.

Proof. It is trivial to prove that (X,M, ∗P ) satisfies (EPFSK1)-(EPFSK4) and

(EPFSK6). We verify condition (EPFSK5) in the following.

(EPFSK5): Since (X,Mpesk, ∗P ) is an extended partial strong fuzzy k-metric

space. By Definition 3.3, we have

M(x, z, t+ k(x, z)s) =
t+ k(x, z)s

t+ k(x, z)s+ 1
·Mpesk(x, z, t+ k(x, z)s)

≥ t+ k(x, z)s

t+ k(x, z)s+ 1
·Mpesk(x, y, t) ·Mpesk(y, z, s)

≥ t

t+ 1
· s

s+ 1
Mpesk(x, y, t) ·Mpesk(y, z, s)

= [
t

t+ 1
·Mpesk(x, y, t)] · [ s

s+ 1
·Mpesk(y, z, s)]

= M(x, y, t) ∗P M(y, z, s)

for all x, y, z ∈ X, t > 0.

We know that each fuzzy metric M on X generates a topology TM on X

with the basis B = {B(x, r, t) : x ∈ X, 0 < r < 1, t > 0}, where the open ball

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r} for all 0 < r < 1 and t > 0. Also, we

call that TM is induced by the fuzzy metric M (see more details in [6]).

Theorem 3.9. Let X be a nonempty set and (X,Mpesk, ∗) be an extended

partial fuzzy strong k-metric space with a controlled operator k. For any x ∈ X,

0 < r < 1 and t > 0, we define the open ball as follows:

B(x, r, t) = {y ∈ X : Mpesk(x, y, t) > 1− r}.

Then TMpesk
= {V ⊂ X : for each x ∈ V, there exist 0 < r < 1, t > 0 such that

B(x, r, t) ⊂ V } is a topology on X.

11



Proof. It is similar to the proof of Theorem 2.1 [16].

Lemma 3.10. Let X be a nonempty set, (X,Mpesk, ∗) be an extended partial

fuzzy strong k-metric space with a controlled operator k. If Mpesk(x, y, t) = 1

for all x, y ∈ X and t > 0, then x = y.

Proof. By (EPFSK2), we have Mpesk(x, x, t) ≥Mpesk(x, y, t) and Mpesk(y, y, t)

≥ Mpesk(x, y, t). Suppose that Mpesk(x, y, t) = 1. Thus, Mpesk(x, x, t) ≥ 1

and Mpesk(y, y, t) ≥ 1, which follows that Mpesk(x, x, t) = Mpesk(y, y, t) = 1.

Namely, Mpesk(x, x, t) = Mpesk(y, y, t) = Mpesk(x, y, t), and then we have x = y

by (EPFSK4).

4. Fixed point theorem on extended partial fuzzy strong k-metric

space

In this section, we investigate fixed point theorems involving fuzzy Banach-

type contractive mappings on extended partial fuzzy strong k-metric spaces.

Definition 4.1. Let X be a nonempty set and (X,Mpesk, ∗) be an extended

fuzzy partial strong k-metric space with a controlled operator k.

(1) A sequence {xn}n∈N+ in (X,Mpesk, ∗) converges to a point x ∈ X if for any

0 < ε < 1 and t > 0, there exists n0 ∈ N+ such that Mpesk(xn, x, t) > 1−ε

for all n > n0 (or equivalently for any open ball B(x, r, t), there exists n0 ∈

N+ such that xn ∈ B(x, r, t) for all n ≥ n0), we denote limn→+∞ xn = x.

(2) A sequence {xn}n∈N+ is called a Cauchy sequence if for any 0 < ε < 1

and t > 0, there exists n0 ∈ N+ such that Mpesk(xn, xm, t) > 1− ε for all

n,m ≥ n0.

(3) (X,Mpesk, ∗) is said to be complete if every Cauchy sequence {xn}n∈N+

in X converges to a point x ∈ X.

Lemma 4.2. Let X be a nonempty set, (X,Mpesk, ∗) be an extended partial

fuzzy strong k-metric space with a controlled operator k, and {xn}n∈N+ be a

12



sequence in X. Then limn→+∞ xn = x if and only if limn→+∞Mpesk(xn, x, t) =

1 for all t > 0.

Proof. (⇒) Suppose that limn→+∞ xn = x. Then for any open ball B(x, r, t),

there exists n0 ∈ N+ such that xn ∈ B(x, r, t) for all n > n0. ThusMpesk(xn, x, t) >

1 − r for all n > n0 and t, r > 0, namely, 1 − Mpesk(xn, x, t) < r. Hence

limn→+∞Mpesk(xn, x, t) = 1.

(⇐) Suppose that limn→+∞Mpesk(xn, x, t) = 1. Then for each t > 0, there

exists n0 ∈ N+ such that 1 − Mpesk(xn, x, t) < r for all n ≥ n0. Namely,

Mpesk(xn, x, t) > 1− r for all n > n0. Therefore, xn ∈ B(x, r, t) for all n > n0.

Thus limn→+∞ xn = x.

Theorem 4.3. Let X be a nonempty set, (X,Mpesk, ∗) be a complete extended

partial fuzzy strong k-metric space with a controlled operator k and satisfies

(EPFSK7): limt→+∞Mpesk(x, y, t) = 1.

Let T : X → X be a function satisfies the following conditions for some

number λ ∈ (0, 1):

(1) Mpesk(Tx, Ty, λt) ≥Mpesk(x, y, t), ∀x, y ∈ X, t > 0;

(2) k(xn, xn+m) < 1
λ for all x0 ∈ X and n,m ∈ N+, where xn+1 = Txn.

Then T has a unique fixed point.

Proof. By assumption, we define a sequence in the following way: xn+1 = Txn

for all x0 ∈ X and n ∈ N+.

Case 1: Suppose that xn+1 = xn for some n ∈ N+. It implies that Txn = xn,

this shows that xn is a fixed point.

Case 2: Suppose that xn+1 6= xn for all n ∈ N+. We will prove the existence

and uniqueness of fixed point in the following:

Step 1: Since Mpesk(Tx, Ty, λt) ≥Mpesk(x, y, t), we have

Mpesk(xn, xn+1, λt) = Mpesk(Txn−1, Txn, λt) ≥Mpesk(xn−1, xn, t),

for all xn−1, xn, xn+1 ∈ X, t > 0, and n ∈ N+. By repeating the above process,

it follows that Mpesk(xn, xn+1, λt) ≥Mpesk(x0, x1,
t

λn−1 ).

13



On the other hand, by (EPFSK5), we have that

Mpesk(xn, xn+m, t)

= Mpesk(xn, xn+m,
t

m
+ k(xn, xn+m)

mt− t
mk(xn, xn+m)

)

≥Mpesk(xn, xn+1,
t

m
) ∗Mpesk(xn+1, xn+m,

mt− t
mk(xn, xn+m)

).

Furthermore, we can deduce that

Mpesk(xn+1, xn+m,
mt− t

mk(xn, xn+m)
)

≥Mpesk(xn+1, xn+2,
t

mk(xn, xn+m)
)

∗Mpesk(xn+2, xn+m,
mt− 2t

mk(xn, xn+m)k(xn+1, xn+m)
),

· · · ,

Mpesk(xn+m−2, xn+m,
mt− (m− 2)t

m
∏n+m−2
j=n k(xj , xn+m)

)

≥Mpesk(xn+m−2, xn+m−1,
t

m
∏n+m−2
j=n k(xj , xn+m)

)

∗Mpesk(xn+m−1, xn+m,
t

m
∏n+m−1
j=n k(xj , xn+m)

),

for all n,m ∈ N+ and t > 0.

Therefore, it implies that

Mpesk(xn, xn+m, t) ≥Mpesk(x0, x1,
t

mλn ) ∗Mpesk(x0, x1,
t

mk(xn,xn+m)λn+1 )

∗ · · · ∗Mpesk(x0, x1,
t

m
∏n+m−1

j=n k(xj ,xn+m)λn+m−1
).

As k(x0, xn+m) < 1
λ for all x0 ∈ X and n,m ∈ N+, from condition (EPF-

SK7), we have limn→+∞Mpesk(xn, xn+m, t) = 1. Hence, {xn} is a Cauchy

sequence. From the completeness of (X,Mpesk, ∗), there exists x∗ ∈ X such

that limn→+∞ xn = x∗.

Step 2: By (EPFSK5), we have that

Mpesk(Tx∗, x∗, t) ≥Mpesk(Tx∗, x∗,
t

2
+ k(Tx∗, x∗)

t

2k(Tx∗, x∗)
)

≥Mpesk(Tx∗, Txn,
t

2
) ∗Mpesk(Txn, x

∗,
t

2k(Tx∗, x∗)
)

≥Mpesk(x∗, xn,
t

2λ
) ∗Mpesk(Txn, x

∗,
t

2k(Tx∗, x∗)
)

= Mpesk(x∗, xn,
t

2λ
) ∗Mpesk(xn+1, x

∗,
t

2k(Tx∗, x∗)
),
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for all t > 0. By Lemma 4.2, it follows that limn→+∞Mpesk(Tx∗, x∗, t) ≥ 1∗1 =

1, namely Mpesk(Tx∗, x∗, t) = 1. From Lemma 3.10, we have Tx∗ = x∗.

Step 3: Suppose that x∗ 6= y∗, where Ty∗ = y∗. We have Mpesk(x∗, y∗, t) =

Mpesk(Tx∗, T y∗, t) ≥ Mpesk(x∗, y∗, tλ ) ≥ · · · ≥ Mpesk(x∗, y∗, t
λn ). By (EPF-

SK7), it follows that limn→+∞Mpesk(x∗, y∗, t) = 1, namely Mpesk(x∗, y∗, t) = 1.

From Lemma 3.10, we have x∗ = y∗.

Lastly, we illustrate our result by Example 3.4. In fact, Define a mapping

T : X → X by Tx = 1 − x
3 for all x ∈ X. It is easy to see that (X,Mpesk, ∗P )

is a complete extended partial fuzzy strong k-metric space with the controlled

operator k(x, y) = 1 + x+ y for all x, y ∈ X. In addition, we can verify that all

the conditions of Theorem 4.3 are satisfied and x = 3
4 is a fixed point of T (see

more details in [18]).

Conclusions

In this paper, Firstly, we introduce the notion of extended partial strong

k-metrics with a controlled operator k, which is an extension of extended k-

metrics, by replacing the constant k with a controlled operator k(x, y) in the left-

hand side of the triangle inequality. In Section 2, we provide several examples for

illustrating the relationships between the extended partial strong k-metrics and

extended k-metrics (controlled partial metrics type). Additionally, the purpose

of this paper is to obtain another extension of controlled (extended) fuzzy type

metrics by replacing the M(x, x, α(x, z)(s + t)) ≥ M(x, y, t) ∗M(y, z, s) with

M(x, z, t+k(x, z)s) ≥M(x, y, t)∗M(y, z, s), we introduce a concept of extended

partial fuzzy strong k-metrics. Finally, we present a fixed point theorem on

extended partial fuzzy strong k-metric spaces.
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